張盼盼,徐文錦,劉惠芬
(1.寧波大學(xué)醫(yī)學(xué)院,浙江 寧波 315211;2.寧波市微循環(huán)與莨菪類藥研究所,寧波大學(xué)行為神經(jīng)科學(xué)研究中心,浙江 寧波 315010)
◇講座與綜述◇
中樞神經(jīng)系統(tǒng)ERK信號通路在藥物成癮中的作用機(jī)制研究進(jìn)展
張盼盼1,徐文錦1,劉惠芬2
(1.寧波大學(xué)醫(yī)學(xué)院,浙江 寧波 315211;2.寧波市微循環(huán)與莨菪類藥研究所,寧波大學(xué)行為神經(jīng)科學(xué)研究中心,浙江 寧波 315010)
藥物成癮是一種慢性復(fù)發(fā)性腦病。反復(fù)的藥物暴露可引起腦環(huán)路產(chǎn)生神經(jīng)適應(yīng)性變化,導(dǎo)致強(qiáng)迫性覓藥行為以及復(fù)吸。有許多研究發(fā)現(xiàn),生物體內(nèi)細(xì)胞間的信號轉(zhuǎn)導(dǎo)級聯(lián)放大通路介導(dǎo)的中樞神經(jīng)系統(tǒng)獎賞環(huán)路的重塑,以及成癮相關(guān)的學(xué)習(xí)和記憶的神經(jīng)可塑性改變是藥物成癮的重要分子機(jī)制。研究表明細(xì)胞外調(diào)節(jié)激酶(extracellular signal-regulatedkinase,ERK)與藥物成癮引起的神經(jīng)適應(yīng)性、獎賞效應(yīng)和覓藥行為的復(fù)吸直接相關(guān)。因此,該文就ERK在藥物成癮中的作用機(jī)制做系統(tǒng)的綜述。藥物成癮中ERK信號通路作用機(jī)制的研究將為深入理解藥物成癮的分子調(diào)控機(jī)制提供重要的理論基礎(chǔ),并為臨床藥物成癮和復(fù)吸的治療提供新的分子靶標(biāo)和新的策略。
藥物成癮;神經(jīng)可塑性;獎賞效應(yīng);覓藥行為;復(fù)吸;ERK
藥物成癮是一種以強(qiáng)迫性覓藥和高復(fù)發(fā)性為特征的慢性腦疾病。濫用藥物會導(dǎo)致神經(jīng)結(jié)構(gòu)和功能可塑性改變,產(chǎn)生強(qiáng)迫性覓藥行為,這是導(dǎo)致復(fù)吸的主要原因之一[1]。但其具體的機(jī)制十分復(fù)雜尚未清楚,所以目前為止藥物成癮尤其是其高復(fù)吸率還沒有很有效的戒斷治療對策。目前普遍認(rèn)為中腦邊緣多巴胺系統(tǒng)包括腹側(cè)被蓋區(qū)(ventral tegmental area, VTA)及其主要投射區(qū)伏隔核(nucleus accumbens, NAc)和前額皮層(prefrontal cortex, PFC)以及與學(xué)習(xí),記憶密切相關(guān)的海馬(hippocampus,HIPP)和杏仁核(amygdala,Amy)等區(qū)域,均在濫用藥物的獎賞、強(qiáng)化和動機(jī)等方面發(fā)揮至關(guān)重要的作用[2]。同時有研究表明,在此獎賞通路中,從PFC和其他邊緣區(qū)向NAc區(qū)投射的谷氨酸通路也介導(dǎo)了藥物成癮和復(fù)吸的發(fā)生和發(fā)展[3]。
ERK是發(fā)現(xiàn)最早的絲裂原活化蛋白激酶 (mitogen-activated protein kinase,MAPK) ,通過三級激酶級聯(lián)反應(yīng)從細(xì)胞外刺激作用于細(xì)胞,并參與細(xì)胞增殖與分化、生存和凋亡等多種生物學(xué)反應(yīng)[4]。Ras(一種G蛋白)/Raf(MAPK激酶的激酶)/ MEK(MAPK激酶)/ERK是ERK通路的主要途徑。當(dāng)細(xì)胞外刺激物(如生長因子)與相應(yīng)受體結(jié)合后,生長因子受體結(jié)合蛋白2 ( growth factor receptor bound protein2,Grb2)與激活的受體結(jié)合,再與鳥苷酸交換因子 (guanine nucleotide exchange factor,GEF) SOS的C端富含脯氨酸的序列相互作用形成受體-Grb2-SOS復(fù)合物,Ras通過與此復(fù)合物相互作用而被激活[5]?;罨腞as作為銜接蛋白與Raf結(jié)合,將Raf從細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞膜[5]。Raf被Raf激酶激活后,其C端催化區(qū)域能與MEK結(jié)合,并使MEK催化區(qū)中蘇氨酸和絲氨酸磷酸化,從而使MEK激活。MEK可使 ERK酶催化區(qū)域的TXY基序磷酸化而活化。ERK也能被生長因子或神經(jīng)營養(yǎng)因子激活,激活后通過磷酸化ERK(p-ERK)蛋白轉(zhuǎn)位至細(xì)胞核內(nèi),進(jìn)而介導(dǎo)多種轉(zhuǎn)錄因子包括三元絡(luò)合物因子ElK-1、c-fos和c-jun轉(zhuǎn)錄活化,并促進(jìn)神經(jīng)適應(yīng)性相關(guān)的即刻早期基因(immediate early gene,IEG)的轉(zhuǎn)錄[6]。ERK通路十分復(fù)雜,其中涉及多種酶,而與ERK相關(guān)的磷酸酶家族中,蛋白磷酸酶2A(protein phosphatase 2A,PP2A)和紋狀體中富含的蛋白酪氨酸磷酸酶(striatal-enriched protein tyrosine phosphatase,STEP)在調(diào)控ERK活性中起關(guān)鍵作用[7]。另外,體外研究表明,雙向特異性MAPK磷酸酶1和3(MKP-1/3)的表達(dá)和激活依賴于ERK的信號轉(zhuǎn)導(dǎo)[6]。
研究已經(jīng)發(fā)現(xiàn)ERK與腫瘤、糖尿病腎病和阿爾茲海默癥的產(chǎn)生和發(fā)展有直接或間接關(guān)系,如口腔癌、黑色素瘤、乳腺癌等中均發(fā)現(xiàn)ERK的過度激活;高糖和AngⅡ均可致系膜細(xì)胞ERK胞核轉(zhuǎn)位、激活,可見ERK參與了糖尿病腎病的發(fā)生;并且阿爾茲海默癥病人的神經(jīng)元中也發(fā)現(xiàn)了ERK的激活[8]。也有越來越多的研究表明ERK信號轉(zhuǎn)導(dǎo)參與各種濫用藥物成癮和復(fù)吸[9]。ERK激活引起從細(xì)胞膜到下游靶標(biāo)的細(xì)胞質(zhì)和細(xì)胞核內(nèi)的一系列級聯(lián)反應(yīng),產(chǎn)生直接反應(yīng)或者造成渴求和復(fù)吸行為的持久適應(yīng)性[10]。因此,我們集中綜述了常用的濫用藥物(如可卡因、苯丙胺、海洛因等)引起的行為學(xué)改變的ERK分子機(jī)制以及在成癮相關(guān)學(xué)習(xí)和記憶的神經(jīng)可塑性中的重要作用。
可卡因是天然的中樞興奮劑,自1985年起已成為世界性主要毒品之一。已有大量研究證明,急性可卡因處理增加尾狀核(caudate putamen,CPu)、NAc、PFC、HIPP、中央和基底杏仁核(central amygdala,CeA和basolateral amygdala,BLA)和紋狀體末梢床核(bed nucleus of the striatal terminals,BNST)中p-ERK表達(dá)[11-14]。急性可卡因可使紋狀體中核糖體S6激酶(ribosomal S6 kinases,RSK)磷酸化增加,并間接導(dǎo)致環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白(cAMP response element-binding protein,CREB)激活,增加轉(zhuǎn)錄因子c-fos和zif268的表達(dá)[15-16]。很多研究表明ERK通路的激活依賴于多巴胺和谷氨酸受體的活性。