王紅飛 尚慶茂(農(nóng)業(yè)部園藝作物生物學(xué)與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室,中國農(nóng)業(yè)科學(xué)院蔬菜花卉研究所,環(huán)渤海灣地區(qū)設(shè)施蔬菜優(yōu)質(zhì)高效生產(chǎn)協(xié)同創(chuàng)新中心,北京100081)
蔬菜徒長苗的形態(tài)及生理特征研究進(jìn)展
王紅飛 尚慶茂*
(農(nóng)業(yè)部園藝作物生物學(xué)與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室,中國農(nóng)業(yè)科學(xué)院蔬菜花卉研究所,環(huán)渤海灣地區(qū)設(shè)施蔬菜優(yōu)質(zhì)高效生產(chǎn)協(xié)同創(chuàng)新中心,北京100081)
蔬菜集約化育苗以多孔連體式穴盤為容器,密度高,根系發(fā)育空間小,基質(zhì)緩沖能力弱,幼苗極易徒長。徒長苗形態(tài)及生理代謝迥異于正常苗,表現(xiàn)為下胚軸及節(jié)間顯著伸長,葉片開展度增大、葉片變薄,根冠比降低,組織含水量提高,對生物和非生物逆境的適應(yīng)性減弱等。本文就蔬菜徒長苗的形態(tài)特征、開花習(xí)性、抗性表達(dá)、生理代謝及相關(guān)防控技術(shù)等進(jìn)行了簡要綜述,旨在為蔬菜徒長苗的防控及相關(guān)技術(shù)的開發(fā)提供參考。
徒長苗;形態(tài)特征;開花習(xí)性;生理特征;環(huán)境因子
蔬菜集約化育苗以多孔連體式穴盤為容器,以人工混配輕型基質(zhì)替代土壤,具有節(jié)種、節(jié)能、省工,適于規(guī)?;?、標(biāo)準(zhǔn)化生產(chǎn),便于機(jī)械化操作等優(yōu)點(diǎn),但在實(shí)際生產(chǎn)過程中存在幼苗密度大、植株間相互蔭蔽等問題,容易形成徒長苗。此外,為滿足周年生產(chǎn)需要,蔬菜集約化育苗常在氣候不適宜的季節(jié)進(jìn)行(尚慶茂,2011),夏季的陰雨高溫天氣、冬季的霧霾天氣頻繁出現(xiàn),這種弱光、高溫、高濕條件常會(huì)導(dǎo)致幼苗徒長,不利于壯苗的育成和優(yōu)質(zhì)豐產(chǎn)栽培(甘小虎 等,2012 a,2012 b)。
幼苗徒長已成為當(dāng)前的研究熱點(diǎn),國內(nèi)外眾多學(xué)者對幼苗徒長機(jī)制進(jìn)行了研究,認(rèn)為植物激素在幼苗徒長過程中發(fā)揮了關(guān)鍵作用。IAA、GA是較早發(fā)現(xiàn)的兩類植物激素,植物體內(nèi)IAA、GA含量升高,幼苗株高顯著增加,除株高外的其他表型特征及幼苗體內(nèi)生理代謝等亦發(fā)生變化(Gray et al., 1998;Koini et al.,2009;Sun et al.,2012;Procko et al.,2014;Song et al.,2015)。本文就蔬菜徒長苗的形態(tài)特征、開花習(xí)性、生理特征、環(huán)境因子與徒長苗的關(guān)系及幼苗徒長防控技術(shù)進(jìn)行綜述,旨在為蔬菜徒長苗的制御及相關(guān)技術(shù)的開發(fā)提供參考。
1.1 表型特征
徒長是指蔬菜幼苗因生長條件不協(xié)調(diào)而產(chǎn)生的莖葉發(fā)育過旺的現(xiàn)象(單永輝,2006)。徒長苗主要是由于縱向生長加速引起的(梁鎮(zhèn)林,2000),株高顯著高于正常幼苗。徒長苗的株高變化主要是由下胚軸長度變化引起的(周學(xué)超,2010),下胚軸中段的長度顯著高于上段和下段(Xiao et al.,2014,2016)。此外,徒長苗的莖粗降低,株高/莖粗的比值升高(侯興亮 等,2002;王學(xué)文 等,2009;武曉玲 等,2014);徒長苗的葉片顏色變淡,比葉面積增加,葉片厚度顯著降低(侯興亮 等,2002;王學(xué)文 等,2009;周學(xué)超,2010);葉柄變長,促使葉片靠上生長,葉柄與胚軸夾角變大,呈現(xiàn)出偏下生長的特性(Zanten et al.,2009;Delker et al.,2014;Fankhauser & Batschauer,2016)。此外,徒長苗的根系吸收能力也受到影響,根系長度、側(cè)根數(shù)量顯著降低,根冠比、壯苗指數(shù)分別降至對照的66.67%和48.52%(武曉玲 等,2014;Prockoet al.,2014)。
