趙志剛 李晉南 徐奇友 羅 亮 王常安 王連生
(中國(guó)水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所,哈爾濱150070)
?
變溫條件下不同投喂水平對(duì)施氏鱘幼魚消化酶、代謝酶和抗氧化酶活性的影響
趙志剛 李晉南 徐奇友 羅 亮 王常安 王連生
(中國(guó)水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所,哈爾濱150070)
本試驗(yàn)旨在研究變溫條件下不同投喂水平對(duì)施氏鱘幼魚消化酶、代謝酶和抗氧化酶活性的影響。試驗(yàn)水溫設(shè)恒溫[(22.0±0.1) ℃]和變溫[(22±2) ℃]2種模式,并根據(jù)投喂水平分為6組,分別為恒溫100%飽食組(HW-100組)、變溫100%飽食組(BW-100組)、變溫90%飽食組(BW-90組)、變溫80%飽食組(BW-80組)、變溫70%飽食組(BW-70組)、變溫60%飽食組(BW-60組)。將平均體重為(34.9±0.8) g的施氏鱘幼魚隨機(jī)分為6組,每組4個(gè)重復(fù),每個(gè)重復(fù)15尾魚,養(yǎng)殖周期為42 d。結(jié)果表明:變溫條件下,在60%~80%范圍內(nèi),隨著投喂水平的降低,胃及瓣腸蛋白酶活性均顯著升高(P<0.05)。與HW-100組相比,BW-60組與BW-70組的胃和瓣腸蛋白酶活性均顯著升高(P<0.05)。變溫條件下,十二指腸和瓣腸淀粉酶活性及瓣腸脂肪酶活性均隨投喂水平的降低呈先升高后下降的趨勢(shì)。BW-80組十二指腸淀粉酶活性顯著高于HW-100組及BW-100組(P<0.05),BW-80組和BW-90組瓣腸淀粉酶活性顯著高于其他各組(P<0.05)。所有變溫投喂組瓣腸脂肪酶活性均顯著低于HW-100組(P<0.05)。除BW-70組外,各變溫投喂組血清丙氨酸轉(zhuǎn)氨酶(ALT)活性均顯著高于HW-100組(P<0.05)。與HW-100組相比,BW-60組、BW-70組血清超氧化物歧化酶(SOD)活性顯著降低(P<0.05)。在變溫條件下,在60%~90%范圍內(nèi),魚體血清總抗氧化能力(T-AOC)和黃嘌呤氧化酶(XOD)活性均隨著投喂水平的降低整體呈先下降后上升的趨勢(shì),且均在投喂水平為80%時(shí)降至最低值。與HW-100組相比,BW-60組、BW-70組及BW-100組血清T-AOC顯著升高(P<0.05),且BW-60組和BW-90組血清XOD活性顯著升高(P<0.05)。綜上所述,在周期性變溫條件下,施氏鱘幼魚可通過(guò)提高蛋白酶活性,即提高對(duì)飼料蛋白質(zhì)消化效率的方式來(lái)補(bǔ)償其對(duì)飼料蛋白質(zhì)攝入的不足。與恒溫100%飽食相比,變溫條件下各投喂水平均可提高施氏鱘幼魚血清ALT活性。
變溫;投喂水平;施氏鱘幼魚;消化酶;代謝酶;抗氧化酶
水溫是魚類生長(zhǎng)過(guò)程中的重要環(huán)境因子之一,水溫與魚類的生長(zhǎng)和攝食密切相關(guān),適宜的水溫對(duì)于魚類的行為、生理變化及生長(zhǎng)發(fā)育等都具有重要的意義[1-5]。投喂水平作為養(yǎng)殖過(guò)程中的一個(gè)重要環(huán)節(jié),同樣影響著魚類的消化吸收和生長(zhǎng)發(fā)育。在自然條件下,由于季節(jié)變化、環(huán)境改變、種內(nèi)競(jìng)爭(zhēng)等方面的原因,魚類獲得食物的量十分不確定,經(jīng)常因饑餓或攝食不足影響其正常的生長(zhǎng)發(fā)育。