綜述審校
復(fù)旦大學(xué)附屬腫瘤醫(yī)院中西醫(yī)結(jié)合科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海 200032
外泌體源性非編碼RNA在消化系統(tǒng)惡性腫瘤中的研究進(jìn)展及展望
于淑林綜述,陳 震審校
復(fù)旦大學(xué)附屬腫瘤醫(yī)院中西醫(yī)結(jié)合科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海 200032
外泌體是納米級(jí)、雙層膜的囊泡,由多種細(xì)胞分泌,廣泛存在于多種體液中。外泌體中含有RNA和蛋白質(zhì)等多種活性物質(zhì),在細(xì)胞物質(zhì)間和信號(hào)轉(zhuǎn)導(dǎo)中起重要作用。非編碼RNA具有重要的基因表達(dá)調(diào)控功能,在多種腫瘤的發(fā)生、發(fā)展過(guò)程中起重要作用。外泌體源性非編碼RNA的研究是目前新的研究熱點(diǎn),現(xiàn)就外泌體及外泌體源性非編碼RNA在消化系統(tǒng)惡性腫瘤中的研究進(jìn)展進(jìn)行綜述。
外泌體;非編碼RNA;消化系統(tǒng)惡性腫瘤
外泌體是細(xì)胞經(jīng)過(guò)“內(nèi)吞-融合-外排”等一系列調(diào)控過(guò)程而形成的具有雙層膜結(jié)構(gòu)的囊泡,直徑約50~150 nm[1],源于細(xì)胞內(nèi)吞系統(tǒng)的晚期內(nèi)體[2]。它富含蛋白、mRNA和核苷酸等多種成分[3],能調(diào)節(jié)受體細(xì)胞的生物學(xué)行為[4],發(fā)揮重要的調(diào)控作用。多種細(xì)胞可分泌外泌體,包括T細(xì)胞、血小板及腫瘤細(xì)胞等[5-9]。在人類基因組中,編碼蛋白質(zhì)的序列在基因組中所占的比例不到2%,其他超過(guò)90%的序列為非編碼區(qū)[10]。非編碼RNA作為一類特殊的RNA分子,包括微小RNA(microRNA,miRNA)、長(zhǎng)鏈非編碼RNA(long non-coding RNA, lncRNA)和環(huán)狀RNA(circle RNA,circRNA)在內(nèi)的多種RNA,具有調(diào)控基因表達(dá)、參與表觀遺傳修飾、細(xì)胞增殖及細(xì)胞凋亡等多種生命活動(dòng)的功能[11-12]。外泌體源性非編碼RNA在疾病中的研究是目前較新的研究領(lǐng)域,現(xiàn)就外泌體及外泌體源性非編碼RNA(包括miRNA、lncRNA和circRNA)在消化系統(tǒng)惡性腫瘤中的研究進(jìn)展進(jìn)行綜述。
消化系統(tǒng)惡性腫瘤,包括胃癌、肝癌、結(jié)直腸癌、胰腺癌和食管癌等,是危害人類健康的主要因素之一,約占腫瘤引起死亡人數(shù)的1/4,在我國(guó)發(fā)病率逐年上升,具有發(fā)病率高、癥狀隱匿及預(yù)后差等特點(diǎn),其早期診斷、治療及預(yù)后是目前臨床消化系統(tǒng)腫瘤防治的重點(diǎn)[13]。包括外泌體在內(nèi)的液體活檢技術(shù)是目前的研究熱點(diǎn),旨在尋找潛在非侵入性、創(chuàng)傷小、特異性高的診斷和篩查方法。
血液是唯一與所有器官都有接觸的組織,隨著檢測(cè)及分離技術(shù)日趨完善,外周血中的外泌體逐漸被人們了解。外周血中RNA的來(lái)源包括:細(xì)胞自身分泌或死亡破裂后所含的RNA直接釋放進(jìn)入循環(huán),并可經(jīng)細(xì)胞死亡數(shù)量增加、細(xì)胞外RNA的含量也增加的研究證實(shí);膜萌芽期RNA裝載于微囊泡中或裝載于外泌體中進(jìn)入外周血[14]。外泌體中的RNA雖然僅占外周血RNA的一小部分,但因其表面具有標(biāo)志性蛋白可進(jìn)行特異性富集,具有很好的腫瘤特異性。腫瘤細(xì)胞來(lái)源的外泌體既可以通過(guò)微環(huán)境介導(dǎo)腫瘤細(xì)胞的增生、血管形成及免疫抑制等腫瘤發(fā)生、發(fā)展的過(guò)程,又可以通過(guò)檢測(cè)其含有腫瘤細(xì)胞分泌的特異性成分(如非編碼RNA),對(duì)腫瘤進(jìn)行診斷及監(jiān)測(cè),為消化系統(tǒng)惡性腫瘤的診治提供較好的依據(jù)。