1.2 細(xì)胞及亞細(xì)胞結(jié)構(gòu)特征
徒長苗根莖葉等器官的形態(tài)變化,主要是由這些器官的組成細(xì)胞變化引起的,徒長苗的下胚軸、葉片在細(xì)胞水平和亞細(xì)胞水平均發(fā)生顯著變化。徒長苗的下胚軸細(xì)胞長度顯著高于正常苗(Gendreau et al.,1997),且下胚軸中段細(xì)胞長度顯著高于上段和下段(Xiao et al.,2016)。徒長苗的下胚軸細(xì)胞呈矩形,表皮細(xì)胞表面較為平滑,細(xì)胞排列較為疏松,而正常幼苗的下胚軸細(xì)胞則為橢圓形,表皮細(xì)胞較小,呈多邊形,沿縱軸緊密排列(Qin et al.,2012)。徒長苗葉片柵欄組織和海綿組織厚度均有所降低,但柵欄組織降低幅度大,細(xì)胞變短,排列疏松,而正常苗柵欄組織細(xì)胞排列整齊,呈長柱形(王學(xué)文 等,2009;周學(xué)超,2010)。在亞細(xì)胞結(jié)構(gòu)水平,徒長苗下胚軸細(xì)胞中的葉綠體變長,基粒和基質(zhì)片層數(shù)量減少,線粒體數(shù)量增多,淀粉粒消失(胡宏敏,2012);葉肉細(xì)胞液泡內(nèi)含物增多,葉綠體在細(xì)胞內(nèi)呈不規(guī)則分布,線粒體內(nèi)含物減少,部分線粒體出現(xiàn)膜破裂、空泡化和解體的現(xiàn)象(周學(xué)超,2010)。
蔬菜徒長苗營養(yǎng)生長旺盛,消耗了大量營養(yǎng)物質(zhì),導(dǎo)致組織C/N比例發(fā)生變化,進(jìn)而顯著影響開花結(jié)實(shí)進(jìn)程(Casal,2013)。前人研究表明,徒長苗的開花時(shí)間提前,且開花時(shí)間與抽生葉片數(shù)呈顯著正相關(guān)(Botto & Smith,2002;Blázquez et al.,2003;Balasubramanian et al.,2006)。一般情況下,擬南芥(Col)正常苗于第17片蓮座葉片展開時(shí)進(jìn)行抽薹開花,而徒長苗提前至第10片蓮座葉片展開時(shí)就抽薹開花了(Koini et al.,2009)。黃瓜徒長苗開花習(xí)性也發(fā)生變化,第1雌花節(jié)位顯著升高,開花時(shí)間較對照晚2~5 d(明村豪 等,2011)。擬南芥徒長苗與黃瓜徒長苗在開花習(xí)性方面的差異,可能是由于物種、生長條件不同造成的。
3.1 水分代謝
蔬菜徒長苗的根系長度、側(cè)根數(shù)量下降,根系活力受到抑制,由0.4 mg·g-1·h-1降低至0.2 mg·g-1·h-1,導(dǎo)致植物水分代謝及以水分代謝為載體的礦質(zhì)營養(yǎng)代謝能力降低(周艷虹 等,2004;周學(xué)超,2010)。與正常苗相比,徒長苗氣孔開度降低,導(dǎo)致蒸騰速率下降,水分流失受到抑制,組織含水量增加,為正常苗的103.88%(侯興亮 等,2002;王學(xué)文 等,2009)。
3.2 光合代謝
徒長苗的葉綠素和類胡蘿卜素含量顯著下降,捕光能力降低,細(xì)胞色素質(zhì)琨(PQ)、細(xì)胞色素蛋白(Cyt)和鐵氧還素(Fd)等電子傳遞鏈組分含量顯著下降,光反應(yīng)受到抑制;此外,Rubisco羧化酶活性降低,導(dǎo)致葉肉細(xì)胞對CO2的利用能力下降,暗反應(yīng)受影響,碳水化合物合成量降低,植株干物質(zhì)積累量減少(周艷虹 等,2004;王祥寧 等,2007;明村豪 等,2011)。
3.3 抗逆代謝
徒長苗葉面積、下胚軸長度顯著增加,細(xì)胞膨大,細(xì)胞壁厚度降低,導(dǎo)致植物組織韌性降低,對生物和非生物逆境的適應(yīng)能力降低(Derbyshire et al.,2007;Irshad et al.,2008)。
