世界天然氣水合物研究開發(fā)現(xiàn)狀和前景
史斗,鄭軍衛(wèi)
高被引論文摘要
被引頻次:191
世界天然氣水合物研究開發(fā)現(xiàn)狀和前景
史斗,鄭軍衛(wèi)
回顧了世界天然氣水合物研究歷史,分析了世界氣水合物研究現(xiàn)狀和開發(fā)前景,評價了全球天然氣水合物資源潛勢,提出了我國對天然氣水合物的研究策略。
天然氣水合物;研究現(xiàn)狀;資源評價;開發(fā)前景;研究策略
來源出版物:地球科學(xué)進(jìn)展, 1999, 14(4): 330-339
被引頻次:185
青海祁連山凍土區(qū)發(fā)現(xiàn)天然氣水合物
祝有海,張永勤,文懷軍,等
摘要:祁連山凍土區(qū)位于青藏高原北緣,多年凍土面積約10×104km2,具有良好的天然氣水合物形成條件和找礦前景。2008—2009年間中國地質(zhì)調(diào)查局在青海省天峻縣木里煤田聚乎更礦區(qū)施工“祁連山凍土區(qū)天然氣水合物科學(xué)鉆探工程”,迄今共完成鉆探試驗井4口,總進(jìn)尺2059.13 m,分別在DK-1、DK-2和DK-3鉆井中鉆獲天然氣水合物實物樣品,取得了找礦工作的重大突破。天然氣水合物產(chǎn)于凍土層之下,埋深133~396 m。水合物呈白色、乳白色晶體,點火能燃燒,紅外熱像儀測溫后呈明顯的低溫異常,放進(jìn)水里強(qiáng)烈冒泡,水合物分解后能不斷冒出氣泡和水滴,并殘留下特征的蜂窩狀構(gòu)造。激光拉曼光譜儀檢測呈現(xiàn)特征的水合物光譜曲線,測井曲線也具有較明顯的高電阻率和高波速標(biāo)志。祁連山天然氣水合物具有凍土層薄、埋深淺、氣體組分復(fù)雜、以煤層氣成因為主等明顯特征,是一種新類型水合物。這是我國凍土區(qū)首次鉆獲的天然氣水合物實物樣品,也是全球首次在中低緯度高山凍土區(qū)發(fā)現(xiàn)天然氣水合物實物樣品,具有重要的科學(xué)意義和經(jīng)濟(jì)意義。
關(guān)鍵詞:天然氣水合物;凍土;祁連山
來源出版物:地質(zhì)學(xué)報, 2009, 83(11): 1762-1771被引頻次:162
南海北部陸緣天然氣水合物初探
姚伯初
摘要:根據(jù)天然氣水合物存在的溫度—壓力條件,研究了南海北部的地球物理資料,發(fā)現(xiàn)有些地方在地震剖面上出現(xiàn)似海底反射BSR,而在另一些地方海底第一層沉積的層速度偏高(1.95~2.45 km/s),比一般海洋沉積高0.2~0.64 km/s。將這些地方海底第一層沉積底界面處的溫度—壓力參數(shù)投于甲烷形成天然氣水合物的溫度—壓力圖上,發(fā)現(xiàn)它們均出現(xiàn)于水合物存在之區(qū)域中。由此可見,南海北部陸緣可能存在天然氣水合物礦藏。
關(guān)鍵詞:水合物;溫度;壓力;似海底反射;南海北部
來源出版物:油田化學(xué), 1997, 14(2): 190-196
被引頻次:143
青藏高原凍土帶天然氣水合物的形成條件與分布預(yù)測
陳多福,王茂春,夏斌
摘要:凍土帶是天然氣水合物發(fā)育的兩個重要地質(zhì)環(huán)境之一。青藏高原平均海拔在4000 m以上,多年凍土面積約1.4 × 106km2。本文根據(jù)青藏高原凍土層厚度和地溫梯度特征,運用天然氣水合物的熱力學(xué)穩(wěn)定域預(yù)測方法,確定中低緯度高海拔區(qū)凍土帶天然氣水合物的產(chǎn)出特征。青藏高原多年凍土帶熱成因和生物成因天然氣水合物形成的熱力學(xué)相平衡反映,水合物頂界埋深約27~560 m,底界埋深約77~2070 m。初步計算表明,青藏高原凍土帶水合物天然氣資源約 1.2 × 1011~2.4 × 1014m3。在凍土層越厚、凍土層及凍土層之下沉積層的地溫梯度越小的地區(qū),最有利于天然氣水合物的發(fā)育。氣溫的季節(jié)性變化對天然氣水合物影響不大。在全球氣溫快速上升的背景下,青藏高原天然氣水合物將處于失穩(wěn)狀態(tài),天然氣水合物頂界下降、底界上升,與凍土帶的退化相似,分布區(qū)逐漸縮小,最終將完全消失。
關(guān)鍵詞:天然氣水合物;中低緯度高原凍土帶;青藏高原
來源出版物:地球物理學(xué)報, 2005, 48(1):165-172
被引頻次:138
南海神狐海域天然氣水合物成藏系統(tǒng)初探
吳能友,張海啟,楊勝雄,等
摘要:天然氣水合物成藏系統(tǒng)是一個非常復(fù)雜的系統(tǒng),過去的有關(guān)研究不多。為此,根據(jù)天然氣水合物成藏基本條件、淺表層沉積物孔隙水地球化學(xué)特征及其所反映的氣源和天然氣水合物分布特征,結(jié)合剛剛結(jié)束的南海北部天然氣水合物首次實鉆采樣成果,初步探討了我國南海北部陸坡神狐海域天然氣水合物成藏系統(tǒng)。結(jié)果認(rèn)為:研究區(qū)溫度、壓力和氣體組分有利于天然氣水合物形成;天然氣水合物在空間尺度上不均勻分布,縱向上主要分布于天然氣水合物穩(wěn)定帶底界以上一定深度范圍內(nèi);形成天然氣水合物的甲烷氣體很可能來源于原地微生物成因甲烷;擴(kuò)散型原地生物成因甲烷產(chǎn)生低甲烷通量,形成了具有明顯不同的分布和飽和度特征的分散型天然氣水合物系統(tǒng)。
