李云莉,高權(quán)新,張晨捷,施兆鴻,彭士明,王建鋼
(1.中國水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所,上海 200090;2.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306)
·綜述·
養(yǎng)殖水域抗生素抗性基因污染的研究概況與展望
李云莉1,2,高權(quán)新1,張晨捷1,施兆鴻1,彭士明1,王建鋼1
(1.中國水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所,上海 200090;2.上海海洋大學(xué)水產(chǎn)與生命學(xué)院,上海 201306)
在水產(chǎn)養(yǎng)殖中,抗生素是用來治療細(xì)菌性疾病最有用的藥物。但近些年的研究發(fā)現(xiàn),過度使用抗生素,反而誘導(dǎo)產(chǎn)生了一系列帶有抗性基因的致病菌,嚴(yán)重制約了水產(chǎn)養(yǎng)殖業(yè)的發(fā)展。本文以近15年來國內(nèi)外相關(guān)研究的文獻(xiàn)為依據(jù),概括介紹了抗生素抗性基因(ARGs)的產(chǎn)生及其傳播途徑、ARGs污染的危害性、國內(nèi)外ARGs污染研究現(xiàn)狀及加強(qiáng)ARGs污染研究的必要性等4個(gè)方面的研究進(jìn)展,圍繞抗性基因的檢測、ARGs的傳播、擴(kuò)散及作用機(jī)制和控制、消除ARGs的方法等方面進(jìn)行了后續(xù)研究重點(diǎn)的展望,以期為我國水產(chǎn)養(yǎng)殖行業(yè)的可持續(xù)發(fā)展提供依據(jù)。
抗生素;抗生素抗性基因;水產(chǎn)養(yǎng)殖
抗生素可以用來治療各種細(xì)菌感染或者抑制病原微生物感染,是防治動(dòng)物病害的主要藥物。在促進(jìn)動(dòng)物生長以及節(jié)約營養(yǎng)成分等方面,抗生素也發(fā)揮了作用,因此一直以來在人類的生活與生產(chǎn)中,抗生素都起到了至關(guān)重要的作用[1]。雖然抗生素具有較強(qiáng)的殺菌、促進(jìn)生長等作用,但長期重復(fù)使用一種抗生素不僅會(huì)降低抗生素的藥效,還有可能誘導(dǎo)動(dòng)物體內(nèi)產(chǎn)生抗生素抗性基因(ARGs)。ARGs可以在各種環(huán)境介質(zhì)(比如土壤、河水、地下水)中進(jìn)行遷移、轉(zhuǎn)化,繼而整合到質(zhì)粒、轉(zhuǎn)座子、整合子等可移動(dòng)基因元件,之后再進(jìn)入到微生物環(huán)境中,在細(xì)菌之間利用基因的橫向轉(zhuǎn)移進(jìn)行傳播,使原本沒有抗生素抗性的細(xì)菌獲得耐藥性[2],最終通過食物鏈進(jìn)入到動(dòng)物體內(nèi)或者人體內(nèi),對養(yǎng)殖生物及人類的健康構(gòu)成潛在威脅[3]??股氐拇罅渴褂弥苯訉?dǎo)致了抗性基因的產(chǎn)生和散播,現(xiàn)今,抗生素及ARGs污染已經(jīng)成為一個(gè)全球性的環(huán)境問題,由此而產(chǎn)生的潛在生態(tài)風(fēng)險(xiǎn)也日益引起各國政府和研究者的廣泛關(guān)注。本文以近年來國內(nèi)外相關(guān)研究為基礎(chǔ),對養(yǎng)殖水域抗生素抗性基因污染的研究進(jìn)展進(jìn)行了較全面的概括總結(jié),主要包括抗生素抗性基因(ARGs)的產(chǎn)生及其傳播途徑、ARGs污染的危害性、國內(nèi)外ARGs污染研究現(xiàn)狀及加強(qiáng)ARGs污染研究的必要性等4個(gè)方面,并對抗性基因的檢測、ARGs的傳播、擴(kuò)散及作用機(jī)制和控制、消除ARGs的方法等方面進(jìn)行了展望,以期為我國水產(chǎn)養(yǎng)殖行業(yè)的可持續(xù)發(fā)展提供參考。