3.3.1 非生物脅迫 蔬菜徒長苗可溶性固形物、可溶性糖、可溶性蛋白含量降低,滲透調(diào)節(jié)能力下降,不利于植物抵御高滲、低溫等非生物脅迫(徐磊 等,2009;明村豪 等,2011)。此外,徒長苗體內(nèi)花青素、芥子油甙、酚類物質(zhì)等次級(jí)代謝產(chǎn)物顯著降低(Izaguirre et al.,2006;Moreno et al.,2009;Xie et al.,2016)?;ㄇ嗨乜梢葬尫臜+,清除氧自由基,避免光抑制、膜脂過氧化等現(xiàn)象出現(xiàn),從而保護(hù)膜系統(tǒng)的完整性,提高對高溫、低溫、干旱、強(qiáng)光等非生物脅迫的適應(yīng)能力(Lorenc-Kuku?a et al.,2005;Albert et al.,2009)。
3.3.2 生物脅迫 徒長苗葉片及胚軸表面的凸起、絨毛、刺瘤等保護(hù)結(jié)構(gòu)密度降低。番茄徒長苗絨毛數(shù)量減少,導(dǎo)致大量螨類害蟲在植株上繁殖并刺吸植物莖葉,受害葉片前期產(chǎn)生黃褐斑,后期失綠脫落(Nihoul,1993;Roberts & Paul,2006)。
番茄灰霉菌和葡萄孢屬真菌等病原菌侵染植物組織后,能激發(fā)活性氧產(chǎn)生,而活性氧清除能力較差的徒長苗受到致病菌青睞,發(fā)病率顯著高于正常苗(Iriti et al.,2004;Segmüller et al.,2008;Zhang et al.,2013),黃瓜徒長苗的白粉病發(fā)病率約為正常苗的2.5倍(Wang et al.,2010)。芥子油甙和酚類物質(zhì)具有揮發(fā)性,一方面能趨避有害昆蟲,另一方面能吸引有害昆蟲的捕食者和寄生性天敵,以防蟲害發(fā)生(Roberts & Paul,2006;Xia et al.,2009;Wang & Wu,2013)。番茄徒長苗中綠原酸、蕓香苷等酚類物質(zhì)含量降低,導(dǎo)致植株受毛毛蟲啃食嚴(yán)重(Jansen & Stamp,1997)。
徒長苗體內(nèi)生長素(IAA)、赤霉素(GA)、茉莉酸(JA)、水楊酸(SA)等含量變化顯著(Feng et al.,2008;Ballaré,2011;Agrawal et al.,2012;Fu et al.,2012),與細(xì)胞膨大相關(guān)的IAA和GA含量顯著增加,與植物抗逆能力相關(guān)的JA、SA含量降低。GA能誘導(dǎo)JA信號(hào)傳導(dǎo)關(guān)鍵因子DELLA蛋白泛素化降解,導(dǎo)致JA信號(hào)轉(zhuǎn)導(dǎo)中斷,JA能促使PR蛋白的合成量提高,并介導(dǎo)受病原菌侵染和有害昆蟲啃食細(xì)胞的程序性死亡,從而提高植株抵御生物脅迫的能力(Hou et al.,2010;Ballaré et al.,2012;Campos et al.,2016)。
4.1 單一環(huán)境因子
光照強(qiáng)度與幼苗徒長程度呈負(fù)相關(guān),光照越弱,徒長越嚴(yán)重。當(dāng)光照強(qiáng)度降低至對照(1 100~1 300 μmol·m-2·s-1)的60%~70%時(shí),黃瓜幼苗便開始徒長,徒長苗高度達(dá)到對照的1.10倍;光照強(qiáng)度繼續(xù)降至對照的30%~40%時(shí),徒長苗高度為對照的1.23倍(明村豪 等,2011)。紅光與遠(yuǎn)紅光對幼苗徒長的調(diào)控作用相反,紅光抑制,遠(yuǎn)紅光促進(jìn),在R∶FR比值較低的條件下,幼苗徒長,下胚軸長度超出對照1倍(Hersch et al.,2014)。晝夜節(jié)律作為重要的光信號(hào)因子,對植物的生長發(fā)育起著重要調(diào)控作用,徒長苗下胚軸長度隨黑暗時(shí)間延長而增加,極夜條件下徒長苗下胚軸長度為極晝條件下的6倍(Niwa et al.,2009)。
作為影響植物生長發(fā)育的另一重要環(huán)境因子,溫度在一定范圍內(nèi)升高時(shí),能促進(jìn)植物下胚軸伸長,但當(dāng)溫度超過植物適宜生長范圍后,反而抑制下胚軸伸長(Dafny-Yelin et al.,2008;Sun et al.,2012)。 在溫光適宜的范圍內(nèi),水分充足有利于壯苗的培育,但水分含量過高時(shí),容易造成幼苗徒長;水分含量過低,容易形成老化苗(王娟 等,2002)。
4.2 復(fù)合環(huán)境因子