而在養(yǎng)殖條件下,各種環(huán)境因素較為穩(wěn)定,魚類的生長(zhǎng)受投喂水平的影響較大,投喂不當(dāng)或投喂不及時(shí)可能導(dǎo)致魚類攝食不足,從而影響其存活、生長(zhǎng)和發(fā)育[6]。但是過(guò)量投喂同樣不利于魚類的生長(zhǎng)[7]。目前,關(guān)于水溫對(duì)水生動(dòng)物影響的研究較多,但多數(shù)都是在恒溫條件下進(jìn)行的。而在自然界中,水生動(dòng)物的生存水溫是有周期性變化的,如晝夜變化、季節(jié)變化等。已有研究發(fā)現(xiàn),實(shí)驗(yàn)室得到的某些水生動(dòng)物的最適生長(zhǎng)溫度與野外的試驗(yàn)數(shù)據(jù)并不一致,可能與恒溫條件下得到的結(jié)果同野外實(shí)際變溫情況下存在差異有關(guān)[8]。為此,一些學(xué)者對(duì)周期性變溫對(duì)水生生物生長(zhǎng)的影響進(jìn)行了相關(guān)方面的研究[9-14]。但在變溫條件下不同投喂水平對(duì)魚體相關(guān)酶活性影響方面還未見(jiàn)報(bào)道。
施氏鱘(AcipenserschrenckiiBrandt)是我國(guó)重要的大型名貴經(jīng)濟(jì)魚類,具有個(gè)體大、生長(zhǎng)快的特點(diǎn),其卵制成的魚子醬具有極高的經(jīng)濟(jì)價(jià)值[15]。本文以施氏鱘幼魚為研究對(duì)象,在變溫條件下研究了不同投喂水平對(duì)施氏鱘幼魚消化酶、代謝酶及抗氧化酶活性的影響,旨在探討水溫變化對(duì)鱘科魚類消化、代謝等酶學(xué)方面的影響機(jī)制,為施氏鱘工廠化養(yǎng)殖提供理論依據(jù)。
1.1 試驗(yàn)材料
施氏鱘幼魚由中國(guó)水產(chǎn)科學(xué)研究院鱘魚繁育中心提供。運(yùn)回后在室內(nèi)循環(huán)水族箱內(nèi)暫養(yǎng)2周。暫養(yǎng)用水為曝氣自來(lái)水,暫養(yǎng)期間飽食投喂鱘魚商品魚苗種配合飼料,每天換水1/3,水溫為(21.0±0.5) ℃。
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)水溫設(shè)恒溫[(22.0±0.1) ℃]和變溫[(22±2) ℃]2種模式,并根據(jù)投喂水平分為6組,分別為恒溫100%飽食組(HW-100組)、變溫100%飽食組(BW-100組)、變溫90%飽食組(BW-90組)、變溫80%飽食組(BW-80組)、變溫70%飽食組(BW-70組)、變溫60%飽食組(BW-60組)。變溫投喂組的溫度通過(guò)可編程智能溫度控制儀進(jìn)行控制,控制模式為:從06:00最低溫度開(kāi)始逐漸升溫,到13:00上升到最高溫度,13:00到18:00保持在最高溫度;從18:00后開(kāi)始逐漸降溫,到次日01:00逐漸降到最低溫度,從01:00到06:00保持最低溫度,以24 h為單位進(jìn)行循環(huán)。溫控系統(tǒng)溫度感應(yīng)元件的靈敏度為0.1 ℃。
1.3 養(yǎng)殖管理
