陳亮+金永興胡勤友湯可成+高萬(wàn)明
DOI:10.13340/j.jsmu.2016.04.010
文章編號(hào):1672-9498(2016)04005504
摘要:為改進(jìn)傳統(tǒng)的海上甚高頻(Very High Frequency, VHF)的模擬通信方式,實(shí)現(xiàn)海上通信現(xiàn)代化,針對(duì)國(guó)際燈塔與航標(biāo)協(xié)會(huì)(International Association of Lighthouse Authorities, IALA)和國(guó)際海事組織(International Maritime Organization, IMO)提出的VHF數(shù)據(jù)通信系統(tǒng)(VHF Data Exchange System, VDES)研究計(jì)劃,建立基于正交頻分復(fù)用(Orthogonal Frequency Division Multiplexing, OFDM)的數(shù)據(jù)傳輸模型.海上無(wú)線(xiàn)信道的多徑時(shí)延的確定是建立OFDM系統(tǒng)的關(guān)鍵,因此通過(guò)建立海上無(wú)線(xiàn)信道的多徑傳播模型分析和計(jì)算海上無(wú)線(xiàn)信道的多徑時(shí)延.通過(guò)實(shí)驗(yàn)證明,該方法能夠獲得較低的誤碼率,有效實(shí)現(xiàn)海上VHF數(shù)據(jù)通信.
關(guān)鍵詞:
甚高頻(VHF); e航海; 海上無(wú)線(xiàn)通信; 多徑時(shí)延; VHF數(shù)據(jù)通信系統(tǒng)(VDES); 正交頻分復(fù)用(OFDM)
中圖分類(lèi)號(hào): U666.14
文獻(xiàn)標(biāo)志碼: A
收稿日期: 20160302
修回日期: 20160429
基金項(xiàng)目: 交通運(yùn)輸部應(yīng)用基礎(chǔ)研究項(xiàng)目(2015329810030); 上海市人才發(fā)展資金(201436)
作者簡(jiǎn)介:
陳亮(1987—),男,江蘇連云港人,博士研究生,研究方向?yàn)檩d運(yùn)工具運(yùn)用工程,(Email)kcliang669@163.com;
金永興(1959—),男,上海人,教授,博導(dǎo),研究方向?yàn)榇敖Y(jié)構(gòu)特性與運(yùn)行品質(zhì),(Email)yxjin@shmtu.edu.cn
Multipath time delay in maritime VHF data exchange system
CHEN Liang1, JIN Yongxing1, HU Qinyou1, TANG Kecheng2, GAO Wanming2
(1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China;
2. Donghai Navigation Safety Administration MOT, Shanghai 200086, China)
Abstract:
To improve the analog communication mode of traditional maritime Very High Frequency (VHF) and realize maritime communication modernization, a data transmission model based on Orthogonal Frequency Division Multiplexing (OFDM) is established for the VHF Data Exchange System (VDES) research program which was proposed by International Association of Lighthouse Authorities (IALA) and International Maritime Organization (IMO). Because the key to the OFDM system is the determination of the multipath time delay, a multipath propagation model of maritime wireless channels is established to analyze and calculate the multipath time delay of maritime wireless channels. The experiment shows that the method can effectively achieve maritime VHF data exchange with the lower bit error rate.
Key words:
Very High Frequency (VHF); enavigation; maritime wireless communication; multipath time delay; VHF Data Exchange System (VDES); Orthogonal Frequency Division Multiplexing (OFDM)
0引言
甚高頻(Very High Frequency, VHF)通信作為海上近距離通信的主要手段已有幾十年的歷史,其工作頻段范圍為156~174 MHz.采用模擬信號(hào)的語(yǔ)音通信目前仍是船舶間和船岸間通信的主要方式.[1]甚高頻數(shù)據(jù)通信系統(tǒng)(VHF Data Exchange System, VDES)是由國(guó)際燈塔與航標(biāo)協(xié)會(huì)(International Association of Lighthouse Authorities, IALA)的eNAV委員會(huì)提出的,并被國(guó)際電信聯(lián)盟(International Telecommunication Union, ITU)、國(guó)際海事組織(International Maritime Organization, IMO)以及其他國(guó)際組織廣泛討論.VDES的設(shè)計(jì)研究用于解決由于傳統(tǒng)海上VHF頻段頻帶窄、通信容量小而造成的AIS VHF數(shù)據(jù)鏈中網(wǎng)絡(luò)繁忙和擁堵問(wèn)題,同時(shí)也為海上數(shù)據(jù)通信提供了更廣泛的高速通信途徑,以促進(jìn)e航海(eNavigation)和海上通信現(xiàn)代化的發(fā)展.VDES的研究對(duì)未來(lái)船舶導(dǎo)航和船舶交通管理具有重要的指導(dǎo)意義.[2]
目前,VDES處于研究階段,ITU和IMO等相關(guān)國(guó)際組織尚未形成統(tǒng)一的標(biāo)準(zhǔn),可以參考的主要是由ITU在2008年發(fā)布的ITUR M.18421建議書(shū)[3].該建議書(shū)提出了VDES的技術(shù)發(fā)展目標(biāo),展示了幾種應(yīng)用示例,其中100 kHz帶寬應(yīng)用示例為采用4個(gè)VHF頻道組合成的100 kHz帶寬的數(shù)據(jù)通信頻道,并且具有32個(gè)子載波結(jié)構(gòu).利用正交頻分復(fù)用(Orthogonal Frequency Division Multiplexing, OFDM)的多載波通信技術(shù)能夠滿(mǎn)足VDES的要求.海上VHF頻段的無(wú)線(xiàn)信號(hào)傳輸信道環(huán)境存在多徑效應(yīng),選擇OFDM能在有效提高頻帶利用率的同時(shí),有效對(duì)抗海上的多徑時(shí)延的影響.[4]OFDM系統(tǒng)對(duì)抗多徑時(shí)延的性能取決于最大程度消除符號(hào)間干擾(Inter Symbol Interference,ISI),通過(guò)設(shè)置大于無(wú)線(xiàn)信道的最大時(shí)延的保護(hù)間隔能夠滿(mǎn)足該需求.海上VHF信道中最大多徑時(shí)延成為VDES參數(shù)設(shè)計(jì)的關(guān)鍵,因此有必要研究建立一種海上VHF多徑傳輸模型以完成和實(shí)現(xiàn)VDES的通信需求.