溫、光、水作為植物賴以生存的環(huán)境條件,既能單獨(dú)發(fā)揮作用,又能協(xié)同調(diào)控植物生長(Franklin,2009)。在低溫條件下,光照強(qiáng)度在0~100 μmol·m-2·s-1范圍內(nèi)增加時(shí),能顯著抑制幼苗下胚軸伸長;但當(dāng)溫度升高至27 ℃,光照強(qiáng)度在0~1 μmol·m-2·s-1范圍內(nèi)變化時(shí),則抑制下胚軸伸長,但光照強(qiáng)度在1~100 μmol· m-2·s-1范圍內(nèi)變化時(shí),能促進(jìn)下胚軸伸長(Johansson et al.,2014)。研究表明,基質(zhì)含水量過高,能引起蔬菜幼苗徒長,在弱光條件下徒長尤為嚴(yán)重(毛煒光 等,2007;徐磊 等,2009)。在調(diào)控幼苗生長的過程中,溫度和水分互作顯著,二者協(xié)同作用條件下,幼苗生長量增加,徒長明顯(Vile et al.,2012)。
近年來,國內(nèi)外眾多學(xué)者對蔬菜幼苗徒長機(jī)理進(jìn)行了研究,并取得了長足進(jìn)展,研究結(jié)果表明,光敏色素互作蛋白PIFs在幼苗徒長過程中發(fā)揮關(guān)鍵作用(Casal,2013;Procko et al.,2014)。PIFs是一類bHLH轉(zhuǎn)錄因子,通過促進(jìn)植物激素合成,引起幼苗徒長(Tao et al.,2008;Stavang et al.,2009;Franklin et al.,2011;Delker et al.,2014)。隨著下胚軸伸長機(jī)理逐漸明確,生產(chǎn)管理人員加強(qiáng)了蔬菜生長敏感期的環(huán)境管理,并針對調(diào)控下胚軸伸長的關(guān)鍵位點(diǎn),研發(fā)了相應(yīng)的延緩型植物生長調(diào)節(jié)劑,對幼苗徒長防控效果明顯(Heins et al.,2000;宮萬祥和丁克友,2007)。此外,許多行業(yè)專家試圖通過機(jī)械刺激防控蔬菜幼苗徒長,以替代植物生長調(diào)節(jié)劑在蔬菜生產(chǎn)中的地位,推動(dòng)綠色、有機(jī)蔬菜的生產(chǎn)(Garner & Bjorkman,1996)。
5.1 環(huán)境管理
蔬菜幼苗生長早期對環(huán)境條件敏感,外界的弱光、高溫及高濕等環(huán)境條件極易引發(fā)幼苗的徒長,此時(shí)要加強(qiáng)對環(huán)境的管理。
光照強(qiáng)度是影響幼苗生長的重要因素,連續(xù)的陰雨及霧霾等障礙天氣的出現(xiàn),常會(huì)導(dǎo)致幼苗徒長。生產(chǎn)過程中,一般采用透光率較好的無滴膜及增加后墻反光幕等方法,增加光照強(qiáng)度,防止幼苗徒長(楊艷春,2013)。此外,在溫室內(nèi)增加人工光源,可有效抑制下胚軸伸長,促進(jìn)植株根系生長,提高幼苗的抗逆性(祝聰宇 等,2017)。
植物對溫度變化敏感,溫度稍高便可引起幼苗徒長,栽培管理過程中,要注意及時(shí)放風(fēng),以降低室內(nèi)溫度,夜間可適當(dāng)升溫,減小晝夜溫差,可有效抑制幼苗徒長(Berghage,1998)。
秋冬季光照相對較弱,要嚴(yán)格把控澆水量和澆水時(shí)間,定植前澆透水,定植后和緩苗期澆小水(楊艷春,2013),以防止幼苗徒長。
5.2 植物生長調(diào)節(jié)劑
利用植物生長調(diào)節(jié)劑防控幼苗徒長是一種簡單而有效的方法,目前已在蔬菜幼苗培育過程中得到了廣泛應(yīng)用(王娟,2006)。生產(chǎn)上常用的植物生長調(diào)節(jié)劑主要包括矮壯素(chlorocholine chloride,CCC)、烯效唑(U-niconazole,S3307)、多效唑(paclobutrazol,PP333)、比久(B9)等,處理方法主要包括浸種、種子包衣、葉面噴施、土壤或基質(zhì)混合處理等(Berova & Zlatev,2000;黃少華 等,2006;張靜 等,2007;劉東冉 等,2008),其主要通過抑制內(nèi)源生長素(IAA)和赤霉素(GA)的合成,促進(jìn)IAA和GA的降解,抑制幼苗徒長。
5.3 機(jī)械調(diào)節(jié)
機(jī)械刺激對幼苗生長具有重要調(diào)控作用,可降低部分蔬菜作物莖及葉柄的伸長,從而抑制幼苗徒長。目前常用的機(jī)械刺激包括:接觸刺激(brushing)、阻抑或阻壓(impedance)及振蕩處理等。