ARGs在自然界中普遍存在,有研究發(fā)現(xiàn),抗生素的過量使用與其大量產(chǎn)生與擴(kuò)散密不可分[4]??股鼐哂休^強(qiáng)的殺菌、促進(jìn)生長等作用,在人們?nèi)粘5纳a(chǎn)和生活中起著非常重要的作用,但長期重復(fù)使用一種抗生素可能會(huì)導(dǎo)致致病菌產(chǎn)生抗藥性,進(jìn)而使抗生素?zé)o法有效地控制或抑制細(xì)菌的生長,同時(shí)也有可能誘導(dǎo)產(chǎn)生具有抗藥性的致病菌。目前ARGs主要有兩個(gè)來源,一個(gè)是環(huán)境中細(xì)菌自身的內(nèi)在抗性,還有一個(gè)是外源輸入[5]。內(nèi)在抗性是指存在于細(xì)菌基因組上的抗性基因的原型、準(zhǔn)抗性基因或者平時(shí)沒有表達(dá)的抗性基因[6],細(xì)菌可以通過隨機(jī)突變或表達(dá)潛在的抗性基因而獲得抗性。而外源輸入主要是指抗性細(xì)菌通過人或者動(dòng)物的糞便隨腸道細(xì)菌排出體外,繼而進(jìn)入到環(huán)境中。起初,大部分的抗生素主要是用于醫(yī)療,因此在醫(yī)療廢水中發(fā)現(xiàn)抗性基因的檢出率較高,而且可以檢測到多重耐藥菌株[7-8]。在我國農(nóng)業(yè)生產(chǎn)中,經(jīng)常會(huì)利用動(dòng)物糞便對農(nóng)田進(jìn)行施肥,這種方法既環(huán)保又省錢,然而有研究顯示,通過對施有豬糞的土壤進(jìn)行檢測,發(fā)現(xiàn)土壤中含有高水平的抗性基因和抗性質(zhì)粒[9],并且可以分離篩選出大量具有較強(qiáng)抗性的菌株[10],這說明利用動(dòng)物糞便施肥是動(dòng)物體內(nèi)的抗性基因進(jìn)入到土壤環(huán)境中的主要途徑之一。
因?yàn)榭剐曰蚰軌蛟鰪?qiáng)細(xì)菌對抗生素的耐受力,所以當(dāng)抗生素進(jìn)入到水生環(huán)境后,攜帶有抗性基因的細(xì)菌就會(huì)迅速繁殖。水生菌的基因組復(fù)雜多樣,所具有的遺傳元件和基因都能夠產(chǎn)生和散播抗性基因。水生菌可移動(dòng)的遺傳元件攜帶著遺傳轉(zhuǎn)移因子,遺傳轉(zhuǎn)移因子調(diào)控的水平基因轉(zhuǎn)移對于海洋菌落結(jié)構(gòu)具有非常重要的作用[11]。在水生環(huán)境中,噬菌體能夠攜帶抗性基因,由噬菌體裂解而產(chǎn)生的裸露DNA和魚類腸道的細(xì)菌質(zhì)粒都可以參與調(diào)控抗生素誘發(fā)的水平基因轉(zhuǎn)移,而為了能夠在含有抗生素的水體環(huán)境中生存,水生菌(如鰻弧菌)會(huì)競爭吸收、整合這些含有抗性基因的裸露DNA[12]。在水生環(huán)境以及魚類腸道內(nèi),細(xì)菌的數(shù)量是非常龐大的,這為在壓迫環(huán)境下產(chǎn)生耐藥性突變菌創(chuàng)造了條件,之后由突變產(chǎn)生的耐藥性菌株會(huì)在新環(huán)境中大量繁殖,從而發(fā)展成為優(yōu)勢菌[13]。在高密度水產(chǎn)養(yǎng)殖模式下,為有效控制細(xì)菌的繁衍與疾病的發(fā)生,通常會(huì)加大抗生素的使用量。在這一過程中,所產(chǎn)生的具有多重耐藥性的突變菌對環(huán)境的適應(yīng)能力更強(qiáng),能夠同時(shí)耐受多種抗生素,所以在群體競爭中更有優(yōu)勢,能夠成為優(yōu)勢菌。此外,長期處于含有抗生素的環(huán)境中,水生菌的SOS系統(tǒng)(由細(xì)菌DNA損傷引發(fā)的修補(bǔ)反應(yīng))可以被激活。這一系統(tǒng)可以通過產(chǎn)生氧離子而增加突變幾率[14]??股兀ㄈ玎Z酮、β-內(nèi)酰胺酶等)激活的SOS應(yīng)激反應(yīng)不僅可以促使水平基因位移,而且能夠活化整合酶,從而促使整合子進(jìn)行重組[15]。水生菌中整合子的出現(xiàn)幾率容易受到人類活動(dòng)(如水產(chǎn)養(yǎng)殖)的影響。