腫瘤細(xì)胞分泌的外泌體可以通過(guò)外泌體的自分泌信號(hào)通路來(lái)調(diào)節(jié)腫瘤的局部增生[15]。不同細(xì)胞類型及細(xì)胞特性來(lái)源的外泌體的自分泌作用存在差異。例如,源于胃癌細(xì)胞系的外泌體的自分泌信號(hào)可通過(guò)Akt和細(xì)胞外信號(hào)調(diào)節(jié)激酶磷酸化作用的增加來(lái)促進(jìn)腫瘤細(xì)胞的增殖[16]。除此之外,熱休克蛋白(HSP70和HSP90)和survivan蛋白因腫瘤細(xì)胞缺氧而增加。以上這些蛋白均可抑制細(xì)胞凋亡、促進(jìn)腫瘤細(xì)胞增殖,進(jìn)而對(duì)促進(jìn)腫瘤細(xì)胞生長(zhǎng)的微環(huán)境提供強(qiáng)大的刺激作用[17-18]。一方面,外泌體可以將自身的細(xì)胞因子釋放至細(xì)胞外,作用于內(nèi)皮細(xì)胞膜表面受體,間接促使腫瘤新生血管的形成。富含TGFβ1蛋白的腫瘤源性外泌體將靜息狀態(tài)的成纖維細(xì)胞活化成肌成纖維細(xì)胞,從而促進(jìn)腫瘤血管新生和腫瘤生長(zhǎng),而單純的可溶性TGFβ1雖然可以激活成纖維細(xì)胞,但卻沒(méi)有促進(jìn)腫瘤血管新生和腫瘤生長(zhǎng)的作用[19-20]。另一方面,腫瘤細(xì)胞來(lái)源的外泌體可傳遞組織因子、miRNA-210等直接調(diào)控血管內(nèi)皮細(xì)胞的靶基因或信號(hào)通路,促進(jìn)腫瘤血管新生,為腫瘤的侵襲轉(zhuǎn)移創(chuàng)造條件[21]。人體免疫系統(tǒng)正常功能的發(fā)揮可以減少腫瘤的進(jìn)展,然而有研究表明,腫瘤患者存在免疫抑制,進(jìn)而進(jìn)一步導(dǎo)致腫瘤的快速生長(zhǎng)、進(jìn)展和播散[22],尤其是從相對(duì)應(yīng)惡性病變部位分離出的外泌體會(huì)促進(jìn)腫瘤細(xì)胞的快速生長(zhǎng)[16]。外泌體可通過(guò)增加免疫抑制細(xì)胞、減少NK細(xì)胞和T細(xì)胞的增殖和細(xì)胞毒性、減少抗原遞呈細(xì)胞的數(shù)量和功能等來(lái)抑制免疫,說(shuō)明腫瘤細(xì)胞源性的外泌體可介導(dǎo)病變部位導(dǎo)致的免疫抑制[23-26]。如胃癌細(xì)胞釋放的外泌體可以向抗腫瘤的T細(xì)胞傳遞凋亡信號(hào),而不需要直接的細(xì)胞-細(xì)胞接觸。這些外泌體能部分地被誘導(dǎo)上調(diào)Cbl-b和c-Cbl,抑制Akt的活性及caspase-3、caspase-8和caspase-9的激活。外泌體與免疫細(xì)胞之間的相互作用揭示了腫瘤抑制免疫功能的潛在機(jī)制[27]。
2.1 外泌體源性miRNA與消化系統(tǒng)惡性腫瘤
外泌體中富含miRNA。成熟miRNA占外泌體所有RNA的40%以上,由起源細(xì)胞分泌,發(fā)揮沉默靶細(xì)胞的靶mRNA的作用[28]。外泌體源性miRNA通過(guò)介導(dǎo)細(xì)胞通訊來(lái)調(diào)節(jié)基因表達(dá)[29]。
外泌體源性miRNA通過(guò)腫瘤內(nèi)皮細(xì)胞、血管生成、細(xì)胞通訊和免疫抑制等介導(dǎo)腫瘤發(fā)生、發(fā)展的過(guò)程。Liao等[30]研究報(bào)道,食管癌細(xì)胞外泌體源性的miR-21可以通過(guò)調(diào)控抑癌基因PDCD4和激活其下游的JNK信號(hào)通路,促進(jìn)腫瘤細(xì)胞的進(jìn)展、轉(zhuǎn)移。Zhou等[31]研究發(fā)現(xiàn),胰腺癌細(xì)胞來(lái)源的外泌體可通過(guò)miR-203下調(diào)樹(shù)突細(xì)胞TLR4的表達(dá),進(jìn)而引起免疫抑制導(dǎo)致胰腺癌的發(fā)生。Que等[32]研究發(fā)現(xiàn),胰腺癌外泌體源性miRNA可下調(diào)DC/細(xì)胞因子誘導(dǎo)的殺傷細(xì)胞(cytokine-induced killer cells,CIKs)的抗腫瘤活性,其水平的降低可增強(qiáng)DC/CIKs的抗腫瘤活性。有研究發(fā)現(xiàn),有11種miRNA特異的存在于Hep3B細(xì)胞來(lái)源的外泌體中,說(shuō)明肝細(xì)胞癌的外泌體可選擇性募集一系列特異表達(dá)的miRNA[33]。肝細(xì)胞癌的癌細(xì)胞外泌體源性miRNA可通過(guò)抑制TAK1及與TAK1相關(guān)的下游信號(hào)通路,增強(qiáng)受體細(xì)胞中轉(zhuǎn)化細(xì)胞的生長(zhǎng),進(jìn)而導(dǎo)致肝細(xì)胞癌的發(fā)展[34]。