例如,Valjent等[13]發(fā)現(xiàn),在NAc和背側(cè)紋狀體(dorsolateral striatum, DLS)中N-甲基-D-天冬氨酸 (N-methyl-D-aspartate receptor,NMDA) 受體和D1受體(dopamine D1 receptor,D1-R)拮抗劑阻斷可卡因誘導(dǎo)的ERK磷酸化;Cahill等[7,17,18]發(fā)現(xiàn)急性可卡因引起的ERK下游的靶蛋白包括絲裂原激活和應(yīng)激激活蛋白激酶-1(mitogen- and stress-activated protein kinases,MSK-1),Elk-1,CREB磷酸化和IEGs表達(dá)都依賴于D1受體和NMDA受體的激活;Cahill等[17]還證明D1受體和NMDA亞基GluN2B受體的相互作用對可卡因引起的ERK激活是必需的。與急性可卡因相比,慢性可卡因處理也引起ERK活性的增加,尤其在VTA內(nèi)。并且CPu、NAc和Amy中慢性可卡因引起的時間依賴IEG表達(dá)需要MEK / ERK的激活[11]。另外,慢性可卡因處理后戒斷期間,再受可卡因激發(fā)會導(dǎo)致CPu和NAc中p-ERK敏化[17]。但是有研究表明,可卡因戒斷1 d而不是30 d后BLA中的ERK磷酸化增加[19];注射可卡因與生理鹽水對照組的大鼠相比,戒斷1d時,NAc核部(nucleus accumbens core, NACc)中ERK磷酸化水平不改變,而在戒斷7d時ERK磷酸化水平增加,然而在21d時,又逐漸降低到相同的水平[20],由此表明重復(fù)可卡因處理后戒斷期間,NAc中ERK磷酸化水平是以時間依賴方式發(fā)生改變。藥理學(xué)研究證明,MEK抑制劑(U0126、SL327和PD98059)可以阻斷可卡因誘導(dǎo)的ERK磷酸化和下游靶蛋白的變化。例如,單側(cè)注射MEK抑制劑U0126到NAc區(qū)中,可減弱可卡因敏化大鼠中ERK和CREB磷酸化;背側(cè)NAc中注射SL327可阻斷ERK,CREB以及中間激酶MSK1的活性[15]。這一系列的研究提示,ERK信號通路參與急性慢性可卡因使用,甚至介導(dǎo)可卡因的戒斷和復(fù)吸,同時ERK的激活對于后續(xù)的行為變化也必不可少。
行為學(xué)研究表明,阻斷ERK激活能阻止運(yùn)動敏化的發(fā)展以及可卡因獎賞效應(yīng)。例如,戒斷11~14d,可卡因注射前在小鼠中系統(tǒng)注射SL327阻斷可卡因自發(fā)運(yùn)動敏化表達(dá)[7]。然而,在可卡因敏化小鼠中,SL327急性處理不改變藥物敏化作用的表達(dá)。Velazquez等[21]發(fā)現(xiàn)戒斷期間圍產(chǎn)期蛋白(perinatal protein)失活能夠促進(jìn)可卡因敏化的成年大鼠NAc中ERK磷酸化,并且以劑量依賴方式引起ERK通路激活。Jasmine等[22]發(fā)現(xiàn)給動物重復(fù)挫敗的應(yīng)激能增加VTA中ERK磷酸化,但在應(yīng)激之前抑制VTA中ERK能降低應(yīng)激引起的行為敏化發(fā)展,并阻斷應(yīng)激引起的可卡因自身給藥(self-administration,SA)的增加。最近有研究表明,大鼠短暫地重復(fù)暴露到先前的可卡因配對環(huán)境后,雙側(cè)微注射MEK/ERK1/2抑制劑U0126到BLA而不是NACc,明顯降低了后續(xù)藥物環(huán)境引起的可卡因覓藥行為[23];重復(fù)可卡因處理的動物,生理鹽水激發(fā)提高NAc和CPu中D1陽性神經(jīng)元ERK磷酸化,表明環(huán)境條件也引發(fā)ERK激活[24]。這些研究結(jié)果提示ERK信號轉(zhuǎn)導(dǎo)在環(huán)境相關(guān)記憶形成中也發(fā)揮一定的作用。而動物條件性位置偏愛(conditioned place preference,CPP)實(shí)驗(yàn)研究發(fā)現(xiàn),VTA中ERK激活在可卡因CPP發(fā)展中是必要的??煽ㄒ駽PP建立后,CPP測試或重復(fù)暴露于可卡因相關(guān)環(huán)境引起CPu、HIPP、VTA和NAc中p-ERK,p-CREB或ΔFosB的表達(dá)[25-26]。而NAc中激活的ERK,在CPP訓(xùn)練中介導(dǎo)藥物和配對環(huán)境的獎賞效應(yīng)相關(guān)學(xué)習(xí)的鞏固,而在CPP測試中介導(dǎo)急性可卡因條件反應(yīng)的表達(dá)[27];更有意思的是:利用敲除動物研究發(fā)現(xiàn),ERK1敲除小鼠對慢性可卡因暴露顯示高行為敏化和CPP反應(yīng),在VTA中選擇性過表達(dá)ERK2,也提高可卡因CPP反應(yīng)和慢性可卡因行為敏化[28]。相反,在VTA區(qū)抑制ERK2活性減弱可卡因CPP反應(yīng)和可卡因行為敏化的發(fā)展和表達(dá)[6],提示ERK1和ERK2在可卡因引起的敏化和CPP反應(yīng)中發(fā)揮不同的作用。除了ERK信號,它的上游激活因子和下游轉(zhuǎn)錄因子也調(diào)控可卡因誘導(dǎo)的敏化發(fā)展和CPP反應(yīng)。例如,慢性阻斷ERK活性影響可卡因引起的c-fos和JunB,而不是zif268的表達(dá)。在Ras-GRF-1敲除小鼠中,紋狀體FosB /ΔFosB表達(dá)下調(diào),可卡因誘導(dǎo)的行為敏化發(fā)展和可卡因CPP反應(yīng)均減弱,而在過表達(dá)小鼠中則恰好相反[29]。pElk-1抑制劑也能減弱NAc殼部(nucleus accumbens shell, NACsh)由于重復(fù)可卡因引起的樹突狀可塑性的改變,從而阻斷可卡因行為敏化和CPP反應(yīng)[30]。總之,這些實(shí)驗(yàn)結(jié)果提示,ERK相關(guān)信號通路在可卡因介導(dǎo)的行為變化中發(fā)揮重要作用。
記憶包括獲得、鞏固、再激活、再鞏固、消退等過程,而再鞏固是整個記憶過程的核心階段。當(dāng)記憶處于易變時期,增加新的信息或者接受處理,使原有的記憶不穩(wěn)定,在此期間通過再暴露藥物相關(guān)環(huán)境、線索或藥物本身,使已建立的藥物相關(guān)記憶被再次喚起,就形成了記憶再鞏固[31-32]。先前的研究表明,環(huán)境引起可卡因相關(guān)記憶再鞏固過程中BLA而不是NACc的ERK激活是必需的[23]。最近的研究表明,可卡因記憶再鞏固也需要PFC、NAc和CPu中ERK的激活[6]。藥理學(xué)實(shí)驗(yàn)研究發(fā)現(xiàn)動物暴露于藥物相關(guān)環(huán)境后,系統(tǒng)注射SL327減少后續(xù)的環(huán)境誘導(dǎo)的可卡因CPP反應(yīng)[23];Edwards等[33]觀察3周每天4h可卡因SA訓(xùn)練,導(dǎo)致PFC中ERK磷酸化增加??煽ㄒ騍A后戒斷期間進(jìn)行迷宮訓(xùn)練,與生理鹽水處理的對照組大鼠相比,可卡因處理后p-CREB/CREB水平在PFC和DLS中更高,但HIPP中較低;而p-ERK2/ERK2在DLS和HIPP中增加,在NAc中降低[34]。可卡因SA建立后,動物暴露于相關(guān)環(huán)境結(jié)束后立即于BLA注射U0126(每側(cè)1μg)抑制環(huán)境誘導(dǎo)的覓藥行為的恢復(fù),同時在戒斷后覓藥行為恢復(fù)時ERK磷酸化是升高的[23]。總之,這些研究表明在記憶再鞏固期間ERK信號激活對可卡因覓藥行為是必需的。另外,ERK磷酸化的幾個轉(zhuǎn)錄因子(包括CREB和Elk-1)也參與藥物記憶再鞏固過程。ERK激活通過多巴胺和谷氨酸通路使CREB磷酸化[7]。CREB通過調(diào)控記憶相關(guān)基因的表達(dá),參與腦區(qū)中長時程記憶可塑性變化。有實(shí)驗(yàn)表明,在戒斷期間同時進(jìn)行迷宮訓(xùn)練8周之后,與對照組相比,可卡因預(yù)處理大鼠在PFC和DLS中p-CREB/CREB顯示較高水平,而在HIPP區(qū)則較低;而ERK在DLS、HIPP和NAc中顯示較高水平,這些數(shù)據(jù)提示ERK信號通路參與了藥物獎賞、動機(jī)和相關(guān)記憶過程[34]。而且ERK對可卡因引起的記憶再鞏固作用始終依賴于環(huán)境的存在,但可卡因本身對記憶再鞏固是否有作用仍不清楚[6]。