接觸刺激是一種有效的機(jī)械調(diào)節(jié)方式,少量刺激便可有效抑制幼苗徒長,頻率過高可誘發(fā)機(jī)械傷害。前人研究表明,接觸刺激可有效降低番茄、黃瓜等蔬菜幼苗的植株高度,一天中的處理時(shí)間和頻率對株高沒有顯著影響,但處理天數(shù)與之顯著相關(guān),連續(xù)的接觸刺激處理可使番茄幼苗株高降低20%(Latimer,1991;Garner & Bjorkman,1996)。
阻抑或阻壓主要是通過丙烯醇薄片、聚酯薄膜、纖維玻璃等材料阻壓幼苗頂部,防止幼苗徒長,但這種處理方式會(huì)導(dǎo)致幼苗莖彎曲,不利于機(jī)械化移栽(Piszczek & Jerzy,1987)。
振蕩處理可有效控制番茄幼苗的生長,每天連續(xù)多次振蕩處理較連續(xù)振蕩處理效果更好,植株高度降低更多,但整體的處理效果不如接觸刺激(Latimer & Mitchell,1988)。
幼苗徒長是蔬菜集約化育苗過程中的常見問題,目前防控上主要依賴植物生長調(diào)節(jié)劑,但在育苗過程中生長調(diào)節(jié)劑用量不容易把控,濃度過高易產(chǎn)生藥害,濃度過低則達(dá)不到防控效果,亟需研究與開發(fā)新的徒長防控技術(shù)及實(shí)用產(chǎn)品。為此,今后研究應(yīng)著重分析不同環(huán)境信號(hào)對幼苗徒長的交互作用;深入了解細(xì)胞膨大與分裂調(diào)控機(jī)制及其在下胚軸伸長過程中的作用;利用轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)及代謝組學(xué)相結(jié)合的方法,探明環(huán)境因子調(diào)控下胚軸伸長的信號(hào)通路,分析不同環(huán)境信號(hào)的交叉調(diào)控位點(diǎn)及其生物學(xué)功能,這將是全面揭示幼苗徒長機(jī)制及廣譜防控技術(shù)開發(fā)的關(guān)鍵。
甘小虎,何從亮,閆慶久,胡靜.2012a.水分控制對高溫季節(jié)黃瓜育苗的影響.上海蔬菜,(3):67-68,93.
甘小虎,何從亮,閻慶久,胡靜.2012b.矮壯素、多效唑?qū)Ω邷丶竟?jié)黃瓜育苗的影響.蔬菜,(7):64-66.
宮萬祥,丁克友.2007.植物生長調(diào)節(jié)劑在蔬菜上的使用技術(shù)及效果.上海蔬菜,(4):89-90.
侯興亮,李景富,許向陽.2002.弱光處理對番茄不同生育期形態(tài)和生理指標(biāo)的影響.園藝學(xué)報(bào),29(2):123-127.
胡宏敏.2012.黃瓜徒長苗特征及相關(guān)基因CKO的克隆與表達(dá)分析〔碩士論文〕.南京:南京農(nóng)業(yè)大學(xué).
黃少華,王增春,劉勝環(huán).2006.不同植物生長調(diào)節(jié)劑浸種對油菜壯苗的效果比較.江蘇農(nóng)業(yè)科學(xué),(3):49-51.
梁鎮(zhèn)林.2000.耐陰與不耐陰大豆莖葉性狀的變異及差異比較研究.大豆科學(xué),19(1):35-41.
劉東冉,司亞平,薛林.2008.比久浸種對番茄種子萌發(fā)和一些生理指標(biāo)的影響.長江蔬菜,(5):48-50.
毛煒光,吳震,黃俊,郭世榮.2007.水分和光照對厚皮甜瓜苗期植株生理生態(tài)特性的影響.應(yīng)用生態(tài)學(xué)報(bào),18(11):2475-2479.
明村豪,蔣芳玲,胡宏敏,周學(xué)超,詹鋒華,吳震.2011.幼苗徒長程度對黃瓜植株生長發(fā)育及產(chǎn)量品質(zhì)的影響.中國蔬菜,(4):29-34.
單永輝.2006.日光溫室黃瓜在不同時(shí)期、不同環(huán)境條件下的形態(tài)表現(xiàn)及其原因.內(nèi)蒙古農(nóng)業(yè)科技,(7):123-124.
尚慶茂.2011.蔬菜集約化穴盤育苗技術(shù)系列講座:第一講概述.中國蔬菜,(1):46-47.
王娟,王秀峰,魏珉,崔秀敏.2002.幼苗徒長的非化學(xué)調(diào)節(jié)研究進(jìn)展.廣州:中國園藝學(xué)會(huì)第五屆青年學(xué)術(shù)討論會(huì)論文集—園藝學(xué)進(jìn)展(第五輯):371-378.
王娟.2006.工廠化育苗中幼苗徒長的非環(huán)境調(diào)節(jié).安徽農(nóng)學(xué)通報(bào),12(13):57-58.