2.1.1 外泌體源性miRNA與消化系統(tǒng)惡性腫瘤的早期診斷
消化系統(tǒng)惡性腫瘤通常在診斷時(shí)已是局部晚期或發(fā)生轉(zhuǎn)移,錯(cuò)過(guò)最佳治療時(shí)機(jī),因此提高消化系統(tǒng)惡性腫瘤早期診斷率仍是亟待解決的問(wèn)題。不少研究以外泌體源性miRNA作為切入點(diǎn),探討其作為早期診斷指標(biāo)的可能性,并取得較好的研究結(jié)果。Machida等[35]研究發(fā)現(xiàn),和健康對(duì)照組相比,胰膽道惡性腫瘤患者唾液外泌體源性的miRNA-1246和miRNA-4644顯著升高,且兩者聯(lián)合檢測(cè),受試者工作特征(receiver operating characteristic curve,ROC)曲線的曲線下面積達(dá)到0.833,說(shuō)明胰膽道惡性腫瘤患者唾液外泌體源性的miRNA可作為早期診斷的標(biāo)志物。Madhavan等[36]研究發(fā)現(xiàn),miRNA-1246、miRNA-4644、miRNA-3976及miRNA-4306在83%的胰腺癌患者血清外泌體中顯著升高,而在胰腺良性腫瘤患者及健康對(duì)照組中沒(méi)有明顯變化,提示胰腺腫瘤細(xì)胞來(lái)源的miRNA的升高具有診斷價(jià)值。Wang等[37]研究發(fā)現(xiàn),肝細(xì)胞癌血清外泌體源性miRNA-21的表達(dá)顯著高于慢性乙型肝炎和健康對(duì)照者,且其敏感性較高,說(shuō)明外泌體源性miRNA-21可作為早期診斷肝細(xì)胞癌的潛在生物學(xué)指標(biāo)。
2.1.2 外泌體源性miRNA與消化系統(tǒng)惡性腫瘤的轉(zhuǎn)移、侵襲及預(yù)后評(píng)估
腫瘤細(xì)胞來(lái)源的外泌體影響腫瘤的侵襲、轉(zhuǎn)移。一方面,外泌體可作為載體將miRNA從原發(fā)部位運(yùn)輸?shù)狡渌课?,促進(jìn)腫瘤的轉(zhuǎn)移;另一方面,通過(guò)轉(zhuǎn)運(yùn)具有侵襲、轉(zhuǎn)移能力的miRNA,提高腫瘤的復(fù)發(fā)、轉(zhuǎn)移潛能。Tanaka等[38]研究發(fā)現(xiàn),食管鱗狀細(xì)胞癌患者血清的外泌體能誘導(dǎo)食管鱗狀細(xì)胞癌細(xì)胞的增殖。與食管良性腫瘤患者相比,外泌體源性的miR-21在食管鱗狀細(xì)胞癌的患者血清中高表達(dá),并且和腫瘤的進(jìn)展及侵襲相關(guān)指標(biāo)呈正相關(guān)。而沒(méi)有外泌體的血清中未能檢測(cè)到miR-21,說(shuō)明和腫瘤相關(guān)的miRNA可能特異的存在于外泌體中,并通過(guò)外泌體的轉(zhuǎn)運(yùn)功能發(fā)揮作用。Nishida等[39]研究發(fā)現(xiàn),miR-10b在結(jié)直腸癌細(xì)胞外泌體中顯著高表達(dá),且miR-10b的高表達(dá)和淋巴結(jié)轉(zhuǎn)移及差的預(yù)后相關(guān)。miR-122是肝臟特異的抗細(xì)胞增殖的miRNA,可通過(guò)人類肝細(xì)胞癌的癌細(xì)胞的外泌體進(jìn)行轉(zhuǎn)運(yùn)。miR-122的缺失或下調(diào)導(dǎo)致肝細(xì)胞癌的進(jìn)展,并且與預(yù)后差及轉(zhuǎn)移密切相關(guān)[40-42]。
2.2 外泌體源性lncRNA與消化系統(tǒng)惡性腫瘤