暫養(yǎng)結(jié)束后,取健康且規(guī)格均勻的個(gè)體[平均體重為(34.9±0.8) g]轉(zhuǎn)移至不同溫度處理的水族箱中進(jìn)行養(yǎng)殖試驗(yàn),每組4個(gè)重復(fù),每個(gè)重復(fù)15尾魚。試驗(yàn)過(guò)程中,每天換水1/3以上,每天3次(08:00、13:00和17:00)投喂鱘魚商品魚苗種配合飼料(飼料基本成分見(jiàn)表1),投喂量按照各組設(shè)定的量進(jìn)行計(jì)算。根據(jù)魚體攝食情況,各組每7 d左右調(diào)整1次投喂量。養(yǎng)殖過(guò)程中定期清除殘餌和糞便。整個(gè)試驗(yàn)期間溶解氧濃度>6.0 mg/L,光照周期12明(L)∶12暗(D),pH 7.5±0.2。養(yǎng)殖周期為42 d。
表1 飼料基本成分(干物質(zhì)基礎(chǔ))
1.4 血清指標(biāo)的檢測(cè)
養(yǎng)殖試驗(yàn)結(jié)束后停食24 h,從每個(gè)重復(fù)中隨機(jī)取魚5尾,每組20尾。經(jīng)過(guò)麻醉劑(MS-222)麻醉后,用注射器在魚體臀鰭下方動(dòng)脈抽血,血液注入離心管中后在4 ℃冷藏,靜置分層后用10 000 r/min離心10 min至完全分層后取上層血清,置于-80 ℃冰箱保存待測(cè)。測(cè)定指標(biāo)包括丙氨酸轉(zhuǎn)氨酶(ALT)、天冬氨酸轉(zhuǎn)氨酶(AST)、黃嘌呤氧化酶(XOD)、超氧化物歧化酶(SOD)活性及總抗氧化能力(T-AOC)。以上指標(biāo)均采用南京建成生物工程研究所的試劑盒進(jìn)行測(cè)定,具體方法參照試劑盒所附說(shuō)明書。
1.5 消化酶活性測(cè)定
將取完血的試驗(yàn)魚在冰盤上迅速解剖,分別取胃、十二指腸和瓣腸,保存于-80 ℃冰箱備用。樣品測(cè)定前在4 ℃冰箱中解凍,用預(yù)冷(0~4 ℃)的0.86%生理鹽水洗滌,再用濾紙吸去表面水分,分別稱重后用9倍質(zhì)量比的預(yù)冷的0.86%生理鹽水進(jìn)行稀釋,于冰水浴中用高速組織勻漿機(jī)勻漿,勻漿液經(jīng)離心(4 ℃,3 500 r/min,10 min)后,將上清液分裝后保存于-20 ℃,作為組織粗酶液用于測(cè)定消化酶活性。
蛋白酶活性采用福林-酚法測(cè)定,淀粉酶和脂肪酶活性均采用南京建成生物工程研究所的試劑盒進(jìn)行測(cè)定,具體方法參照試劑盒的說(shuō)明書。組織蛋白質(zhì)含量采用考馬斯亮藍(lán)法測(cè)定。
1.6 統(tǒng)計(jì)分析
應(yīng)用SPSS 19.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。對(duì)數(shù)據(jù)先進(jìn)行單因素方差分析(one-way ANOVA),然后進(jìn)行Duncan氏多重比較檢驗(yàn),試驗(yàn)結(jié)果采用平均值±標(biāo)準(zhǔn)差(mean±SD)表示,以P<0.05作為差異顯著性的標(biāo)志。
2.1 蛋白酶活性
各組施氏鱘幼魚的蛋白酶活性見(jiàn)表2。變溫條件下,在60%~80%范圍內(nèi),隨著投喂水平的降低,胃及瓣腸蛋白酶活性均顯著升高(P<0.05)。與HW-100組相比,BW-60組與BW-70組的胃蛋白酶及瓣腸蛋白酶活性顯著升高(P<0.05),而各變溫投喂組十二指腸蛋白酶活性與HW-100組相比差異均不顯著(P>0.05)。
表2 各組施氏鱘幼魚的蛋白酶活性
同列數(shù)據(jù)肩標(biāo)無(wú)字母或相同字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05)。下表同。
In the same column, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05). The same as below.