關(guān)鍵詞:南海北部;神狐海域;天然氣水合物;氣藏形成;機(jī)理;成藏系統(tǒng);鉆探;樣品
來源出版物:天然氣工業(yè), 2007, 27(9): 1-6
被引頻次:132
中國天然氣水合物調(diào)查研究現(xiàn)狀及其進(jìn)展
張洪濤,張海啟,祝有海
摘要:天然氣水合物大致經(jīng)歷了實驗室研究、管道堵塞及防治、資源調(diào)查與開發(fā)利用4個發(fā)展階段,中國目前正處于資源調(diào)查階段的早期。自1999年開始,中國先后開展了南海、東海、陸上凍土區(qū)和國際海底區(qū)域天然氣水合物的調(diào)查研究,相繼發(fā)現(xiàn)了一系列地質(zhì)、地球物理和地球化學(xué)異常標(biāo)志,并在南海北部神狐地區(qū)成功采到水合物實物樣品,取得了找礦工作的重大突破,顯示出良好的找礦前景,但目前仍存在著調(diào)查研究程度較低、技術(shù)裝備比較落后等問題。隨著國家對天然氣水合物重視程度的加強(qiáng),中國天然氣水合物的調(diào)查研究進(jìn)程將會將進(jìn)一步加快,并在不久的將來過渡到試生產(chǎn)階段和商業(yè)性生產(chǎn)階段。
關(guān)鍵詞:天然氣水合物;資源;南海;凍土
來源出版物:中國地質(zhì), 2007, 34(6): 953-961
被引頻次:130
南海天然氣水合物的成礦遠(yuǎn)景
張光學(xué),黃永樣,祝有海,等
摘要:通過對南海的中新生代區(qū)域構(gòu)造、中上新世沉積、近—現(xiàn)代地貌及地溫條件的分析,結(jié)合ODP184航次鉆探成果和水合物最新調(diào)查資料,探討了南海水合物的成礦條件,認(rèn)為具有良好的成礦地質(zhì)構(gòu)造環(huán)境;通過對南海陸坡深水區(qū)現(xiàn)有大量多道地震調(diào)查資料的重新判讀,發(fā)現(xiàn)南海地區(qū)存在多處水合物的地震標(biāo)志——BSR,以活動邊緣筆架增生楔和非活動邊緣西沙—東沙為例,重點解剖水合物的地震特征,建立其成藏模式,總結(jié)其成礦規(guī)律,預(yù)測水合物資源遠(yuǎn)景,為今后在該海域?qū)ふ宜衔锏V床、預(yù)測水合物資源遠(yuǎn)景起到拋磚引玉作用。
關(guān)鍵詞:天然氣水合物;成礦條件;成藏機(jī)制;南海
來源出版物:海洋地質(zhì)與第四紀(jì)地質(zhì), 2002, 22(1):75-81
被引頻次:120
南海的天然氣水合物礦藏
姚伯初
摘要:討論了南海的地形地貌特征,以及中新生代的構(gòu)造運動歷程;認(rèn)識到中中新世之前,這里經(jīng)歷了一系列構(gòu)造運動,但在中中新世之后,這里無構(gòu)造運動,只是發(fā)生了區(qū)域沉降。由此認(rèn)為南海應(yīng)有豐富的天然氣水合物礦藏,進(jìn)而估算了南海天然氣水合物的總資源量達(dá)643.5億~772.2億t油當(dāng)量。
關(guān)鍵詞:地形地貌;構(gòu)造運動;天然氣水合物;資源量;南海
來源出版物:熱帶海洋學(xué)報, 2001, 20(2): 20-28
被引頻次:116
南海北部東沙海域天然氣水合物的初步研究
宋海斌,耿建華,WANG How-King,等
摘要:利用地震、測井與地溫資料綜合分析了南海北部東沙海域可能存在的天然氣水合物的分布特征。研究表明,在東沙海域地震剖面上出現(xiàn)似海底反射層、弱振幅帶等天然氣水合物分布標(biāo)志,在聲波測井曲線上呈現(xiàn)高速、速度倒轉(zhuǎn)等天然氣水合物存在特征。似海底反射層的深度與 1144站位,及平均地溫梯度資料得出的穩(wěn)定帶厚度較吻合。1144站位與1148站位似海底反射層距海底較深,分別為654 m與475 m。在1144站位附近,弱振幅帶的頂界可能代表含天然氣水合物沉積層的頂界,約在450 m左右。
關(guān)鍵詞:天然氣水合物;南海北部;似海底反射層;弱振幅帶;聲波測井;溫壓條件
來源出版物:地球物理學(xué)報, 2001, 44(05): 687-695
被引頻次:115
祁連山凍土區(qū)天然氣水合物及其基本特征
祝有海,張永勤,文懷軍,等