外泌體中的lncRNA約占外泌體總RNA的3%,其介導(dǎo)腫瘤發(fā)生的認(rèn)識(shí)體現(xiàn)在:某些特異具有生物學(xué)功能的lncRNA可被選擇性載入外泌體中;外泌體可轉(zhuǎn)運(yùn)具有直接沉默表觀遺傳作用的lncRNA;腫瘤細(xì)胞釋放富含lncRNA的外泌體,誘導(dǎo)受體細(xì)胞發(fā)生腫瘤樣表型的改變[43-44]。
2.2.1 外泌體源性lncRNA與消化系統(tǒng)惡性腫瘤發(fā)生、發(fā)展的關(guān)系
近期研究顯示,外泌體可作為功能性lncRNA的轉(zhuǎn)運(yùn)小泡,對(duì)受體細(xì)胞的表型產(chǎn)生作用。LncRNA TUC339存在于肝細(xì)胞癌的癌細(xì)胞外泌體中,并且在外泌體中高表達(dá)。抑制這種lncRNA的表達(dá)可減少細(xì)胞增殖、克隆細(xì)胞的生長(zhǎng)及細(xì)胞黏附,說(shuō)明細(xì)胞利用外泌體及TUC339增加周圍細(xì)胞的增殖,進(jìn)而促進(jìn)肝細(xì)胞癌的發(fā)展[45]。外泌體源性lncRNA通過(guò)調(diào)節(jié)腫瘤微環(huán)境促進(jìn)腫瘤的發(fā)生、發(fā)展。有研究顯示,肝細(xì)胞癌CD90+Huh7細(xì)胞可分泌包含有多種lncRNA(HOTAIR、HULU、linc-ROR和H19)的外泌體,與該細(xì)胞分泌的外泌體在試管內(nèi)共培養(yǎng),外泌體被內(nèi)皮細(xì)胞迅速內(nèi)化,促使細(xì)胞重組為管狀樣結(jié)構(gòu),并上調(diào)血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)/ VEGF-R1 mRNA的表達(dá)水平,導(dǎo)致促血管生成作用,且使細(xì)胞黏附分子增加,參與內(nèi)皮細(xì)胞的外滲過(guò)程,促進(jìn)腫瘤的進(jìn)展[46]。
2.2.2 外泌體源性lncRNA在消化系統(tǒng)惡性腫瘤臨床診治中的潛在應(yīng)用價(jià)值
類似于miRNA,外泌體源性lncRNA廣泛存在于多種體液中,樣品取材方便,性質(zhì)穩(wěn)定,可通過(guò)常用實(shí)驗(yàn)技術(shù)如實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(real-time fluorescent quantitative polymerase chain reaction,RTFQ-PCR)、基因芯片及測(cè)序等檢測(cè),具有較好的臨床應(yīng)用前景[15,47-48]。
LncRNA穩(wěn)定存在于血漿、血清和其他體液中,可作為非侵入性的指標(biāo)成為腫瘤診斷的標(biāo)志物[49-50]。與胃上皮不典型增生患者和健康對(duì)照組相比,LINC00152在胃癌患者血漿外泌體中高表達(dá),并且LINC00152的表達(dá)水平在等量血漿及等量血漿來(lái)源的外泌體中差異無(wú)統(tǒng)計(jì)學(xué)意義,提示LINC00152在血漿中受外泌體的保護(hù)而穩(wěn)定存在于外泌體中。外泌體源性LINC00152診斷胃癌的靈敏度是48.1%,特異度是85.2%,ROC曲線的曲線下面積是0.66,提示其具有較好的診斷優(yōu)勢(shì)[51]。此外,血清外泌體源性lncRNA-CRNDE-h的升高可以鑒別結(jié)直腸癌及結(jié)直腸良性疾病患者、健康對(duì)照者,其診斷的靈敏度和特異度分別為70.3%和94.4%,ROC曲線的曲線下面積達(dá)0.89,可用于結(jié)直腸癌患者的早期診斷[52]。