2.2 淀粉酶活性
各組施氏鱘幼魚的淀粉酶活性見(jiàn)表3。胃淀粉酶活性各組之間均沒(méi)有顯著差異(P>0.05)。變溫條件下,十二指腸和瓣腸淀粉酶活性均隨著投喂水平的降低呈先升高后下降的趨勢(shì)。BW-80組十二指腸淀粉酶活性顯著高于HW-100組及BW-100組(P<0.05),與其他組相比差異均不顯著(P>0.05)。BW-80組和BW-90組瓣腸淀粉酶活性顯著高于其他各組(P<0.05)。
表3 各組施氏鱘幼魚的淀粉酶活性
2.3 脂肪酶活性
各組施氏鱘幼魚的脂肪酶活性見(jiàn)表4。胃和十二指腸脂肪酶活性各組之間均沒(méi)有顯著差異(P>0.05)。變溫條件下,瓣腸脂肪酶活性隨著投喂水平的降低表現(xiàn)出先上升后下降的趨勢(shì),所有變溫投喂組瓣腸脂肪酶活性均顯著低于HW-100組(P<0.05)。
表4 各組施氏鱘幼魚的脂肪酶活性
2.4 血清代謝酶活性和抗氧化指標(biāo)
各組施氏鱘幼魚的血清代謝酶活性和抗氧化指標(biāo)見(jiàn)表5。血清AST活性各組之間差異均不顯著(P>0.05)。除BW-70組外,各變溫投喂組血清ALT活性均顯著高于HW-100組(P<0.05),而ALT活性在不同變溫投喂組之間差異均不顯著(P>0.05)。在變溫條件下,當(dāng)投喂水平降低至70%后,血清SOD活性顯著降低(P<0.05)。與HW-100組相比,BW-60組、BW-70組血清SOD活性顯著降低(P<0.05),其他變溫投喂組未產(chǎn)生顯著變化(P>0.05)。在變溫條件下,魚體血清T-AOC和XOD活性均隨著投喂水平的降低整體呈先下降后上升的趨勢(shì),且均在投喂水平為80%時(shí)降至最低值。與HW-100組相比,BW-60組、BW-70組及BW-100組血清T-AOC顯著升高(P<0.05),且BW-60組和BW-90組血清XOD活性顯著升高(P<0.05)。
表5 各組施氏鱘幼魚的血清代謝酶活性和抗氧化指標(biāo)
水溫和投喂水平是影響魚體生長(zhǎng)發(fā)育的重要因素[16]。作為變溫動(dòng)物,魚類的消化道溫度與水溫變化密切相關(guān),環(huán)境溫度變化直接影響魚體的消化酶活性,其活性高低決定著魚體對(duì)營(yíng)養(yǎng)物質(zhì)消化吸收的能力。關(guān)于水溫對(duì)鱘魚生長(zhǎng)和消化酶活性等的研究[17-22]較多,但是在變溫模式下對(duì)施氏鱘消化酶活性的研究還未見(jiàn)報(bào)道。在養(yǎng)殖條件下,投喂量不足會(huì)影響魚類生長(zhǎng)[23-24],過(guò)量投喂則增加魚體胃腸道負(fù)擔(dān),導(dǎo)致其消化和吸收的效率低下[25],從而降低飼料的利用率[26]。本試驗(yàn)結(jié)果顯示,變溫條件下,施氏鱘幼魚胃及瓣腸蛋白酶活性隨著投喂水平的降低總體呈顯著升高,表明在變溫條件下,施氏鱘幼魚通過(guò)增加蛋白酶活性的方式來(lái)補(bǔ)償其對(duì)飼料蛋白質(zhì)攝入的不足,通過(guò)該方式可提高魚體對(duì)飼料蛋白質(zhì)的消化效率。本研究中,在變溫條件下,十二指腸和瓣腸淀粉酶活性以及瓣腸脂肪酶活性均隨著投喂水平的降低呈先升高后下降的趨勢(shì),這表明,在變溫條件下當(dāng)飼料攝入不足時(shí),施氏鱘幼魚通過(guò)增加淀粉酶和脂肪酶活性的方式來(lái)補(bǔ)償其對(duì)飼料淀粉和脂肪攝入不足的能力有限,當(dāng)投喂水平降低至飽食量的70%時(shí),魚體對(duì)飼料中淀粉和脂肪消化的補(bǔ)償能力顯著降低。本試驗(yàn)結(jié)果顯示,與恒溫100%飽食組相比,變溫100%飽食組施氏鱘幼魚的瓣腸脂肪酶活性顯著降低,而其瓣腸蛋白酶活性則顯著升高,表明變溫在一定程度上抑制施氏鱘幼魚腸道脂肪酶活性的同時(shí)可促進(jìn)腸道蛋白酶活性的升高。
AST和ALT作為氨基酸轉(zhuǎn)氨酶,在魚類的蛋白質(zhì)合成和分解代謝過(guò)程中發(fā)揮著重要作用。在肝臟細(xì)胞蛋白質(zhì)代謝過(guò)程中,ALT將丙氨酸的氨基轉(zhuǎn)移給α-酮戊二酸,將α-酮戊二酸的羰基轉(zhuǎn)移給丙氨酸,這樣丙氨酸就成為丙酮酸,α-酮戊二酸就成為谷氨酸。本研究結(jié)果顯示,與恒溫100%飽食相比,各變溫投喂水平均可提高魚體血清ALT活性,由此推斷一定幅度的變溫條件可能促進(jìn)施氏鱘幼魚機(jī)體蛋白質(zhì)的代謝作用。通常情況下,當(dāng)魚類機(jī)體內(nèi)自由基增多時(shí),機(jī)體為了抵御外源親電基團(tuán)的氧化,通常會(huì)增加抗氧化酶活性[22],而SOD是防御生物體內(nèi)活性氧或自由基傷害的最重要酶類[27]。有研究指出,SOD活性與生物體免疫水平密切相關(guān)[28-29]。本研究中,當(dāng)投喂水平低于80%時(shí),施氏鱘幼魚血清SOD活性顯著降低,表明在變溫條件下當(dāng)投喂水平不足時(shí),施氏鱘幼魚機(jī)體的免疫防御能力明顯降低。