ERK激活也參與戒斷后的復(fù)吸過程。Lu等[19]發(fā)現(xiàn),戒斷1d后,CeA中ERK磷酸化刺激增加可卡因覓藥行為;而可卡因戒斷30d后,抑制CeA而不是BLA中ERK磷酸化從而降低可卡因覓藥行為。Moreno等[35]發(fā)現(xiàn),可卡因SA戒斷后覓藥行為測試,發(fā)現(xiàn)戒斷30d后腹側(cè)PFC中ERK磷酸化水平比戒斷1d后更高;進(jìn)一步研究發(fā)現(xiàn),可卡因SA訓(xùn)練最后一次結(jié)束后,向VTA內(nèi)注入膠質(zhì)細(xì)胞源性神經(jīng)營養(yǎng)因子(glial cell-derived neurotrophic factor,GDNF)增加大鼠戒斷d3和d10由線索所誘發(fā)的可卡因覓藥行為,而于戒斷d1~d14每天在大鼠VTA內(nèi)慢性給予GDNF則阻斷大鼠戒斷d11和d31由線索所誘發(fā)的可卡因覓藥行為的增加[36]。以上結(jié)果提示, ERK信號通路在可卡因覓藥行為恢復(fù)中發(fā)揮重要作用。在SA結(jié)束后立即于PFC中注射腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF),則通過調(diào)控p-MEK和p-ERK的正?;?,能引起環(huán)境,線索和可卡因引起的復(fù)吸的長時期抑制[37]。因此推測,在戒斷早期,對ERK信號轉(zhuǎn)導(dǎo)功能的干預(yù)有可能作為治療手段預(yù)防可卡因復(fù)發(fā)。
苯丙胺類藥物主要包括苯丙胺[又稱安非他命(amphetamine,AMPH)]和甲基苯丙胺[俗稱“冰毒”(methamphetamine,METH)],均為人工合成的興奮劑,是21世紀(jì)濫用最廣泛的藥物。它們可通過改變ERK信號通路來發(fā)揮其藥物成癮作用,但就其詳細(xì)的分子機(jī)制還不甚清楚。
2.1 ERK信號通路和苯丙胺藥物成癮 急性AMPH引起CPu,NAc,PFC和VTA中的p-ERK升高[7, 38]。同時,不同腦區(qū)中ERK的上游受體,下游轉(zhuǎn)錄因子以及分子激活因子均參與了上述急性激活過程。在CPu中,重復(fù)AMPH暴露戒斷后再激發(fā),則增加以D1受體和D2受體依賴方式的ERK和CREB磷酸化。在CPu中阻斷代謝型谷氨酸受體1/5(metabotropic glutamate receptor-1/5,mGluR1/ 5)或mGluR5受體明顯減輕急性AMPH引起的p-ERK、pElk-1、p-CREB和Fos免疫反應(yīng)[39-40]。上述研究提示,在CPu中AMPH引起ERK的增加除了依賴于多巴胺受體,也依賴于谷氨酸受體。另外,鈣/鈣調(diào)素依賴性蛋白激酶Ⅱ(CaM kinaseⅡ,CaMKⅡ)的激活也是CPu中急性AMPH誘導(dǎo)的p-ERK,pElk-1和p-CREB升高所必需的[39]。系統(tǒng)給予SL327(20~100 mg·kg-1)或在CPu中注射U0216(每側(cè)2μg)降低急性AMPH引起的p-ERK和p-CREB蛋白在NAc和CPu中的表達(dá),以及IEGs、前腦啡肽原、前強(qiáng)啡肽原和c-fos mRNA在CPu中的表達(dá)[41]。但在PFC中,急性AMPH誘導(dǎo)的ERK磷酸化受NMDA受體、腎上腺素受體和5-羥色氨酸受體不是D1或D2受體調(diào)控的[42]。而在紋狀體中,急性AMPH誘導(dǎo)的MEK和ERK磷酸化卻受D1受體/DARPP-32和NMDA受體激活的調(diào)控[7]。上述研究表明,在苯丙胺成癮中ERK介導(dǎo)的信號通路可能存在腦區(qū)特異性。
行為學(xué)實(shí)驗(yàn)發(fā)現(xiàn),抑制ERK磷酸化可減弱AMPH引起的運(yùn)動敏化。系統(tǒng)注射30或40 mg·kg-1SL327,則劑量依賴方式抑制AMPH引起的行為敏化的發(fā)展和表達(dá)[41]。AMPH激發(fā)產(chǎn)生行為敏化,其作用與D1和D2受體相關(guān),而D1受體拮抗劑,而不是D2受體拮抗劑能減輕慢性AMPH誘發(fā)的p-ERK和p-CREB升高。所以說,雖然D1和D2受體拮抗劑能抑制行為敏化的發(fā)展,但只有D1受體介導(dǎo)的ERK和CREB激活才是AMPH誘發(fā)的行為敏化表達(dá)的關(guān)鍵[6];在CPP實(shí)驗(yàn)研究中也發(fā)現(xiàn),在NAc中微注射AMPH導(dǎo)致ERK磷酸化和CPP的建立。CPP反應(yīng)訓(xùn)練前或后在NAc注射PD98059則阻斷后續(xù)AMPH的CPP表達(dá),訓(xùn)練后注射可能阻止AMPH的CPP學(xué)習(xí),干擾記憶鞏固但不影響藥物的急性獎賞效應(yīng)[27],這一結(jié)果提示ERK在AMPH相關(guān)的獎賞效應(yīng)的獲得和鞏固中發(fā)揮一定的作用。但和上述結(jié)果相反的是:急性AMPH引起的高自發(fā)活動不能被30~40 mg·kg-1劑量的SL327處理所改變,但高劑量(50~100 mg·kg-1)SL327由于對基礎(chǔ)運(yùn)動量的抑制作用而減弱急性AMPH誘發(fā)的自主活動升高[41]。雖然系統(tǒng)注射MEK抑制劑SL327(50 mg·kg-1)抑制急性AMPH引起的自主活動,但提高動物基礎(chǔ)運(yùn)動量。上述結(jié)果的不一致性可能由于操作程序不一所造成的,例如如果大鼠事先不經(jīng)過適應(yīng)性訓(xùn)練,急性AMPH激發(fā)高自發(fā)活動時,CPu中ERK磷酸化卻被抑制的[40]。然而上述研究均表明ERK信號通路可能介導(dǎo)了苯丙胺的藥物成癮過程。
2.2 ERK信號通路和甲基苯丙胺藥物成癮 甲基苯丙胺俗稱冰毒,是一種以減肥和娛樂為目的的高成癮性非法使用藥物,其濫用程度逐年增加,引起全球性的醫(yī)療、社會、經(jīng)濟(jì)和法律相關(guān)的日益嚴(yán)重的問題。目前關(guān)于谷氨酸和多巴胺神經(jīng)傳遞與METH引起的行為改變的研究比較多,但是關(guān)于ERK通路是否參與METH成癮的研究還十分有限。通過METH對PC12細(xì)胞短時間刺激發(fā)現(xiàn),p-ERK和ERK表達(dá)在20~30min時明顯升高,晚期又恢復(fù)。急性METH(3 mg·kg-1)注射明顯增加紋狀體中ERK磷酸化。相反也有研究發(fā)現(xiàn)急性METH(2 mg·kg-1)注射不影響CPu和NAc中ERK磷酸化[43]。上述結(jié)果不同,可能由于不同實(shí)驗(yàn)室METH的使用劑量,注射的途徑或組織采集的時間不同所導(dǎo)致的。絲氨酸消旋酶,是NMDA受體內(nèi)源性激動劑,在絲氨酸消旋酶基因敲除小鼠中ERK磷酸化是減少的[44],上述結(jié)果提示急性METH誘導(dǎo)的ERK磷酸化需要NMDA受體參與;在METH自身給藥實(shí)驗(yàn)中,發(fā)現(xiàn)ERK和CREB磷酸化在VTA和HIPP中均降低,而ERK磷酸化在PFC中升高,但變化無顯著性差異,CREB磷酸化在NAc中升高,而在PFC中無變化[45]??傊?,上述結(jié)果表明急性METH暴露會改變ERK磷酸化。