外泌體源性lncRNA在一定程度上影響著消化系統(tǒng)腫瘤的轉(zhuǎn)移、侵襲及預(yù)后。ROR是一種lncRNA,在阿霉素處理過(guò)的肝細(xì)胞癌的癌細(xì)胞的外泌體中高表達(dá),經(jīng)含有ROR的外泌體處理肝細(xì)胞癌的癌細(xì)胞后,發(fā)現(xiàn)其化療抵抗作用增強(qiáng),敲除ROR后化療的靈敏度增加。說(shuō)明腫瘤細(xì)胞可通過(guò)外泌體及l(fā)ncRNA來(lái)增加周圍細(xì)胞的化療抵抗,促進(jìn)腫瘤的局部侵襲能力[53]。TGF-β可誘導(dǎo)上皮細(xì)胞間質(zhì)化,促進(jìn)癌細(xì)胞的侵襲和轉(zhuǎn)移。TGF-β誘導(dǎo)胰腺癌細(xì)胞中的多個(gè)lncRNA上調(diào),其中HULU的變化最為明顯。沉默HULU后細(xì)胞的存活、侵襲和遷移能力減弱,經(jīng)TGF-β誘導(dǎo)胰腺癌細(xì)胞來(lái)源外泌體中的HULU水平也增高。經(jīng)癌細(xì)胞及Panc-1胰腺癌細(xì)胞來(lái)源的外泌體溫育后,細(xì)胞中的黏附分子增加,說(shuō)明胰腺癌細(xì)胞可通過(guò)外泌體源性的lncRNA-HULU來(lái)增強(qiáng)細(xì)胞的侵襲及遷移能力[54]。結(jié)直腸癌患者血清外泌體源性lncRNA-CRNDE-h的水平與局部淋巴結(jié)轉(zhuǎn)移(P=0.019)和遠(yuǎn)處轉(zhuǎn)移相關(guān)(P=0.003),可用于評(píng)價(jià)結(jié)直腸癌患者的轉(zhuǎn)移情況及預(yù)后[52]。
2.3 外泌體源性circRNA與消化系統(tǒng)惡性腫瘤
2.3.1 CircRNA概述
CircRNA是一類新發(fā)現(xiàn)的非編碼RNA分子,由一個(gè)或幾個(gè)外顯子形成的環(huán)狀結(jié)構(gòu)[55]。CircRNA既可以與miRNA結(jié)合,通過(guò)影響miRNA下游靶基因來(lái)發(fā)揮調(diào)控作用,又可以調(diào)控選擇性剪接、宿主基因轉(zhuǎn)錄[56]。最早于20世紀(jì)70年代在病毒中發(fā)現(xiàn),后來(lái)發(fā)現(xiàn)在真核細(xì)胞中也存在[57-58]。目前隨著高通量測(cè)序等技術(shù)的快速發(fā)展,circRNA目前被證實(shí)在真核細(xì)胞轉(zhuǎn)錄組中大量存在[59-62]。具有種類多樣、存在普遍、序列保守、不被核酸外切酶降解、組織和時(shí)序特異性的生物學(xué)特點(diǎn)[63]。關(guān)于其生物合成的機(jī)制主要有外顯子跳讀導(dǎo)致成環(huán)、反向剪接成環(huán)及蛋白促進(jìn)成環(huán)[64]。
2.3.2 外泌體源性circRNA與消化系統(tǒng)惡性腫瘤
Li等[65]首次報(bào)道,不僅細(xì)胞來(lái)源的外泌體,人血清外泌體中也含有大量完整穩(wěn)定的circRNA,并且結(jié)直腸癌患者血清外泌體中的circ-KLHDC10與健康人群差異明顯,提示腫瘤來(lái)源的exo-circRNA有望成為腫瘤檢測(cè)的潛在標(biāo)志物。目前,外泌體源性circRNA在消化系統(tǒng)惡性腫瘤發(fā)生、發(fā)展過(guò)程中的分子機(jī)制、臨床應(yīng)用等認(rèn)識(shí)還很有限,需要進(jìn)一步深入的研究。
外泌體及外泌體源性非編碼RNA在腫瘤發(fā)生、發(fā)展中發(fā)揮重要作用,可為多種疾病的發(fā)生機(jī)制提供思路,也為臨床診斷、預(yù)后及治療提供新的標(biāo)志物。但目前關(guān)于外泌體及外泌體源性非編碼RNA的研究仍處于初始階段,面臨缺乏完善的數(shù)據(jù)庫(kù)、機(jī)制不明確及腫瘤特異性較強(qiáng)的非編碼RNA不多等問(wèn)題。相信隨著生物技術(shù)的不斷發(fā)展,外泌體及外泌體源性非編碼RNA在腫瘤中的功能及機(jī)制會(huì)逐漸被發(fā)現(xiàn),為腫瘤的診治提供有效依據(jù)。
[參 考 文 獻(xiàn)]
[1] PAN B T, TENG K, WU C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J]. J Cell Biol, 1985, 101(3): 942-948.
[2] TRAJKOVIC K, HSU C, CHIANTIA S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J]. Science, 2008, 319(5867): 1244-1247.