T-AOC是反映機(jī)體抗氧化能力的綜合指標(biāo)。研究表明,魚類抗氧化能力與水溫之間具有較高的相關(guān)性[30]。本試驗(yàn)結(jié)果顯示,與恒溫100%飽食相比,變溫條件下不同投喂水平施氏鱘幼魚的血清T-AOC普遍增高,說(shuō)明變溫有助于提高施氏鱘幼魚機(jī)體的抗氧化能力。在變溫條件下,血清T-AOC隨著投喂水平的降低整體呈先下降后上升的趨勢(shì),可能與攝入飼料不足引起饑餓脅迫后機(jī)體的反應(yīng)程度有關(guān)。XOD是動(dòng)物機(jī)體在受外界脅迫等非正常狀態(tài)下機(jī)體產(chǎn)生自由基的主要催化酶[22]。本研究中,與恒溫100%飽食組相比,變溫70%、80%和100%飽食組的血清XOD活性均保持在較低水平,表明施氏鱘幼魚在這3個(gè)投喂水平下受到的環(huán)境脅迫較小,不足以刺激其血清XOD活性升高。
① 在周期性變溫條件下,施氏鱘幼魚可通過(guò)提高蛋白酶活性,即提高對(duì)飼料蛋白質(zhì)消化效率的方式來(lái)補(bǔ)償其對(duì)飼料蛋白質(zhì)攝入的不足。
② 與恒溫100%飽食相比,變溫條件下各投喂水平均可提高施氏鱘幼魚血清ALT活性。
[1] 黎軍勝,李建林,吳婷婷.飼料成分與環(huán)境溫度對(duì)奧尼羅非魚消化酶活性的影響[J].中國(guó)水產(chǎn)科學(xué),2004,11(6):585-588.
[2] ABUCAY J S,MAIR G C,SKIBINSKI D O F,et al.Environmental sex determination:the effect of temperature and salinity on sex ratio inOreochromisniloticusL.[J].Aquaculture,1999,173(1/2/3/4):219-234.
[3] AZAZA M S,DHRA?EF M N,KRA?EM M M.Effects of water temperature on growth and sex ratio of juvenile Nile TilapiaOreochromisniloticus(Linnaeus) reared in geothermal waters in southern Tunisia[J].Journal of Thermal Biology,2008,33(2):98-105.
[4] BARAS E,JACOBS B,MLARD C.Effect of water temperature on survival,growth and phenotypic sex of mixed (XX-XY) progenies of Nile tilapiaOreochromisniloticus[J].Aquaculture,2001,192(2/3/4):187-199.
[5] 袁倫強(qiáng),謝小軍,曹振東,等.溫度對(duì)瓦氏黃顙魚仔魚發(fā)育的影響[J].西南師范大學(xué)學(xué)報(bào),2005,30(2):312-315.
[6] 黃厚見(jiàn).攝食水平、氨氮脅迫對(duì)梭魚幼魚生長(zhǎng)的影響及其毒理效應(yīng)研究[D].碩士學(xué)位論文.上海:上海海洋大學(xué),2012.
[7] JOBLING M.Gastrointestinal overload—a problem with formulated feeds?[J].Aquaculture,1986,51(3/4):257-263.
[8] JENSEN A J.Growth of young migratory brown troutSalmotruttacorrelated with water temperature in Norwegian rivers[J].Journal of Animal Ecology,1990,59(2):603-614.
[9] BARAS E,PRIGNON C,GOHOUNGO G,et al.Phenotypic sex differentiation of blue tilapia under constant and fluctuating thermal regimes and its adaptive and evolutionary implications[J].Journal of Fish Biology,2000,57(1):210-223.
[10] SIERRA E,DIAZ F,ESPINA S.Energy budget ofIctaluruspunctatus exposed to constant and fluctuating temperatures[J].Riv Ita Acquacolt,1999,34(3):71-81.