摘要:2008年11月5日,由中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所、勘探技術(shù)研究所和青海煤炭地質(zhì)局105勘探隊施工的“祁連山凍土區(qū)天然氣水合物科學(xué)鉆探工程”DK-1孔取得重大突破,成功鉆獲天然氣水合物實物樣品。這是我國凍土區(qū)首次鉆獲并檢測出的天然氣水合物實物樣品,也是世界上第一次在中低緯度高原凍土區(qū)發(fā)現(xiàn)的天然氣水合物,具有重要的科學(xué)、經(jīng)濟(jì)和環(huán)境意義。目前鉆獲的天然氣水合物均產(chǎn)于凍土層之下,產(chǎn)出深度133~396 m,其層位屬于中侏羅統(tǒng)江倉組。水合物以薄層狀、片狀、團(tuán)塊狀賦存于粉砂巖、泥巖、油頁巖的裂隙中,或以浸染狀賦存于細(xì)粉砂巖的孔隙中。祁連山凍土區(qū)天然氣水合物具有埋深淺、凍土層薄、氣體組分復(fù)雜、以煤層氣為主等特征,應(yīng)是一種新類型水合物。
關(guān)鍵詞:天然氣水合物;凍土;祁連山
來源出版物:地球?qū)W報, 2010, 31(1): 7-16
被引頻次:741
來源出版物:Paleoceanography, 1995, 10(6): 965-971
被引頻次:569
Methane hydrate: A major reservoir of carbon in the shallow geosphere?
Kvenvolden, KA
Abstract:Methane hydrates are solids composed of rigid cages of water molecules that enclose methane. Sediment containing methane hydrates is found within specific pressure-temperature conditions that occur in regions of permafrost and beneath the sea in outer continental margins.Because methane hydrates are globally widespread and concentrate methane within the gas-hydrate structure, the potential amount of methane present in the shallow geosphere at subsurface depths of < ~2000 m is very large.However, estimates of the amount are speculative and range over about three orders of magnitude, from 2×103to 4 × 106Gt (gigatons = 1015g) of carbon, depending on the assumptions made. The estimate I favor is ~ 1 × 104Gt of carbon. The estimated amount of organic carbon in the methane-hydrate reservoir greatly exceeds that in many other reservoirs of the global carbon cycle — for example,the atmosphere (3.6 Gt); terrestrial biota (830 Gt);terrestrial soil, detritus and peat (1960 Gt); marine biota (3Gt); and marine dissolved materials (980 Gt). In fact, the amount of carbon may exceed that in all fossil fuel deposits (5 × 103Gt). Because methane hydrates contain so much methane and occur in the shallow geosphere, they are of interest as a potential resource of natural gas and as a possible source of atmospheric methane released by global warming. As a potential resource, methane hydrates pose both engineering and production problems. As a contributor to a changing global climate, destabilized methane hydrates,particularly those in shallow, nearshore regions of the Arctic Ocean, may have some effect, but this effect will probably be minimal, at least during the next 100 years.