[3] SKOG J, WüRDINGER T, VAN RIJN S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol, 2008, 10(12): 1470-1476.
[4] PANT S, HILTON H, BURCZYNSKI M E. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities[J]. Biochem Pharmacol, 2012, 83(11): 1484-1494.
[5] CLAYTON A, COURT J, NAVABI H, et al. Analysis of antigen presenting cell derived exosomes, based on immunomagnetic isolation and flow cytometry[J]. J Immunol Methods, 2001, 247(1-2): 163-174.
[6] JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
[7] ALENQUER M, AMORIM M J. Exosomes biogenesis,regulation,and function in viral infection[J]. Viruses, 2015, 7(9): 5066-5083.
[8] TRAMS E G, LAUTER C J, SALEM N, et al. Exfoliation of membrane ectoenzymes in the form of microvesicles[J]. Biochim Biophys Acta, 1981, 645(1): 63-70.
[9] WOLFERS J, LOZIER A, RAPOSO G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med, 2001, 7(3): 297-303.
[10] ROLLE K, PIWECKA M, BELTER A, et al. The sequence and structure determine the function of mature human miRNAs[J]. Plos One, 2016, 11(3): e0151246.
[11] YANG Y, ZHAO L, LEI L, et al. LncRNAs: the bridge linking RNA and colorectal cancer[J]. Oncotarget, 2016. [Epub ahead of print]
[12] PASUT A, MATSUMOTO A, CLOHESSY J G, et al. The pleiotropic role of non-coding genes in development and cancer[J]. Curr Opin Cell Biol, 2016, 16(43): 104-113.
[13] TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[14] TROIANO G, BOLDRUP L, ARDITO F, et al. Circulating miRNAs from blood, plasma or serum as promising clinical biomarkers in oral squamous cell carcinoma: a systematic review of current findings[J]. Oral Oncol, 2016, 63: 30-37.
[15] WANG Z, CHEN J Q, LIU J L, et al. Exosomes in tumor microenviroment: novel transporters and biomarkers[J]. J Transl Med, 2016, 14(1): 297.
[16] GU H, JI R, ZHANG X, et al. Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway[J]. Mol Med Rep, 2016, 14(4): 3452-3458.