王祥寧,熊麗,陳敏,楊永福,余明榮.2007.不同光照條件下東方百合生長狀態(tài)及生物量的分配.西南農(nóng)業(yè)學(xué)報(bào),20(5):1091-1096.
王學(xué)文,王玉玨,付秋實(shí),趙冰,郭仰東.2009.弱光逆境對番茄幼苗形態(tài)、生理特征及葉片超微結(jié)構(gòu)的影響.華北農(nóng)學(xué)報(bào),24(5):144-149.
武曉玲,張麗君,聶邵仙,楊峰,佘躍輝,楊文鈺.2014.弱光對大豆苗期生長及光合熒光特性的影響.大豆科學(xué),33(1):53-56.
徐磊,蔣芳玲,吳震,王加倩,周學(xué)超.2009.基質(zhì)含水量和光照度對不結(jié)球白菜生長及品質(zhì)的影響.江蘇農(nóng)業(yè)學(xué)報(bào),25(4):865-870.
楊艷春.2013.設(shè)施蔬菜的徒長及防治.中國蔬菜,(3):59-60.張靜,程智慧,孟煥文,李丹丹.2007.多效唑包衣處理對番茄種子活力和幼苗質(zhì)量的影響.西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,35(9):161-166.
周學(xué)超.2010.2個(gè)生態(tài)型黃瓜品種幼苗徒長的形態(tài)解剖及生理生化特性研究〔碩士論文〕.南京:南京農(nóng)業(yè)大學(xué).
周艷虹,黃黎鋒,喻景權(quán).2004.持續(xù)低溫弱光對黃瓜葉片氣體交換、葉綠素?zé)晒忖绾臀漳芰糠峙涞挠绊懀参锷砼c分子生物學(xué)學(xué)報(bào),30(2):153-160.
祝聰宇,葉景學(xué),張廣臣,侯杰.2017.降低設(shè)施番茄弱光脅迫危害的措施.吉林蔬菜,(Z1):33-34.
Agrawal A,Kearney E,Hastings A,Ramsey T.2012.Attenuation of the jasmonate burst,plant defensive traits,and resistance to specialist monarch caterpillars on shaded common milkweed(Asclepias syriaca).Journal of Chemical Ecology,38:893-901.
Albert N W,Lewis D H,Zhang H B,Irving L J,Jameson P E,Davis K M.2009.Light-induced vegetative anthocyanin pigmentation in Petunia.Journal of Experimental Botany,60(7):2191-2202.
Balasubramanian S,Sureshkumar S,Lempe J,Weigel D.2006.Potent induction of Arabidopsis thaliana flowering by elevated growth temperature.PLoS Genetics,2:e106.
Ballaré C L.2011.Jasmonate-induced defenses:a tale of intelligence,collaborators and rascals.Trends in Plant Science,16(5):1360-1385.
Ballaré C,Mazza C A,Austin A T,Pierik R.2012.Canopy light and plant health.Plant Physiology,160:145-155.
Berghage R.1998.Controlling height with temperature.HortTechnology,8(4):11-16.
Berova M,Zlatev Z.2000.Physiological response and yield of paclobutrazolt reated tomato plants.Plant Growth Regulation,30(2):117-123.
Blázquez M A,Ahn J H,Weigel D.2003.A thermosensory pathway controlling flowering time in Arabidopsis thaliana.Nature Genetics,33:168-171.
Botto J F,Smith H.2002.Differential genetic variation in adaptive strategies to a common environmental signal in Arabidopsis accessions:phytochrome-mediated shade avoidance.Plant,Cell and Environment,25:53-63.
Campos M L,Yoshida Y,Major I T,de Oliveira Ferreira D,Weraduwage S M,F(xiàn)roehlich J E,Johnson B F,Kramer D M,Jander G,Sharkey T D,Howe G A.2016.Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs.Nature Communications,7:12570.
Casal J J.2013.Photoreceptor signaling networks in plant responses to shade.Annual Review of Plant Biology,64:403-427.
Dafny-Yelin M,Tzfira T,Vainstein A,Adam Z.2008.Nonredundantfunctions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis.Plant Molecular Biology,67:363-373.
Delker C,Sonntag L,James G V,Janitza P,Iban?z C,Ziermann H,Peterson T,Denk K,Mull S,Ziegler J,Davis S J,Schneeberger K,Quint M.2014.The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis.Cell Reports,9:1983-1989.
Derbyshire P,F(xiàn)indlay K,McCann M C,Roberts K.2007.Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness.Journal of Experimental Botany,58(8):2079-2089.
Fankhauser C,Batschauer A.2016.Shadow on the plant:a strategy to exit.Cell,164:15-17.
Feng S H,Martinez C,Gusmaroli G,Wang Y,Zhou J L,Wang F,Chen L Y,Yu L,Iglesias-Pedraz J M,Kircher S,Sch?fer E,F(xiàn)u X D,F(xiàn)an L M,Deng X W.2008.Coordinated regulation of Arabidopsis thaliana development by light and gibberellins.Nature,451:475-480.