[11] PILDITCH C A,GRANT J.Effect of temperature fluctuations and food supply on the growth and metabolism of juvenile sea scallops (Placopectenmagellanicus)[J].Marine Biology,1999,134(2):235-248.
[12] MIAO S,TU S C.Modeling effect of thermic amplitude on growing Chinese shrimp,Penaeuschinensis(Osbeck)[J].Ecological Modelling,1996,88(1/2/3):93-100.
[13] 田相利,董雙林,吳立新,等.恒溫和變溫下中國(guó)對(duì)蝦生長(zhǎng)和能量收支的比較[J].生態(tài)學(xué)報(bào),2005,25(11):2811-2817.
[14] 董云偉,董雙林,張美昭,等.變溫對(duì)刺參幼參生長(zhǎng)、呼吸代謝及生化組成的影響[J].水產(chǎn)學(xué)報(bào),2005,29(5):659-665.
[15] 孫大江,曲秋芝,馬國(guó)軍,等.史氏鱘人工繁殖及養(yǎng)殖技術(shù)[M].北京:海洋出版社,2000.
[16] BRETT J R.Environmental factors and growth[M]//HOAR W S,RANDALL D J,BRETT J R.Fish Physiology.New York:Academic Press,1979:599-675.
[17] 白海文,張穎,李雪,等.溫度對(duì)施氏鱘幼魚攝食、生長(zhǎng)和腸道消化酶活性的影響[J].中國(guó)水產(chǎn)科學(xué),2012,19(5):799-805.
[18] 宋超,莊平,章龍珍,等.不同溫度對(duì)西伯利亞鱘幼魚生長(zhǎng)的影響[J].海洋漁業(yè),2014,36(3):239-246.
[19] 麥麗開(kāi),劉曉勇,潘鵬,等.水溫對(duì)施氏鱘、小體鱘和西伯利亞鱘幼魚生長(zhǎng)的影響[J].水產(chǎn)學(xué)雜志,2014,27(4):15-22.
[20] 馮廣朋,莊平,章龍珍,等.溫度對(duì)中華鱘幼魚血液生化指標(biāo)的影響[J].生態(tài)學(xué)雜志,2010,29(10):1973-1978.
[21] 田宏杰,莊平,章龍珍,等.水溫對(duì)施氏鱘幼魚消化酶活力的影響[J].中國(guó)水產(chǎn)科學(xué),2007,14(1):126-131.
[22] 馮廣朋,莊平,章龍珍,等.溫度對(duì)中華鱘幼魚代謝酶和抗氧化酶活性的影響[J].水生生物學(xué)報(bào),2012,36(1):137-142.
[23] HUNG S S O,LUTES P B.Optimum feeding rate of hatchery-produced juvenile white sturgeon (Acipensertransmontanus):at 20℃[J].Aquaculture,1987,65(3/4):307-317.
[24] HUNG S S O,LUTES P B,CONTE F S,et al.Growth and feed efficiency of white sturgeon (Acipensertransmontanus) sub-yearling at different feeding rates[J].Aquaculture,1989,80(1/2):147-153.
[25] FONTAINE P,GARDEUR J N,KESTEMONT P,et al.Influence of feeding level on growth,intraspecific weight variability and sexual growth dimorphism of Eurasian perchPercafluviatilisL. reared in a recirculation system[J].Aquaculture,1997,157(1/2):1-9.
[26] STOREBAKKEN T,AUSTRENG E.Ration level for salmonids:Ⅰ.Growth,survival,body composition,and feed conversion in Atlantic salmon fry and fingerlings[J].Aquaculture,1987,60(3/4):189-206.
[27] BALLESTRAZZI B,LANARI D,D'AGARO E.Performance,nutrient retention efficiency,total ammonia and reactive phosphorus excretion of growing European sea-bass (Dicentrarchuslabrax,L.) as affected by diet processing and feeding level[J].Aquaculture,1998,161(1/2/3/4):55-65.
[28] 劉云,孔偉麗,姜國(guó)良,等.2種免疫多糖對(duì)刺參組織主要免疫酶活性的影響[J].中國(guó)水產(chǎn)科學(xué),2008,15(5):787-793.
[29] ZHANG R Q,CHEN Q X,ZHENG W Z,et al.Inhibition kinetics of green crab (Scyllaserrata) alkaline phosphatase activity by dithiothreitol or 2-mercaptoethanol[J].The International Journal of Biochemistry & Cell Biology,2000,32(8):865-872.