[17] GRANER M W, CUMMING R I, BIGNER D D. The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences[J]. J Neurosci, 2007, 27(42): 11214-11227.
[18] KHAN S, JUTZY J M S, ASPE J R, et al. Survivin is released from cancer cells via exosomes[J]. Apoptosis, 2011, 16(1): 1-12.
[19] WEBBER J, STEADMAN R, MASON M D, et al. Cancer exosomes trigger fibroblast to myofibroblast diferentiation[J]. Cancer Res, 2010, 70(23): 9621-9630.
[20] WEBBER J P, SPARY L K, SANDERS A J, et al. Diferentiation of tumour-promoting stromal myofibroblasts by cancer exosomes[J]. Oncogene, 2015, 34(3): 290-302.
[21] KOSAKA N, IGUCHI H, HAGIWARA K, et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis[J]. J Biol Chem, 2013, 288(15): 10849-10859.
[22] WANG J, DEVEIRMAN K, FAICT S, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression[J]. J Pathol, 2016, 239(2): 162-173.
[23] BERCHEM G, NOMAN M Z, BOSSELER M, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer[J]. Oncoimmunology, 2015, 5(4): e1062968.
[24] RONG L, LI R, LI S, et al. Immunosuppression of breast cancer cells medi- ated by transforming growth factor-β in exosomes from cancer cells[J]. Oncol Lett, 2016,11(1): 500-504.
[25] YE S B, ZHANG H, CAI T T, et al. Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma[J]. J Pathol, 2016, 240(3): 329-340.
[26] ESPINOZA L, TAKAMI A, YOSHIOKA K, et al. Human microRNA-1245 down-regulates the NKG2D-mediated functions[J]. Haematologica, 2012, 97(9): 1295-1303.
[27] QU J L, QU X J, QU J L, et al. Therole of cbl family of ubiquitin ligases in gastric cancer exosome-induced apoptosis of Jurkat T cells[J]. Acta Oncol, 2009, 48(8): 1173-1180.
[28] VALADI H, EKSTROM K, BOSSIOS A, et al. Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
[29] THERY C. Exosomes: secreted vesicles and intercellular communications [J]. F1000 Biol Rep, 2011, 3: 15.
[30] LIAO J, LIU R, SHI Y J, et al. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer[J]. Int J Oocol, 2016, 48(6):2567-2579.
[31] ZHOU M, CHEN J, ZHOU L, et al. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203[J]. Cell Immunol, 2014, 292(1-2): 65-69.
[32] QUE R S, LIN C, DING G P, et al. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer[J]. J Zhejiang Univ Sci B, 2016, 17(5): 352-360.
[33] KOGURE T, LIN W L, YAN I K, et al. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth[J]. Hepatology, 2011, 54(4): 1237-1248.
[34] YANG N, LI S, LI G, et al. The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma[J]. Oncotarget, 2017, 8(2): 3683-3695.
[35] MACHIDA T, TOMOFUJI T, MARUYAMA T, et al. MiR-
1246 and miR-4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer[J]. Oncol Rep, 2016, 36(4): 2375-2381.
[36] MADHAVAN B, YUE S, GALLI U, et al. Combined evaluation of a panel of protein and miRNA serum- exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity[J]. Int J Cancer, 2015, 136(11): 2616-2627.
[37] WANG H, HOU L, LI A, et al. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma[J]. Biomed Res Int, 2014, 2014: 864894.
[38] TANAKA Y, KAMOHARA H, KINOSHITA K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell Carcinoma[J]. Cancer, 2012, 119(6): 1159-1167.
[39] NISHIDA N, YAMASHITA S, MIMORI K, et al. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to chemotherapeutic agent 5-fluorouracil in colorectal cancer cells[J]. Ann Surg Oncol, 2012, 19(9): 3065-3071.
[40] TSAI W C, HSU S D, HSU C S, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis[J]. J Clin Invest, 2012, 122(8): 2884-2897.
[41] COULOUARN C, FACTOR V M, ANDERSEN J B, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties[J]. Oncogene, 2009, 28(40): 3526-3536.
[42] LOU G, SONG X, YANG F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma[J]. J Hematol Oncol, 2015, 8(1): 122-133.
[43] MORRIS K V, MATTICK J S. The rise of regulatory RNA[J]. Nat Rev Genet, 2014, 15(6): 423-437.