1海面參數(shù)
在建立海上VHF多徑信道模型前,首先要選定合適的海面參數(shù).電磁波在海洋環(huán)境下傳播受到海上氣候和海浪的影響,導(dǎo)致海上信道參數(shù)發(fā)生改變.海面狀態(tài)可以用數(shù)值級(jí)數(shù)即海情級(jí)(sea state)描述,常用世界氣象組織(World Meteorological Organization,WMO)和Douglas采用的波高劃分[5],具體海情級(jí)劃分見(jiàn)表1.
2多徑傳播模型
2.1海上無(wú)線(xiàn)多徑信道
海面的粗糙導(dǎo)致海上電磁波傳輸存在海面鏡面反射和海面漫反射[6],因此海上無(wú)線(xiàn)信號(hào)傳輸路徑包含3種(見(jiàn)圖1),即直達(dá)路徑、鏡面反射路徑和漫反射路徑.直達(dá)路徑是指射頻發(fā)射端與接收端之間的可視路徑;鏡面反射路徑是指經(jīng)一次鏡面反射的路徑;漫反射路徑是指經(jīng)多方向海面漫反射的路徑.
鏡面反射路徑與直達(dá)路徑的路徑差是固定的,即時(shí)延固定,鏡面反射的時(shí)延差也是多徑時(shí)延的最小值.漫反射時(shí)延差大于鏡面反射的時(shí)延差.漫反射點(diǎn)可能會(huì)落在鏡面反射點(diǎn)附近的任意區(qū)域,與實(shí)際海況有關(guān),漫反射路徑與直達(dá)路徑的路徑差是隨機(jī)的,即時(shí)延是隨機(jī)的.一般認(rèn)為鏡面反射路徑來(lái)自單獨(dú)的一個(gè)點(diǎn),而漫反射路徑來(lái)自具有一定范圍的區(qū)域[7].海上無(wú)線(xiàn)信號(hào)傳輸示意圖見(jiàn)圖1.
2.2漫反射區(qū)域和多徑時(shí)延
電磁波發(fā)生漫反射(即經(jīng)過(guò)有一定傾斜的無(wú)限小的漫反射面反射)時(shí),部分漫反射面反射的電磁波能夠被接收端所接收,這些漫反射面所組成的區(qū)域即稱(chēng)為有效漫反射區(qū)域[8],見(jiàn)圖2.如果在接收端接收到的多路漫反射路徑時(shí)延相近,則會(huì)產(chǎn)生疊加效應(yīng)[9],影響有效信號(hào)的接收.有效漫反射區(qū)域的位置和范圍直接決定了接收信號(hào)的最大時(shí)延,確定有效漫反射區(qū)域的位置和范圍即可確定海上無(wú)線(xiàn)信道的最大時(shí)延.
參考文獻(xiàn):
[1]MOTZ F, DALINGER E, HCKEL S, et al. Development of requirements for communication management on board in the framework of the enavigation concept[J]. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2011, 5(1): 1522.
[2]EDUARDO Bolas, NUNO Borges de Carvalho, JOS Neto Vieira, et al. Opportunistic usage of maritime VHF banddeployment challenges for a new regulatory framework[J]. Wireless Engineering and Technology, 2014, 5(1): 110.
[3]ITUR. Characteristics of VHF radio systems and equipment for the exchange of data and electronic mail in the maritime mobile service RR Appendix 18 channels[R/OL]. https://www.itu.int/rec/RRECM.18421200906I/en.
[4]NEE R, PRASAD R. OFDM for wireless multimedia communications[M]. Norwood, USA: Artech House, Inc., 2000: 1112.
[5]董玫, 趙永波, 張守宏. 米波段下海面多徑模型研究[J]. 電子學(xué)報(bào), 2009, 36(6): 13731377.
[6]郭立新. 隨機(jī)粗糙面散射的基本理論與方法[M]. 北京: 科學(xué)出版社, 2010: 810.
[7]LEI Q, RICE M. Multipath channel model for overwater aeronautical telemetry[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2009, 45(2): 735742.
[8]楊偉. 三維復(fù)雜粗糙海面電磁散射建模研究與特性分析[D].成都: 電子科技大學(xué), 2012.
[9]THEODORE S. Rappaport, wireless communications: principles and practice second edition[M]. Beijing, China: Publishing House of Electronics Industry, 2008: 159162.
[10]DONALD E. BARRICK. Rough surface scattering based on the specular point theory[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(4): 449454.
(編輯賈裙平)