[30] GIESEG S P,CUDDIHY S,HILL J V,et al.A comparison of plasma vitamin C and E levels in two Antarctic and two temperate water fish species[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2000,125(3):37l-378.
Author, ZHAO Zhigang, assistant professor, E-mail: zhaozhigang@hrfri.ac.cn
(責(zé)任編輯 菅景穎)
Effects of Different Ration Levels in Temperature Fluctuation on Digestive Enzyme, Metabolic Enzyme and Antioxidase Activities of Juvenile Amur Sturgeon (Acipenser schrenckii Brandt)
ZHAO Zhigang LI Jinnan XU Qiyou LUO Liang WANG Chang’an WANG Liansheng
(HeilongjiangRiverFisheriesResearchInstitute,ChineseAcademyofFisherySciences,Harbin150070,China)
The aim of this study was to investigate the effects of different ration levels in temperature fluctuation on digestive enzyme, metabolic enzyme and antioxidase activities of juvenile Amur sturgeon (AcipenserschrenckiiBrandt). Two water temperatures were designed, one was constant temperature [(22.0±0.1) ℃] and another was variable temperature [(22±2) ℃]. Six groups according to different ration levels were arranged, and they were constant temperature 100% satiation group (HW-100 group), variable temperature 100% satiation group (BW-100 group), variable temperature 90% satiation group (BW-90 group), variable temperature 80% satiation group (BW-80 group), variable temperature 70% satiation group (BW-70 group) and variable temperature 60% satiation group (BW-60 group). Juvenile Amur sturgeon with the average body weight of (34.9±0.8) g were randomly divided into 6 groups with 4 replicates per group and 15 fish per replicate. The experiment lasted for 42 days. The results showed as follows: under the condition of temperature fluctuation, during 60% to 80 % of ration levels, the protease activity of stomach and valvula intestine was significantly increased with ration level decreasing (P<0.05). The protease activity of stomach and valvula intestine in BW-60 group and BW-70 group was significantly higher than that in HW-100 group (P<0.05). Under the condition of temperature fluctuation, the amylase activity of duodenum and valvula intestine and the lipase activity of valvula intestine were firstly increased and then declined with ration level decreasing. The amylase activity of duodenum in BW-80 group was significantly higher than that in HW-100 group and BW-100 group (P<0.05), and the amylase activity of valvula intestine in BW-80 group and BW-90 group was significantly higher than that in other groups (P<0.05). The lipase activity of valvula intestine in all variable temperature groups was significantly lower than that in HW-100 group (P<0.05). Except BW-70 group, the serum alanine aminotransferase (ALT) activity in variable temperature groups was significantly higher than that in HW-100 group (P<0.05). Compared with HW-100 group, the serum superoxide dismutase (SOD) activity in BW-60 group and BW-70 group was significantly declined (P<0.05). Under the condition of temperature fluctuation, the serum total antioxidant capacity (T-AOC) and xanthine oxidase (XOD) activity were firstly declined and then rose with ration level decreased from 90% to 60%, and the lowest values of them appeared at 80% ration level. Compared with HW-100 group, the serum T-AOC in BW-60 group, BW-70 group and BW-100 group was significantly increased (P<0.05), and the serum XOD activity in BW-60 group and BW-90 group was significantly increased (P<0.05). In conclusion, under the condition of periodic temperature fluctuation, juvenile Amur sturgeon can compensate the shortage of feed protein by increasing the activity of protease, namely increasing feed protein digestion efficiency. All ration level in the temperature fluctuation condition can increase the serum ALT activity of juvenile Amur sturgeon compare with constant temperature 100% satiation.[ChineseJournalofAnimalNutrition, 2017, 29(1):127-133]
variable temperature; ration level; juvenile Amur sturgeon (AcipenserschrenckiiBrandt); digestive enzyme; metabolic enzyme; antioxidase
10.3969/j.issn.1006-267x.2017.01.015
2016-06-27
國(guó)家自然科學(xué)基金項(xiàng)目(31302204);黑龍江省自然基金項(xiàng)目(QC2015041)
趙志剛(1982—),男,黑龍江哈爾濱人,助理研究員,博士,主要從事水產(chǎn)養(yǎng)殖生態(tài)研究。E-mail: zhaozhigang@hrfri.ac.cn
S963
A
1006-267X(2017)01-0127-07
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2017年1期