來源出版物:Chemical Geology, 1988, 71(1-3): 41-51
被引頻次:521
Dissociation pressures of gas hydrates formed by gas mixtures
Parrish, WR; Prausnitz, JM
Abstract:Dissociation pressure data for single gas-hydrate systems are reduced by use of the van der Waals-Platteeuw theory with the Kihara spherical-core potential function.Kihara parameters are reported for 15 hydrate-forming gases, and new values of the thermodynamic properties of empty hydrates (Structures I and II) are determined. The analysis is extended to mixtures of hydrate-forming and nonhydrate-forming gases. The good agreement obtained between calculated and observed dissociation pressures of hydrates formed by gas mixtures illustrates the usefulness of this statistical thermodynamic model for process design.
來源出版物:Environmental Science & Policy, 2012, 17:12-23
被引頻次:500
Formation of gas hydrates in natural gas transmission lines
Hammerschmidt, EG
Abstract:Ommited.
來源出版物:Industrial & Engineering Chemistry, 1934,26(8): 851-855
被引頻次:483
Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event
Hesselbo, SP; Grocke, DR; Jenkyns, HC; et al.
Abstract: In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast,examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in12C versus13C. Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that—as has been suggested for the Late Palaeocene thermal maximum,some 55 million years ago—the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments.
來源出版物:Nature, 2000, 406(6794): 392-395
被引頻次:475
Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity
Collins, PLF
Abstract:During cooling of CO2-bearing fluid inclusions the clathrate compound carbon dioxide hydrate(CO2.5.75 H2O) freezes out prior to the freezing of the remaining aqueous solution to ice. When crystallized in aqueous solution, gas hydrates form pure compounds of the encaged species and H2O molecules and reject from the hydrate lattice any salts or ions in solution. Thus the residual aqueous solution, after clathration, is more saline than the original solution, and measurement of the salinity using depression of the fusion temperature of ice by salt will give an inaccurate estimate of the salinity of that solution. Although the formation of CO2hydrate in CO2-bearing fluid inclusions, or any gas hydrates in fluid inclusions, invalidates use of the depression of the fusion temperature of ice for estimating the salinity of the aqueous solution, the depression of the temperature of decomposition of the CO2hydrate in the presence of CO2liquid and CO2gas can be a useful measure of salinity,provided CH4and other gases are not present in the inclusion.
來源出版物:Economic Geology, 1979, 74(6): 1435-1444
被引頻次:430
A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate
Dickens, GR; Castillo, MM; Walker, JCG
Abstract:Carbonate and organic matter deposited during the latest Paleocene thermal maximum is characterized by a remarkable –2.5‰ excursion in δ13C that occurred over ~104yr and returned to near initial values in an exponential pattern over ~2×105yr. It has been hypothesized that this excursion signifies transfer of 1.4 to 2.8 × 1018g of CH4from oceanic hydrates to the combined ocean-atmosphere inorganic carbon reservoir. A scenario with 1.12 × 1018g of CH4is numerically simulated here within the framework of the present-day global carbon cycle to test the plausibility of the hypothesis. We find that(1) the δ13C of the deep ocean, shallow ocean, and atmosphere decreases by –2.3‰ over 104yr and returns to initial values in an exponential pattern over ~2 × 105yr;(2) the depth of the lysocline shoals by up to 400 m over 104 yr, and this rise is most pronounced in one ocean region; and (3) global surface temperature increases by~2 °C over 104yr and returns to initial values over ~2 ×106yr. The first effect is quantitatively consistent with the geologic record; the latter two effects are qualitatively consistent with observations. Thus, significant CH4release from oceanic hydrates is a plausible explanation for observed carbon cycle perturbations during the thermal maximum. This conclusion is of broad interest because the flux of CH4invoked during the maximum is of similar magnitude to that released to the atmosphere from present-day anthropogenic CH4sources.
來源出版物:Geology, 1997, 25(3): 259-262
被引頻次:381
Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises
Shipley, TH; Houston, MH; Buffler, RT ; et al.