Franklin K A.2009.Light and temperature signal crosstalk in plant development.Current Opinion in Plant Biology,12:63-68.
Franklin K A,Lee S H,Patel D,Kumar S V,Spartz A K,Gu C,Ye S Q,Yu P,Breen G,Cohen J D,Wigge P A,Gray W M.2011.PHYTOCHROME-INTERACTING FACTOR 4(PIF4)regulates auxin biosynthesis at high temperature.Proceedings of National Academy of Sciences of the United States of America,108(50):20231-20235.
Fu Z Q,Yan S,Saleh A,Wang W,Ruble J,Oka N,Mohan R,Spoel S H,Tada Y,Zheng N,Dong X N.2012.NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants.Nature,486:228-232.
Garner L C,Bjorkman T.1996.Mechanical conditioning for controlling excessive elongation in tomato transplants:sensitivity to dose,frequency and timing of brushing.Journal of the American Society for Horticultural Science,121(5):894-900.
Gendreau E,Traas J,Desnos T,Grandjean O,Caboche M,H?fte H.1997.Cellular basis of hypocotyl growth in Arabidopsis thaliana.Plant Physiology,114:295-305.
Gray W M,Ostin A,Sandberg G,Romano C P,Estelle M.1998.High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis.Proceedings of National Academy of Sciences of the United States of America,95:7197-7202.
Heins R D,Liu B,Runkle E S.2000.Regulation of crop growth and development based on environmental factors.Acta Horticulturae,514:13-22.
Hersch M,Lorrain S,de Wit M,Trevisan M,Ljung K,Bergmann S,F(xiàn)ankhauser C.2014.Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis.Proceedings of National Academy of Sciences of the United States of America,111(17):6515-6520.
Hou X,Lee L Y C,Xia K,Yan Y,Yu H.2010.DELLAs modulate jasmonate signaling via competitive binding to JAZs.Development Cell,19:884-894.
Iriti M,Rossoni M,Borgo M,F(xiàn)aoro F.2004.Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine,meanwhile improving resistance to Botrytis cinerea.Journal of Agricultural and Food Chemistry,52:4406-4413.
Irshad M,Canut H,Borderies G,Pont-Lezica R,Jamet E.2008.A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana:confirmed actors and newcomers.BMC Plant Biology,8:94.
Izaguirre M M,Mazza C A,Biondini M,Baldwin I T,Ballaré C L.2006.Remote sensing of future competitors:impacts on plant defenses.Proceedings of the National Academy of Sciences of the United States of America,103:7170-7174.
Jansen M P T,Stamp N E.1997.Effects of light availability on host plant chemistry and the consequences for behavior and growth of an insect herbivore.Entomologia Experimentalis et Applicata,82:319-333.
Johansson H,Jones H J,F(xiàn)oreman J,Hemsted J R,Stewart K,Grima R,Halliday K J.2014.Arabidopsis cell expansion is controlled by a photothermal switch.Nature Communications,5:4848.
Koini M A,Alvey L,Allen T,Tilley C A,Harberd N P,Whitelam G C,F(xiàn)ranklin K A.2009.Hightemperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4.Current Biology,19:408-413.
Latimer J G,Mitchell C A.1988.Effects of mechanical stress or abscisic acid on growth,water status and leaf abscisic acid content of eggplant seedlings.Scientia-Horticulturae.36(1-2):37-46.
Latimer J G.1991.Mechanical conditioning for control of growth and quality of vegetable transplants.HortScience,26:1456-1461.
Lorenc-Kuku?a K,Jafra S,Oszmiański J,Szopa J.2005.Ectopic expression of anthocyanin 5-O-Glucosyltransferase in potato tuber causes increased resistance to bacteria.Journal of Agricultural and Food Chemistry,53:272-281.
Moreno J E,Tao Y,Chory J,Ballaré C L.2009.Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity.Proceedings of the National Academy of Sciences of the United States of America,106:4935-4940.
Nihoul P.1993.Do light-intensity,temperature and photoperiod affect the entrapment of mites on glandular hairs of cultivated tomatoes? Experimental and Applied Acarology,17:709-718.
Niwa Y,Yamashino T,Mizuno T.2009.The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.Plant & Cell Physiology,50(4):838-854.
Piszczek P M,Jerzy M.1987.The response of tomato(Lycopersicon esculentum Mill.)transplants to mechanical stress.Acta Agrobot,40:5-14.
Procko C,Crenshaw C M,Ljung K,Noel J P,Chory J.2014.Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa.Plant Physiology,165:1285-1301.
Qin F F,Xu H L,Lü D Q,Takano T.2012.Responses of hypocotyl elongation to light and sowing depth in peanut seedlings.Journal of Food,Agriculture and Environment,10(2):607-612.