與苯丙胺類似,重復(fù)METH暴露戒斷后METH激發(fā)能引起行為敏化,并與CPu和NAc中ERK磷酸化表達(dá)以及CPu中ΔFosB蛋白表達(dá)相關(guān)[43, 46-47]。延胡索乙素是D1和D2受體拮抗劑,有研究表明延胡索乙素(5 mg·kg-1和10 mg·kg-1)本身不能引起明顯的自發(fā)運(yùn)動改變,但與METH合用能明顯減弱METH引起的運(yùn)動敏化的發(fā)展和表達(dá)以及NAc和CPu中ERK1/2表達(dá)[43],該結(jié)果表明多巴胺受體參與METH引起的行為敏化和ERK磷酸化。進(jìn)一步研究發(fā)現(xiàn),METH誘導(dǎo)的行為敏化后戒斷1 d,或者M(jìn)ETH自身給藥后戒斷2 d,均能引起NACsh中 ERK磷酸化增加[46],并導(dǎo)致紋狀體中D1受體、ΔFosB蛋白、p-CREB和Elk-1表達(dá)升高[45, 48],但有人認(rèn)為這種ERK磷酸化的提高是由于METH急性刺激造成的。因?yàn)橛醒芯堪l(fā)現(xiàn)戒斷早期紋狀體中ERK磷酸化只是瞬時性的升高且在長期戒斷中ERK磷酸化不發(fā)生改變[46];METH的CPP實(shí)驗(yàn)研究中發(fā)現(xiàn)CPu、NAc和PFC中p-ERK、pElk-1、p-CREB和ΔFosB蛋白表達(dá)均增加[49]。NAc內(nèi)微注射MEK抑制劑PD98059(每側(cè)2μg)阻斷METH的CPP建立和ERK磷酸化表達(dá)。然而,戒斷后2d單次CPP測試中,發(fā)現(xiàn)NAc區(qū)中ERK和CREB磷酸化減少[50]。上述研究表明不管是條件性訓(xùn)練還是戒斷期間對ERK信號的過激活都存在一個代償性的減少反應(yīng),但上述解釋還有待于進(jìn)一步驗(yàn)證。
動物實(shí)驗(yàn)發(fā)現(xiàn),急性低劑量的METH能促進(jìn)記憶的形成,尤其是記憶鞏固。但重復(fù)METH注射會導(dǎo)致空間學(xué)習(xí)和記憶損害以及PFC中總的ERK減少[51]。同時發(fā)現(xiàn)HIPP中ERK和CREB信號的激活可能參與METH引起的空間記憶改變[52];新物體識別試驗(yàn)中PFC中微注射PD98509(每側(cè)2μg)能模擬出METH引起的認(rèn)知障礙,推測長期METH暴露后認(rèn)知功能障礙可能由于ERK磷酸化減弱所致。氯氮平是一種非典型抗精神病藥,逆轉(zhuǎn)慢性METH使用引起的HIPP中ERK磷酸化功能的失調(diào),改善空間工作記憶障礙。莫達(dá)非尼作為弱多巴胺轉(zhuǎn)運(yùn)體抑制劑,通過增加細(xì)胞外多巴胺水平,刺激PFC中的ERK磷酸化來改善新物體識別障礙[53-54]。這些藥物都是通過改變ERK信號來改善METH引起的認(rèn)知障礙??傊?,METH引起的認(rèn)知功能障礙可能由于學(xué)習(xí)和記憶中ERK信號通路下調(diào)所造成的,這將為未來藥物開發(fā)提供潛在的治療性分子生物靶標(biāo)。
阿片類藥物包括天然存在的鴉片、嗎啡和可待因及人工合成的海洛因、杜冷丁和美沙酮等。這里我們主要闡述ERK信號通路在嗎啡和海洛因成癮中的作用。阿片類成癮調(diào)控ERK導(dǎo)致腦突觸可塑性改變。嗎啡和海洛因都依賴于多巴胺和谷氨酸受體調(diào)控ERK信號通路,參與藥物成癮。
有報道,急性嗎啡降低NAc而不是CPu中ERK磷酸化水平,并且增加NAc中Akt含量。但在PFC中,急性嗎啡處理增加MEK1/2磷酸化[55]。Berhow等[9]研究發(fā)現(xiàn)在急性嗎啡處理大鼠的VTA區(qū)注射BDNF增加ERK活性,但不改變總ERK水平。然而,慢性嗎啡處理之后,注射BDNF導(dǎo)致總ERK水平降低,而ERK活性沒有改變。與之相反,慢性嗎啡系統(tǒng)處理導(dǎo)致ERK磷酸化在VTA中持續(xù)增加;而藍(lán)斑和CPu中ERK1與ERK2含量選擇性的增加[56]。體外研究發(fā)現(xiàn),慢性嗎啡處理也增加背根神經(jīng)節(jié)神經(jīng)元中ERK磷酸化水平;VTA中注射特異性NMDA受體拮抗劑則阻止慢性嗎啡引起的ERK激活[9]。最新發(fā)現(xiàn)嗎啡處理引起的行為敏化表達(dá)階段腹外側(cè)眶皮層(ventrolateral orbital cortex,VLO)中除了ERK之外,組蛋白H3酪氨酸9乙?;?aceH3K9)、p-ERK和BDNF的蛋白表達(dá)水平均明顯上調(diào);并且在VLO 中微注射組蛋白乙?;敢种苿┣乓志窤卻增加嗎啡引起的行為敏化[57]。ERK1基因敲除小鼠顯示對嗎啡的高反應(yīng)性,嗎啡CPP誘導(dǎo)紋狀體ERK2磷酸化增強(qiáng)[58]。上述結(jié)果表明急慢性嗎啡處理后ERK磷酸化均發(fā)生了改變。
但在嗎啡引起的CPP模型中,不同腦區(qū)中ERK及p-ERK表達(dá)水平不同。例如,在PFC中,慢性嗎啡注射后ERK2磷酸化水平降低,但總的ERK或ERK1磷酸化水平無改變;在NAc中,慢性嗎啡暴露后p-ERK1/2水平降低但總的ERK1/2水平不變;在CPu中總的ERK1/2及其表達(dá)不發(fā)生變化[55]。而對于此模型中不同腦區(qū)ERK mRNA表達(dá)水平,慢性嗎啡處理后PFC中ERK1/2mRNA表達(dá)水平升高,CPu中ERK1mRNA表達(dá)水平也升高,而在嗎啡引起的CPP的消退和恢復(fù)中HIPP腦區(qū)ERK1/2mRNA表達(dá)均降低[59]。進(jìn)一步研究發(fā)現(xiàn),急性和亞慢性應(yīng)激能進(jìn)一步提高嗎啡CPP引起的NAc、Amy、HIPP和下丘腦中的p-ERK,p-CREB和c-fos表達(dá)的增加[60-61]。Lin等[62]發(fā)現(xiàn)ERK在CPP的建立和強(qiáng)化階段中明顯增加,在VTA中注射MEK抑制劑U0126阻斷嗎啡CPP的建立。因此,以上實(shí)驗(yàn)結(jié)果提示:ERK信號介導(dǎo)嗎啡CPP反應(yīng),但ERK及p-ERK表達(dá)水平存在明顯的腦區(qū)特異性。
然而關(guān)于ERK信號通路在海洛因成癮和復(fù)吸中的作用研究更少。Edwards等[63]研究發(fā)現(xiàn),慢性海洛因SA后自發(fā)戒斷12~24h期間,ERK磷酸化在PFC以及HIPP的CA1和CA3區(qū)明顯增加。而戒斷24h后用納洛酮處理,ERK磷酸化則在CeA,NACc和NACsh中有所增加。Wang等[64]發(fā)現(xiàn)ERK1/2信號可能不參與產(chǎn)前海洛因暴露引起的神經(jīng)行為致畸性。最近有研究發(fā)現(xiàn),海洛因SA較長時間戒斷后NAc中ERK磷酸化持續(xù)降低,特別是暴露至環(huán)境線索和條件線索中,并且長期納洛酮戒斷后NAc區(qū)中p-CREB表達(dá)與p-ERK表達(dá)呈正相關(guān)[65],提示長期戒斷后降低CREB活性可能部分通過ERK信號通路減弱來實(shí)現(xiàn)。
4.1 ERK信號通路和酒精藥物成癮 飲酒是一種悠久而普遍的生活習(xí)慣和社會風(fēng)俗,但過度飲酒會造成軀體和精神的嚴(yán)重?fù)p傷,如今越來越多的研究已經(jīng)開始關(guān)注酒精成癮問題。Thorsell等[66]發(fā)現(xiàn),在各種年齡段的嚙齒類動物中,急性注射低劑量乙醇(1 g·kg-1)以D1受體和神經(jīng)肽S受體依賴方式明顯提高包括NAc和CeA中ERK磷酸化。相反,Zhu等[67]發(fā)現(xiàn),急性注射高劑量乙醇(2.5~4.7 g·kg-1)以時間依賴方式降低PFC、NAc、CPu、Amy、HIPP、BNST和小腦中p-ERK和p-CREB的表達(dá)。最近的研究發(fā)現(xiàn),乙醇(100 mmol·L-1)抑制原生胚胎干細(xì)胞來源的神經(jīng)膠質(zhì)細(xì)胞中磷酸化Akt和ERK級聯(lián)反應(yīng),但乙醇增加CREB的轉(zhuǎn)錄活性[68]。另外發(fā)現(xiàn),急性乙醇的主要代謝產(chǎn)物乙醛通過激活D1受體和阿片類受體提高NAc、CeA和BNST中ERK磷酸化[69]。對慢性乙醇暴露而言,早期戒斷(例如,在1d之內(nèi)戒斷)慢性乙醇引起神經(jīng)元可塑性減弱是由于ERK磷酸化下調(diào)所致[70];相反,反復(fù)乙醇口服使用或蒸薰使用后立即停止,PFC、NAc、CPu、Amy和HIPP中ERK磷酸化是減少的,但戒斷7~11 h后ERK磷酸化升高[67]。