[44] GEZER U, ?ZGüR E, CETINKAYA M, et al. Long noncoding RNAs with low expression levels in cells are enriched in secreted exosomes[J]. Cell Biol Int, 2014, 38(9): 1076-1079.
[45] KOGURE T, YAN I K, LIN W L, et al. Extracellular vesiclemediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer[J]. Genes and Cancer, 2013, 4(7-8): 261-272.
[46] CONIGLIARO A, COATA V, LO D A, et al. CD90+liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lucRNA[J]. Mol Cancer, 2015, 14(155): 1-11.
[47] ARITA T, ICHIKAWA D, KONISHI H, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer[J]. Anticancer Res, 2013, 33(8): 3185-3193.
[48] HUANG J L, ZHENG L, HU Y W, et al. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma[J]. Carcinogenesis, 2014, 35(3): 507-514.
[49] TINZL M, MARBERGER M, HORVATH S, et al. DD3PCA3 RNA analysis in urine-a new perspective for detecting prostate cancer[J]. Eur Urol, 2004, 46(2): 182-186.
[50] ISIN M, OZGUR E, CETIN G, et al. Investigation of circulating lncRNAs in B-cell neoplasms[J]. Clin Chim Acta, 2014, 20(431): 255-259.
[51] LI Q, SHAO Y, ZHANG X, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer[J]. Tumour Biol, 2015, 36(3): 2007-2012.
[52] LIU T, ZHANG X, GAO S, et al. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer[J].Oncotarget, 2016, 7(51): 85551-85563.
[53] TAKAHASHI K, YAN I K, KOGURE T, et al. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer[J]. FEBS Open Bio, 2014, 9(4): 458-467.
[54] TAKAHASHI K, OTA Y, SUZUKI Y, et al. Extracellular vesicle-encapsualted long non-coding RNA HULU modulates epithelial-mesenchymal transition in human pancreatic cancer[J]. Gastroenterology, 2015, 148(4 Suppl 1): 340-341.
[55] STARKE S, JOST I, ROSSBACH O, et al. Exon circularization requires canonical splice signals[J]. Cell Rep, 2015. 10(1): 103-111.
[56] 陳 杰. 胃癌中環(huán)狀RNA的鑒定及其circPVT1在胃癌中的功能和作用機(jī)制研究[D]. 上海: 復(fù)旦大學(xué), 2016: 76-78.
[57] SANGER H L, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856.
[58] HSU M T, COCA-PRADOS M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells [J]. Nature, 1979, 280(5720): 339-340.
[59] MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338.
[60] GLAZAR P, PAPAVASILEIOU P, RAJEWSKY N. circBase: a database for circular RNAs[J]. RNA, 2014, 20(11): 1666-1670.
[61] GUO J U, AGARWAL V, GUO H, et al. Expanded identification and charaterization of mammalian RNAs[J]. Genome Biol, 2014, 15(7): 409.
[62] HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388.
[63] 鄭秋鵬. 環(huán)狀RNA的鑒定及其在腫瘤中的功能和機(jī)制[D]. 上海: 復(fù)旦大學(xué), 2016: 68-69.
[64] ZHENG Q P, BAO C Y, GUO W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7: 11215.
[65] LI Y, ZHENG Q P, BAO C Y, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Research, 2015, 25(8): 981-984.
Research progress on exosome-derived non-coding RNA in digestive system malignancy
YU Shulin, CHEN Zhen (Department of Integrative Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
CHEN Zhen E-mail: zhenczl@fudan.edu.cn
Exosome is a kind of biological membrane structure at nanometer level. It is secreted by various cells and widely distributed in most body fluids. Biological active substances, including non-coding RNAs and proteins, have been identified in the exosomes. Exosome may be involved in cell-to-cell substance transporting and signaling. Non-coding RNAs have important function of regulating gene expression and also play key roles in the occurrence and development of many cancers. Research on exosome-derived non-coding RNA is a new hotspot at present. In this paper, we will review research progress on exosome and exosome-derived non-coding RNA in digestive system malignancy.
Exosome; Non-coding RNAs; Digestive system malignancy
10.19401/j.cnki.1007-3639.2017.04.010
R735
A
1007-3639(2017)04-0297-07
2016-12-19
2017-03-06)
國(guó)家自然科學(xué)基金資助項(xiàng)目(81573752)。
陳 震 E-mail: zhenczl@fudan.edu.cn