Roberts M R,Paul N D.2006.Seduced by the dark side:integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens.New Phytologist,170:677-699.
Segmüller N,Kokkelink L,Giesbert S,Odinius D,van Kan J,Tudzynski P.2008.NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.Molecular Plant-Microbe Interactions,21:808-819.
Song M F,Zhang S,Hou P,Shang H Z,Gu H K,Li J J,Xiao Y,Guo L,Su L,Gao J W,Yang J P.2015.Ectopic expression of a phytochrome B gene from Chinese cabbage(Brassica rapa L.ssp.pekinensis)in Arabidopsis thaliana promotes seedling de-etiolation,dwarfing in mature plants,and delayed flowering.Plant Molecular Biology,87:633-643.
Stavang J A,Gallego-Bartolomé J,Gómez M D,Yoshida S,Asami T,Olsen J E,García-Martínez J L,Alabadí D,Blázquez M A.2009.Hormonal regulation of temperature-induced growth in Arabidopsis.The Plant Journal,60:589-601.
Sun J,Qi L,Li Y,Chu J,Li C.2012.PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth.PLoS Genetics,8(3):e1002594.
Tao Y,F(xiàn)errer J C,Ljung K,Pojer F,Hong F G,Long J A,Li L,Moreno J E,Bowman M E,Ivans L J,Cheng Y F,Lim J,Zhao Y D,Ballare C L,Sandberg G,Nobel J P,Chory J.2008.Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants.Cell,133:164-176.
Vile D,Pervent J,Belluau M,Vasseur F,Bresson J,Muller B,Ganier C,Simonneau T.2012.Arabidopsis growth under prolonged high temperature and water deficit:independent or interactive effects? Plant,Cell and Environment,35:702-718.
Wang H,Jiang Y P,Yu H J,Xia X J,Shi K,Zhou Y H,Yu J Q.2010.Light quality affects incidence of powdery mildew,expression of defence-related genes and associated metabolism in cucumber plants.European Journal of Plant Pathology,127:125-135.
Wang L,Wu J Q.2013.The essential role of Jasmonic Acid in plantherbivore interactions-using the wild tobacco Nicotiana attenuata as a model.Journal of Genetics and Genomics,40:597-606.
Xia J C,Zhao H,Liu W Z,Li L G,He Y K.2009.Role of cytokinin and salicylic acid in plant growth at low temperatures.Plant Growth Regulation,57:211-221.
Xiao C W,Somerville C,Anderson C T.2014.Polygalacturonase involved in expansion functions in cell elongation and flower development in Arabidopsis.The Plant Cell,26:1018-1035.
Xiao C W,Zheng T,Zheng Y Z,Cosgrove D J,Anderson C T.2016.Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis,altering cell growth and morphogenesis.Plant Physiology,170:234-249.
Xie Y,Tan H J,Ma Z X,Huang J R.2016.DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana.Molecular Plant,9:711-721.
Zanten M V,Voesenek L A C J,Peeters A J M,Millenaar F F.2009.Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis.Plant Physiology,151:1446-1458.
Zhang Y,Butelli E,de Stefano R,Schoonbeek H J,Maqusin A,Paqliarani C,Wellner N,Hill L,Orzaez D,Granell A,Jones J D G,Martin C.2013.Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold.Current Biology,23:1094-1100.
Research Progress on Morphological and Physiological Characteristics of Vegetable Leggy Seedlings
WANG Hong-fei,SHANG Qing-mao*
(Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region,Beijing 100081,China)
Intensive vegetable seedlings culture usually took with porous conjoined plug as container,which had high density,less space for root system development and weak buffer capacity of rhizosphere. It was very easy for seedlings to over grown. The morphological and physiological metabolism of leggy seedlings were different from the normal ones,including elongated hypocotyl and internode,enlarged leaf angle,reduced leaf thickness and root to shoot ratio,increased moisture content in tissue,weakened adaptability to biotic and abiotic stress. This review summarized the morphological characteristics of vegetable leggy seedlings,flowering habit,resistance expression,physiological metabolism and related preventing techniques,etc.,aiming at providing reference for preventing leggy seedlings and developing related technology.
Leggy seedling;Morphological characteristic;Flowering habit;Physiological metabolism;Environmental factor
王紅飛,女,博士研究生,專業(yè)方向:蔬菜種苗發(fā)育調(diào)控與繁育技術(shù),E-mail:wanghongfei0329@163.com
*通訊作者(Corresponding author),尚慶茂,男,研究員,博士生導(dǎo)師,專業(yè)方向:蔬菜栽培生理及分子生物學(xué),E-mail:shangqingmao@ caas.cn
2017-03-21;接受日期:2017-05-26
國家自然科學(xué)基金項(xiàng)目(31172001),國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-25),公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201303014),中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項(xiàng)目(CAAS-ASTIPIVFCAAS)