行為學(xué)實(shí)驗(yàn)發(fā)現(xiàn),反復(fù)乙醇處理戒斷后再暴露或激發(fā),PFC和HIPP中p-ERK和c-fos發(fā)生脫敏[71]。而且,在慢性乙醇暴露后不久GluN1和CaMKII磷酸化同樣減少[67,71]。這些結(jié)果表明,戒斷早期谷氨酸受體介導(dǎo)的ERK活性降低可能導(dǎo)致繼后的乙醇引起的p-ERK脫敏。利用CPP模型發(fā)現(xiàn)低劑量(1 g·kg-1)乙醇能以D1受體依賴方式建立乙醇CPP反應(yīng),并誘導(dǎo)ERK磷酸化。但系統(tǒng)注射SL327不影響乙醇CPP(2 g·kg-1)的獲得、表達(dá)和消退[72]。VTA內(nèi)注射GDNF迅速激活了該部位的ERK信號通路,明顯抑制乙醇的SA行為;系統(tǒng)注射MEK抑制劑阻斷ERK信號通路提高乙醇SA行為,而乙醇SA戒斷后,再暴露于條件性線索產(chǎn)生的覓藥行為恢復(fù),同時激活BLA中p-ERK和c-fos表達(dá)[73]。由于慢性乙醇使用戒斷后會產(chǎn)生軀體反應(yīng)和消極情緒(例如,焦慮,抑郁和煩躁)均有可能會導(dǎo)致復(fù)飲。因此反復(fù)乙醇處理24 h戒斷后,產(chǎn)生焦慮樣行為,發(fā)現(xiàn)CeA和內(nèi)側(cè)Amy中BDNF/TrkB /p-ERK/ pElk-1信號通路和Arc蛋白表達(dá)顯著減弱,同時神經(jīng)棘減少;進(jìn)一步研究發(fā)現(xiàn)敲除CeA和內(nèi)側(cè)Amy中BDNF介導(dǎo)的ERK信號,則引起焦慮并促進(jìn)乙醇攝入[74]。以上實(shí)驗(yàn)結(jié)果將為臨床乙醇依賴治療提供新思路和方法。目前也有許多實(shí)驗(yàn)室致力于開發(fā)一些藥物通過干預(yù)ERK信號通路來治療或者抑制酒精引起的一些疾病。例如,豇豆的酒精提取物通過抑制VEGFR2、ERK和Akt磷酸化產(chǎn)生抗血管增生的作用[75];雌激素通過DAPK3/Akt/ERK激活調(diào)控酒精引起的心肌氧化應(yīng)激和機(jī)能障礙[76]。
4.2 ERK信號通路和尼古丁藥物成癮 吸煙是造成許多疾病的重要危險因素,也是導(dǎo)致疾病和死亡中最可預(yù)防的一種病因,而尼古丁是煙草中的一種重要的有毒成分,大約占煙草干重的0.6%~3.0%[77]。體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn),急性尼古丁處理提高NAc、CPu、PFC、Amy和BNST腦區(qū)中ERK磷酸化[7,78],同時增加NAc,VTA和紋狀體中CREB磷酸化;而反復(fù)尼古丁處理的大鼠,NAc中CREB磷酸化是降低的;尼古丁戒斷期間VTA中CREB磷酸化升高,這些提示長期尼古丁暴露可通過ERK和CREB信號來改變細(xì)胞神經(jīng)可塑性[79]。在紋狀體,急性尼古丁誘導(dǎo)ERK磷酸化由D1受體/PKA /DARPP-32信號轉(zhuǎn)導(dǎo)通路介導(dǎo)[12-13],表明多巴胺能神經(jīng)傳遞可能參與了對尼古丁的反應(yīng)。體外實(shí)驗(yàn)研究發(fā)現(xiàn),急慢性尼古丁處理激活ERK和CREB需要nAChRs、CaMKs、MEK和蛋白激酶A(protein kinase A,PKA)參與[80]。但在HIPP神經(jīng)元中只有PKA是尼古丁誘發(fā)ERK磷酸化所必需的,提示在不同腦區(qū)中激發(fā)ERK的上游激活因子不盡相同。在尼古丁CPP模型動物中,NAc中p-ERK增加[78];尼古丁SA后干擾α7nAChR受體和NMDA受體復(fù)合物可降低ERK活性,阻斷線索誘導(dǎo)的尼古丁覓藥行為的恢復(fù)[81]。這些結(jié)果明顯提示,ERK信號通路是DA / D1受體和Glu/NMDA受體信號關(guān)鍵的整合因子,共同參與尼古丁暴露后長時程的細(xì)胞變化和行為適應(yīng)性。
有人發(fā)現(xiàn)在匱乏或標(biāo)準(zhǔn)環(huán)境中飼養(yǎng)的動物,尼古丁敏化或SA訓(xùn)練后PFC中p-ERK明顯增加。相反,飼養(yǎng)在豐富環(huán)境中的動物,由于PFC中ERK高基礎(chǔ)表達(dá)量,慢性尼古丁處理不改變p-ERK的水平,這可能由于這些動物對慢性尼古丁的敏感性降低[82]。尼古丁SA后,PFC中ERK信號通路被激活;并且在SA期間,誘發(fā)的ERK磷酸化和尼古丁攝入量呈正相關(guān)。這些結(jié)果表明,PFC中的ERK磷酸化可能參與了尼古丁獎賞效應(yīng)。深入研究發(fā)現(xiàn),尼古丁誘導(dǎo)的一些疾病也依賴于ERK信號的激活或調(diào)控。例如,系統(tǒng)尼古丁處理后,通過依賴ERK激活增加聽覺皮層中聽覺引起的神經(jīng)性反應(yīng)[83];ERK1/2-SRF-miR-133信號通路增加半胱天冬酶-9和-3對尼古丁誘導(dǎo)的心肌細(xì)胞凋亡[84];尼古丁還通過調(diào)控α7nAChR、ERK、HIF-1和VEGF/PEDF信號促進(jìn)鼻咽癌細(xì)胞增殖[85]。
4.3 ERK信號通路和大麻藥物成癮 大麻是一種常用的非法藥物,它的主要有效化學(xué)成分是Δ9-四氫大麻酚(Δ9-tetrahydrocannabinol,THC)。大麻素(cannabinoid,CB)受體包括CB1和CB2兩種類型,CB1發(fā)現(xiàn)在中樞神經(jīng)系統(tǒng)中,而CB2主要在免疫系統(tǒng)有較高表達(dá)。CB1受體激活導(dǎo)致Ca2+通道關(guān)閉而鉀通道開放,繼而抑制腺苷酸環(huán)化酶,激活蛋白激酶(包括ERK)。有研究發(fā)現(xiàn),在DLS和NAc中THC急性處理引起短暫性ERK激活[86];腹腔低劑量注射THC,PFC,Amy和HIPP中的CB1受體通過激活ERK1/2通路產(chǎn)生抗焦慮作用,且該效應(yīng)可被SL327所拮抗[87];急性THC誘導(dǎo)ERK下游靶標(biāo)pElk-1和zif268mRNA的表達(dá),但能被D1受體拮抗劑和MEK抑制劑SL327(100 mg·kg-1)所阻斷[6];低劑量THC的單獨(dú)處理增加HIPP中p-CREB和PFC中BDNF的水平,但100 mg·kg-1劑量SL327預(yù)處理卻抑制急性THC引起的IEG(包括c-fos蛋白,zif268、BDNF mRNA)在HIPP中的表達(dá)[88];在紋狀體或HIPP中THC激活ERK磷酸化是由CB1受體、D1受體、D2受體和NMDA受體介導(dǎo)。上述研究推測大麻素,多巴胺和谷氨酸神經(jīng)傳遞間可能存在著協(xié)同作用。慢性THC暴露引起PFC和HIPP中p-CREB和FosB蛋白表達(dá)能被50 mg·kg-1SL327處理所抑制。高劑量的THC能引起高運(yùn)動反應(yīng)性,但低劑量THC不改變自發(fā)活動[89],因此,急性THC誘發(fā)的行為變化和ERK信號通路作用之間的相關(guān)性,有待于進(jìn)一步闡明。
另外,有研究發(fā)現(xiàn)CB1受體拮抗劑AM251可以逆轉(zhuǎn)反復(fù)電針預(yù)處理所引起的大鼠腦內(nèi)p-ERK1/2表達(dá)水平增高,表明反復(fù)電針預(yù)處理誘導(dǎo)激活ERK1/2通路依賴CB1受體。Pascal等[88]通過在體內(nèi)和離體研究發(fā)現(xiàn)大麻素類物質(zhì)包括THC通過CB1受體激活ERK1/2通路改變HIPP神經(jīng)元的突觸可塑性。以上結(jié)果顯示了CB1受體在ERK激活中的重要作用。有研究發(fā)現(xiàn),在紋狀體和小腦中以ERK依賴方式招募G-蛋白偶聯(lián)受體激酶和β-抑制蛋白脫敏和內(nèi)吞CB1受體,從而介導(dǎo)THC所致的行為耐受性[6]。利用CPP模型研究發(fā)現(xiàn),低劑量THC重復(fù)處理引起的CPP反應(yīng)的發(fā)展能被50 mg·kg-1劑量的SL327所減弱,這些結(jié)果提示ERK信號通路參與了THC獎賞效應(yīng)[86]。但至今關(guān)于ERK信號在THC行為敏化或SA中的作用研究很少,將是今后該領(lǐng)域研究的重要方向之一。