Abstract:Anomalous reflections in marine seismic
reflection data from continental slopes are often correlated with the base of gas hydrated sedimentary rocks. Examination of University of Texas Marine Science Institute reflection data reveals the possible presence of such gas hydrates along the east coast of the United States, the western Gulf of Mexico, the coasts of northern Colombia and northern Panama, and along the Pacific side of Central America in areas extending from Panama to near Acapulco, Mexico. Suspected hydrates are present in water depths of 700 to 4400 m and extend from 100 to 1100 m subbottom. Geometric relations,reflection coefficients, reflection polarity, and pressuretemperature relations all support the identification of the anomalous reflections as the base of gas hydrated sediments. In most places, gas hydrate association is related to structural anomalies (anticlines, dipping strata), which may allow gas to concentrate and migrate updip into pressure and temperature conditions suitable for hydrate formation. The gas hydrate boundary can be used to estimate thermal gradients. In general, thermal gradients estimated from the gas hydrate phase boundary are higher than reported thermal gradients measured by conventional means.
來源出版物:AAPG Bulletin, 1979, 63(12): 2204-2213
被引頻次:336
Biogeographical distribution and diversity of microbes inmethane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin
Inagaki, F; Nunoura, T; Nakagawa, S; et al.
Abstract:The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their phylogenetic diversities in deeply buried marine sediments of the Pacific Ocean Margins. During the Ocean Drilling Program Legs 201 and 204, we obtained sediment cores from the Peru and Cascadia Margins that varied with respect to the presence of dissolved methane and methane hydrate. To examine differences in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied > 2800clones possessing partial sequences (400–500 bp) of the 16S rRNA gene and 348 representative clone sequences(≈1 kbp) from the two geographically separated subseafloor environments. Archaea of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate- bearing sediments were dominated by members of the JS1 group, Planctomycetes, and Chloroflexi.Results from cluster and principal component analyses,which include previously reported data from the West and East Pacific Margins, suggest that, for these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores are distinct from those in hydrate-free cores. The recognition of which microbial groups prevail under distinctive subseafloor environments is a significant step toward determining the role these communities play in Earth’s essential biogeochemical processes.
來源出版物:Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8):2815-2820
被引頻次:318
Kinetics of formation of methane and ethane gas hydrates
Englezos, P; Kalogerakis, N; Dholabhai, PD; et al.
Abstract:An intrinsic kinetic model with only one adjustable parameter is proposed for the formation of methane and ethane gas hydrates. Experimental formation data were obtained in a semi-batch stirred tank reactor.The experiments were conducted at four temperatures from 274 to 282 K and at pressures ranging from 0.636 to 8.903 MPa. The kinetic model is based on the crystallization theory, while the two-film theory model is adopted for the interfacial mass transfer. Experiments were performed at various stirring rates to define the kinetic regime. The study reveals that the formation rate is proportional to the difference in the fugacity of the dissolved gas and the three-phase equilibrium fugacity at the experimental temperature. This difference defines the driving force which incorporates the pressure effects. The gas consumption rate is also proportional to the second moment of the particle size distribution. The rate constants indicate a very weak temperature dependence.
來源出版物:Chemical Engineering Science, 1987,42(11): 2647-2658
Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene
Dickens, GR; Oneil, JR; Rea, DK; et al.
Isotopic records across the “Latest Paleocene Thermal Maximum” (LPTM) indicate that bottom water temperature increased by more than 4°C during a brief time interval (<104years) of the latest Paleocene (~55.6 Ma).There also was a coeval ?2 to ?3‰ excursion in the δ13C of the ocean/atmosphere inorganic carbon reservoir. Given the large mass of this reservoir, a rapid δ13C shift of this magnitude is difficult to explain within the context of conventional hypotheses for changing the mean carbon isotope composition of the ocean and atmosphere. However,a direct consequence of warming bottom water temperature from 11 to 15°C over 104years would be a significant change in sediment thermal gradients and dissociation of oceanic CH4hydrate at locations with intermediate water depths. In terms of the present-day oceanic CH4hydrate reservoir, thermal dissociation of oceanic CH4hydrate during the LPTM could have released greater than 1.1 to 2.1 × 1018g of carbon with a δ13C of approximately ?60‰.The release and subsequent oxidation of this amount of carbon is sufficient to explain a ?2 to ?3‰ excursion in δ13C across the LPTM. Fate of CH4in oceanic hydrates must be considered in developing models of the climatic and paleoceanographic regimes that operated during the LPTM.