藥物成癮目前還沒有強(qiáng)有效的治療藥物,最大的難題是復(fù)吸率高。本文比較系統(tǒng)的闡述了ERK信號及相關(guān)的細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)在各種濫用藥物獎賞、動機(jī)和正性強(qiáng)化中的重要作用。但是藥物成癮的神經(jīng)生物學(xué)機(jī)制很復(fù)雜,越來越多的證據(jù)表明:各種濫用藥物使用產(chǎn)生的欣快和災(zāi)難性的負(fù)性情緒,會使生物體正常的內(nèi)環(huán)境穩(wěn)態(tài)紊亂,并發(fā)生適應(yīng)性的改變,可能是藥物成癮持續(xù)存在的關(guān)鍵因素[90]。提示海洛因獎賞和負(fù)性情感過程可能共同介導(dǎo)了海洛因動機(jī)轉(zhuǎn)換,但海洛因正性強(qiáng)化和負(fù)性情感作用下的動機(jī)轉(zhuǎn)換特征和規(guī)律以及介導(dǎo)的中樞部位和環(huán)路均有待進(jìn)一步明確。因此,我們要搞清楚各種濫用藥物誘導(dǎo)的ERK磷酸化在調(diào)控行為中的詳細(xì)分子機(jī)制是十分重要的。眾所周知調(diào)控ERK信號的因素很多,但是很多調(diào)控的具體機(jī)制又不甚清楚,需要進(jìn)一步的進(jìn)行探索和闡述。目前的研究結(jié)果強(qiáng)烈提示對ERK信號通路在濫用藥物使用后戒斷期間早期干預(yù)很重要。因此,今后研究可以考慮從觀察新的治療干預(yù)措施對恢復(fù)腦中ERK信號正?;某潭龋瑏磉M(jìn)一步評估其抑制覓藥行為的作用。盡管介導(dǎo)藥物成癮的信號通路很多,但ERK信號通路最具特征性和可靠性。隨著分子生物技術(shù)的快速發(fā)展,未來的研究有待于更徹底分析不同ERK信號通路在藥物成癮中的詳細(xì)分子機(jī)制,為開發(fā)藥物成癮或其它相關(guān)精神疾病切實(shí)可行的或最有價值的治療策略提供理論基礎(chǔ)和新的方向。
[1] Nestler E J. Epigenetic mechanisms of drug addiction[J].Neuropharmacology, 2014,76(Pt B):259-68.
[2] Wise R A. Dopamine, learning and motivation[J].NatRevNeurosci, 2004,5(6):483-94
[3] Wise R A. Roles for nigrostriatal not just mesocorticolimbic dopamine in reward and addiction[J].TrendsNeurosci, 2009,32(10):517-24.
[4] Kim E K, Choi E J. Pathological roles of MAPK signaling pathways in human diseases[J].BiochimBiophysActa, 2010,1802(4):396-405.
[5] Murphy L O, Blenis J. MAPK signal specificity: the right place at the right time[J].TrendsBiochemSci, 2006,31(5):268-75.
[6] Sun W L, Quizon P M, Zhu J. Molecular mechanism: ERK signaling, drug addiction, and behavioral effects[J].ProgMolBiolTranslSci, 2016,137:1-40.
[7] Valjent E, Pascoli V, Svenningsson P, et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum[J].ProcNatlAcadSciUSA(Paris), 2005,102(2):491-6.
[8] Lachen-Montes M, Gonzalez-Morales A, de Morentin X M, et al. An early dysregulation of FAK and MEK/ERK signaling pathways precedes the beta-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease[J].JProteomics, 2016,148:149-58.
[9] Berhow M T, Hiroi N, Nestler E J. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine[J].JNeurosci, 1996,16(15):4707-15.
[10] Zhai H, Li Y, Wang X, et al. Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement[J].CellMolNeurobiol, 2008,28(2):157-72.
[11] Radwanska K, Valjent E, Trzaskos J, et al. Regulation of cocaine-induced activator protein 1 transcription factors by the extracellular signal-regulated kinase pathway[J].Neuroscience, 2006,137(1):253-64.
[12] Valjent E, Herve D, Girault J A. Drugs of abuse, protein phosphatases, and ERK pathway[J].MedSci(Paris), 2005,21(5):453-4.
[13] Valjent E, Pages C, Herve D, et al. Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain[J].EurJNeurosci, 2004,19(7):1826-36.
[14] Xu S, Kang U G. Cocaine induces ubiquitination of Egr-1 in the rat dorsal striatum[J].Neuroreport, 2014,25(17):1362-7.
[15] Brami-Cherrier K, Valjent E, Herve D, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice[J].JNeurosci, 2005,25(49):11444-54.
[16] Sun W L, Zhou L, Hazim R, et al. Effects of acute cocaine on ERK and DARPP-32 phosphorylation pathways in the caudate-putamen of Fischer rats[J].BrainRes, 2007,1178:12-9.
[17] Cahill E, Pascoli V, Trifilieff P, et al. D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses[J].MolPsychiatry, 2014,19(12):1295-304.
[18] Pascoli V, Besnard A, Herve D, et al. Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation[J].MolPsychiatry, 2011,69(3):218-27.
[19] Lu L, Hope B T, Dempsey J, et al. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving[J].NatNeurosci, 2005,8(2):212-9.
[20] Kim S, Kim J H. Time-dependent change of ERK phosphorylation levels in the nucleus accumbens during withdrawals from repeated cocaine[J].NeurosciLett, 2008,436(2):107-10.
[21] Velazquez E E, Valdomero A, Maldonado N M, et al. Perinatal protein deprivation facilitates accumbal ERK phosphorylation in cocaine-sensitized adult rats[J].BehavBrainRes, 2013,241:222-7.
[22] Yap J J, Chartoff E H, Holly E N, et al. Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area[J].Psychopharmacology(Berl), 2015,232(9):1555-69.
[23] Wells A M, Arguello A A, Xie X, et al. Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats[J].Neuropsychopharmacology, 2013,38(5):753-62.
[24] Bertran-Gonzalez J, Bosch C, Maroteaux M, et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol[J].JNeurosci, 2008,28(22):5671-85.
[25] Nygard S K, Klambatsen A, Hazim R, et al. Sexually dimorphic intracellular responses after cocaine-induced conditioned place preference expression[J].BrainRes, 2013,1520:121-33.
[26] Yu F, Zhong P, Liu X, et al. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis[J].Neuropsychopharmacology, 2013,38(7):1308-21.
[27] Lu L, Koya E, Zhai H, et al. Role of ERK in cocaine addiction[J].TrendsNeurosci, 2006,29(12):695-703.
[28] Iniguez S D, Warren B L, Neve R L, et al. Viral-mediated expression of extracellular signal-regulated kinase-2 in the ventral tegmental area modulates behavioral responses to cocaine[J].BehavBrainRes, 2010,214(2):460-4.
[29] Fasano S, D'Antoni A, Orban P C, et al. Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) controls activation of extracellular signal-regulated kinase (ERK) signaling in the striatum and long-term behavioral responses to cocaine[J].BiolPsychiatry, 2009,66(8):758-68.
[30] Peng Q, Sun X, Liu Z, et al. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization[J].NeurochemInt, 2014,75:105-11.
[31] Reichelt A C, Lee J L. Memory reconsolidation in aversive and appetitive settings[J].FrontBehavNeurosci, 2013,7:118.
[32] Tronson N C, Taylor J R. Addiction: a drug-induced disorder of memory reconsolidation[J].CurrOpinNeurobiol, 2013,23(4):573-80.
[33] Edwards S, Graham D L, Bachtell R K, et al. Region-specific tolerance to cocaine-regulated cAMP-dependent protein phosphorylation following chronic self-administration[J].EurJNeurosci, 2007,25(7):2201-13.
[34] Fijal K, Nowak E, Leskiewicz M, et al. Working memory deficits and alterations of ERK and CREB phosphorylation following withdrawal from cocaine self-administration[J].PharmacolRep, 2015,67(5):881-9.
[35] Moreno E, Moreno-Delgado D, Navarro G, et al. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: sigma1-D1-H3 receptor complexes as key targets for reducing cocaine's effects[J].JNeurosci, 2014,34(10):3545-58.
[36] Lu L, Wang X, Wu P, et al. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving[J].BiolPsychiatry, 2009,66(2):137-45.
[37] Whitfield T W, Jr., Shi X, Sun W1, et al. The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent[J].JNeurosci, 2011,31(3):834-42.
[38] Mao L M, Reusch J M, Fibuch E E, et al. Amphetamine increases phosphorylation of MAPK/ERK at synaptic sites in the rat striatum and medial prefrontal cortex[J].BrainRes, 2013,1494:101-8.
[39〗 Choe E S, Wang J Q. CaMKII regulates amphetamine-induced ERK1/2 phosphorylation in striatal neurons[J].Neuroreport, 2002,13(8):1013-6.
[40] Schwendt M, Sigmon S A, McGinty J F. RGS4 overexpression in the rat dorsal striatum modulates mGluR5- and amphetamine-mediated behavior and signaling[J].Psychopharmacology(Berl), 2012,221(4):621-35.
[41] Giordano T P, Tropea T F, Satpute S S, et al. Molecular switch from L-type Ca v 1.3 to Ca v 1.2 Ca2+channel signaling underlies long-term psychostimulant-induced behavioral and molecular plasticity[J].JNeurosci, 2010,30(50):17051-62.
[42] Pascoli V, Valjent E, Corbille A G, et al. cAMP and extracellular signal-regulated kinase signaling in response to d-amphetamine and methylphenidate in the prefrontal cortexinvivo: role of beta 1-adrenoceptors[J].MolPharmacol, 2005,68(2):421-9.
[43] Zhao N, Chen Y, Zhu J, et al. Levo-tetrahydropalmatine attenuates the development and expression of methamphetamine-induced locomotor sensitization and the accompanying activation of ERK in the nucleus accumbens and caudate putamen in mice[J].Neuroscience, 2014,258:101-10.
[44] Horio M, Kohno M, Fujita Y, et al. Role of serine racemase in behavioral sensitization in mice after repeated administration of methamphetamine[J].PLoSOne, 2012,7(4):e35494.
[45] Krasnova I N, Chiflikyan M, Justinova Z, et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat[J].NeurobiolDis, 2013,58:132-43.
[46] Sun L L, Zhang Y, Liu J F, et al. Role of melanin-concentrating hormone in the nucleus accumbens shell in rats behaviourally sensitized to methamphetamine[J].IntJNeuropsychopharmacol, 2013,16(8):1767-80.
[47] Yan T, Li L, Sun B, et al. Luteolin inhibits behavioral sensitization by blocking methamphetamine-induced MAPK pathway activation in the caudate putamen in mice[J].PLoSOne, 2014,9(6):e98981.
[48] Cadet J L, Brannock C, Jayanthi S, et al. Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat[J].MolNeurobiol, 2015,51(2):696-717.
[49] Son J S, Jeong Y C, Kwon Y B. Regulatory effect of bee venom on methamphetamine-induced cellular activities in prefrontal cortex and nucleus accumbens in mice[J].BiolPharmBull, 2015,38(1):48-52.
[50] Herrold A A, Shen F, Graham M P, et al. Mirtazapine treatment after conditioning with methamphetamine alters subsequent expression of place preference[J].DrugAlcoholDepend, 2009,99(1-3):231-9.
[51] Chen Y J, Liu Y L, Zhong Q, et al. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice[J].NeurosciBull, 2012,28(3):222-32.
[52] Cao G, Zhu J, Zhong Q, et al. Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex[J].Neuropharmacology, 2013,67:144-54.
[53] Gonzalez B, Raineri M, Cadet J L, et al. Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice[J].Neuropharmacology, 2014,87:188-97.
[54] Mereu M, Bonci A, Newman A H, et al. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders[J].Psychopharmacology(Berl), 2013,229(3):415-34.
[55] Muller D L, Unterwald E M.Invivoregulation of extracellular signal-regulated protein kinase (ERK) and protein kinase B (Akt) phosphorylation by acute and chronic morphine[J].JPharmacolExpTher, 2004,310(2):774-82.
[56] Hawes J J, Narasimhaiah R, Picciotto M R. Galanin attenuates cyclic AMP regulatory element-binding protein (CREB) phosphorylation induced by chronic morphine and naloxone challenge in Cath.a cells and primary striatal cultures[J].JNeurochem, 2006,96(4):1160-8.
[57] Wei L, Zhu Y M, Zhang Y X, et al. Microinjection of histone deacetylase inhibitor into the ventrolateral orbital cortex potentiates morphine induced behavioral sensitization[J].BrainRes, 2016,1646:418-25.
[58] Mazzucchelli C, Vantaggiato C, Ciamei A, et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory[J].Neuron, 2002,34(5):807-20.
[59] Yuan Ma J, Zhi Gu S, Meng M, et al. Regional expression of extracellular signal-regulated kinase 1 and 2 mRNA in a morphine-induced conditioned place preference model[J].BrainRes, 2014,1543:191-9.
[60] Haghparast A, Fatahi Z, Alamdary S Z, et al. Changes in the levels of p-ERK, p-CREB, and c-fos in rat mesocorticolimbic dopaminergic system after morphine-induced conditioned place preference: the role of acute and subchronic stress[J].CellMolNeurobiol, 2014,34(2):277-88.
[61] Pahlevani P, Fatahi Z, Moradi M, et al. Morphine-induced conditioned place preference and the alterations of p-ERK, p-CREB and c-fos levels in hypothalamus and hippocampus: the effects of physical stress[J].CellMolBiol(Noisy-le-grand), 2014,60(4):48-55.
[62] Lin X, Wang Q, Ji J, et al. Role of MEK-ERK pathway in morphine-induced conditioned place preference in ventral tegmental area of rats[J].JNeurosciRes, 2010,88(7):1595-604.
[63] Edwards S, Graham D L, Whisler K N, et al. Phosphorylation of GluR1, ERK, and CREB during spontaneous withdrawal from chronic heroin self-administration[J].Synapse, 2009,63(3):224-35.
[64] Wang Y, Zhang P B, Li K. Effect of prenatal heroin exposure on p-ERK1/2 expression in the prefrontal lobe cortex, hippocampus and nucleus accumbens in mice[J].ZhongguoDangDaiErKeZaZhi, 2009,11(4):306-9.
[65] Sun A, Zhuang D, Zhu H, et al. Decrease of phosphorylated CREB and ERK in nucleus accumbens is associated with the incubation of heroin seeking induced by cues after withdrawal[J].NeurosciLett, 2015,591:166-70.
[66] Thorsell A, Tapocik J D, Liu K, et al. A novel brain penetrant NPS receptor antagonist, NCGC00185684, blocks alcohol-induced ERK-phosphorylation in the central amygdala and decreases operant alcohol self-administration in rats[J].JNeurosci, 2013,33(24):10132-42.
[67] Zhu Y, Wang Y, Zhao B, et al. Differential phosphorylation of GluN1-MAPKs in rat brain reward circuits following long-term alcohol exposure[J].PLoSOne, 2013,8(1):e54930.
[68] Gofman L, Fernandes N C, Potula R. Relative role of Akt, ERK and CREB in alcohol-Induced microglia P2X4R receptor expression[J].AlcoholAlcohol, 2016,51(6):647-54.
[69] Vinci S, Ibba F, Longoni R, et al. Acetaldehyde elicits ERK phosphorylation in the rat nucleus accumbens and extended amygdala[J].Synapse, 2010,64(12):916-27.
[70] Roberto M, Nelson T E, Ur C L, et al. The transient depression of hippocampal CA1 LTP induced by chronic intermittent ethanol exposure is associated with an inhibition of the MAP kinase pathway[J].EurJNeurosci, 2003,17(8):1646-54.
[71] Wang Y, Cui H, Wang W, et al. The region-specific activation of Ca2+/calmodulin dependent protein kinase Ⅱ and extracellular signal-regulated kinases in hippocampus following chronic alcohol exposure[J].BrainResBull, 2012,89(5-6):191-6.
[72] Groblewski P A, Franken F H, Cunningham C L. Inhibition of extracellular signal-regulated kinase (ERK) activity with SL327 does not prevent acquisition, expression, and extinction of ethanol-seeking behavior in mice[J].BehavBrainRes, 2011,217(2):399-407.
[73] Peana A T, Giugliano V, Rosas M, et al. Effects of L-cysteine on reinstatement of ethanol-seeking behavior and on reinstatement-elicited extracellular signal-regulated kinase phosphorylation in the rat nucleus accumbens shell[J].AlcoholClinExpRes, 2013,37(Suppl 1):E329-37.
[74] Pandey S C, Zhang H, Ugale R, et al. Effector immediate-early gene arc in the amygdala plays a critical role in alcoholism[J].JNeurosci, 2008,28(10):2589-600.
[75] Kwon O S, Jeong M S, Kim B, et al. Antiangiogenic effect of ethanol extract of vigna angularis via inhibition of phosphorylation of VEGFR2, Erk, and Akt[J].EvidBasedComplementAlternatMed, 2015,2015:371368.
[76] El-Mas M M, Abdel-Rahman A A. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats[J].ToxicolApplPharmacol, 2015,287(3):284-92.
[77] Nguyen K, Marshall L, Hu S, et al. State-specific prevalence of current cigarette smoking and smokeless tobacco use among adults aged >/=18 years - United States, 2011-2013[J].MMWRMorbMortalWklyRep, 2015,64(19):532-6.
[78] Neugebauer N M, Henehan R M, Hales C A, et al. Mice lacking the galanin gene show decreased sensitivity to nicotine conditioned place preference[J].PharmacolBiochemBehav, 2011,98(1):87-93.
[79] Collo G, Bono F, Cavalleri L, et al. Nicotine-induced structural plasticity in mesencephalic dopaminergic neurons is mediated by dopamine D3 receptors and Akt-mTORC1 signaling[J].MolPharmacol, 2013,83(6):1176-89.
[80] Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling[J].TrendsPharmacolSci, 2004,25(6):317-24.
[81] Lenoir M, Kiyatkin E A. Intravenous nicotine injection induces rapid, experience-dependent sensitization of glutamate release in the ventral tegmental area and nucleus accumbens[J].JNeurochem, 2013,127(4):541-51.
[82] Gomez A M, Sun W L, Midde N M, et al. Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration[J].EurJNeurosci, 2015,41(1):109-19.
[83] Kawai H D, La M, Kang H A, et al. Convergence of nicotine-induced and auditory-evoked neural activity activates ERK in auditory cortex[J].Synapse, 2013,67(8):455-68.
[84] Wang L, Li X, Zhou Y, et al. Downregulation of miR-133 via MAPK/ERK signaling pathway involved in nicotine-induced cardiomyocyte apoptosis[J].NaunynSchmiedebergsArchPharmacol, 2014,387(2):197-206.
[85] Shi D, Guo W, Chen W, et al. Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating alpha7AChR, ERK, HIF-1alpha and VEGF/PEDF signaling[J].PLoSOne, 2012,7(8):e43898.
[86] Valjent E, Pages C, Rogard M, et al. Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activationinvivodepends on dopaminergic transmission[J].EurJNeurosci, 2001,14(2):342-52.
[87] Rubino T, Sala M, Vigano D, et al. Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral Delta9-tetrahydrocannabinol in rats[J].Neuropsychopharmacology, 2007,32(9):2036-45.
[88] Derkinderen P, Valjent E, Toutant M, et al. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus[J].JNeurosc, 2003,23(6):2371-82.
[89] Rubino T, Forlani G, Vigano D, et al. Ras/ERK signalling in cannabinoid tolerance: from behaviour to cellular aspects[J].JNeurochem, 2005,93(4):984-91.
[90] Koob G F. The dark side of emotion: the addiction perspective[J].EurJPharmacol, 2015,753:73-87.
Research Progress on mechanism of ERK signaling pathway in drug addiction
ZHANG Pan-pan1,XU Wen-jin1,LIU Hui-fen2
(1.SchoolofMedicine,NingboUniversity,NingboZhejiang315211,China; 2.NingboInstituteofMicrocirculationandHenbane,NingboUniversityBehavioralNeuroscienceResearchCenter,NingboZhejiang315010,China)
Drug addiction is a chronic relapsing brain disease. Repeated drug exposure can cause neuroadaptations in major brain circuitries, leading to compulsive drug consumption behavior and relapse after abstinence. Many studies have found that intercellular signaling cascades mediated central nervous system remodeling in the rewarding circuitry and addiction associated neuroplasticity of learning and memory are important molecular mechanism of drug addiction. Studies show that extracellular signal-regulated kinase (ERK) is associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. Therefore, this article has reviewed the role of ERK signaling pathway in drug addiction. Research on the role of ERK signaling pathway in drug addiction will provide important theoretical foundation for in-depth understanding of the molecular mechanism of drug addiction and shine a light on new molecular targets and treatment strategies for drug addiction.
drug addiction;neural plasticity;reward effect;drug seeking;relapse;ERK
時間:2016-12-27 16:13
http://www.cnki.net/kcms/detail/34.1086.R.20161227.1613.002.html
2016-09-25,
2016-10-15
浙江省自然科學(xué)基金面上項(xiàng)目資助項(xiàng)目(No LY14H3 10002);寧波市科技計(jì)劃項(xiàng)目(No 2013C50033, 2015 C110026);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃資助項(xiàng)目(No 2015CB553504)
張盼盼(1989- ),女,碩士生,研究方向:藥物成癮的神經(jīng)生物學(xué)機(jī)制,Tel:0574-87201592 ,E-mail:2538318396@qq.com; 劉惠芬(1965-),女,研究員,研究方向:藥物成癮和復(fù)吸防治,通訊作者,Tel:0574-87349339,E-mail:lihufen@ 163.com
10.3969/j.issn.1001-1978.2017.01.001
A
1001-1978(2017)01-0001-09
R-05;R338.64;R345.57;R749.61;R971.2