魚類腸道及水生環(huán)境中耐藥性突變菌的突變基因可以被整合子捕獲和整合,轉(zhuǎn)座子和質(zhì)粒可以調(diào)動(dòng)這些抗性基因,從而產(chǎn)生新的抗性基因[16]。這些耐藥性細(xì)菌抗性基因大多是由質(zhì)粒和可移動(dòng)的遺傳元件參與、調(diào)節(jié)產(chǎn)生的,許多耐藥性細(xì)菌(愛德華氏菌、氣單胞菌、鏈球菌等)能夠引發(fā)人、魚共患傳染?。?7]。向水生環(huán)境中添加抗生素,可能會(huì)導(dǎo)致由質(zhì)粒調(diào)節(jié)的喹諾酮抗性基因在水生致病菌間(比如嗜冷黃桿菌、殺蛙氣單胞菌、魯克氏耶爾森氏菌等)以水平基因轉(zhuǎn)移的(HGT)方式進(jìn)行傳播[18],這使得喹諾酮抗性基因在環(huán)境中的濃度不斷增加,同時(shí)細(xì)菌DNA變異的機(jī)率會(huì)降低。天然存在的質(zhì)粒R1具有耐受氯霉素、卡那霉素、鏈霉素、磺胺、氨芐青霉素的抗性基因,5個(gè)抗性基因組合成一個(gè)抗性決定子,抗性決定子也可從水生環(huán)境或魚貝類腸道中的微生物中獲得。因此,抗菌藥物的添加,會(huì)促使細(xì)菌的水平基因轉(zhuǎn)移和突變,致使水生環(huán)境以及魚貝類腸道中的抗性基因密度增多。
隨著全球水產(chǎn)養(yǎng)殖業(yè)的迅速發(fā)展,抗生素在水產(chǎn)養(yǎng)殖中的應(yīng)用也越來越廣泛,目前常用的抗生素主要有酰胺醇類、四環(huán)素類、磺胺類等[19]。其中,由于四環(huán)素類抗生素具有廣譜性和低毒性的特點(diǎn),在治療和抵抗細(xì)菌疾病方面發(fā)揮了重要的作用,但大量使用四環(huán)素類抗生素也使得水體環(huán)境中四環(huán)素抗性病原菌的數(shù)量暴增,并且此類抗性基因在環(huán)境中的檢出率較之其它類抗生素也是最高。目前,已報(bào)道的四環(huán)素類抗性基因就有40多種[20]。
環(huán)境中的絕大部分抗生素最終都會(huì)進(jìn)入到水環(huán)境中,因此對水環(huán)境的影響最為嚴(yán)重,也是最受關(guān)注的環(huán)境污染問題[21]。在水產(chǎn)養(yǎng)殖業(yè)中,由于養(yǎng)殖生物糞便可以直接排放到水環(huán)境中,導(dǎo)致在全球不同養(yǎng)殖水域的水體和底泥中都可以檢測到多種ARGs,其中以磺胺類和四環(huán)素類ARGs為主[22-24]。國外學(xué)者SCHMIDT等[25]針對丹麥虹鱒(Oncorhynchusmykiss)魚場進(jìn)行檢測,結(jié)果發(fā)現(xiàn)37%的氣單胞菌具有抗土霉素與磺胺嘧啶/假氧芐氨嘧啶基因的聯(lián)合抗性。之后他們又發(fā)現(xiàn)了抗惡喹酸、羥氨芐青霉素、氟苯尼考與磺胺嘧啶/假氧芐氨嘧啶的致病菌魯氏耶爾森菌、黃桿菌和殺鮭氣單胞菌[26]。雖然氣單胞菌并不是魚類和人類的致病菌,但是通過水平基因轉(zhuǎn)移可以將抗性基因轉(zhuǎn)移到致病菌上,最終引起魚類的死亡,并對人體健康產(chǎn)生很大威脅。
養(yǎng)殖業(yè)是我國水產(chǎn)業(yè)的重要組成部分,在一些地區(qū)更是支柱型產(chǎn)業(yè)。養(yǎng)殖水域中低濃度的抗生素可以通過消化系統(tǒng)進(jìn)入水生生物體內(nèi),在腸道內(nèi)誘導(dǎo)出抗性細(xì)菌,同時(shí)水中的ARGs也可以通過水生細(xì)菌的水平基因轉(zhuǎn)移進(jìn)入魚、貝類等生物體[27]。之后經(jīng)過生物排泄進(jìn)入到水環(huán)境中,這不僅僅對養(yǎng)殖區(qū)域、周圍的農(nóng)業(yè)環(huán)境以及人居環(huán)境構(gòu)成基因污染,還會(huì)對公共健康和食品、飲用水安全構(gòu)成威脅。有研究發(fā)現(xiàn),ARGs可以通過食物鏈傳遞給高營養(yǎng)級的生物,人類通過食用魚類等海產(chǎn)品會(huì)將抗生素抗性轉(zhuǎn)移到人體內(nèi)[28],進(jìn)而影響人類健康。此外,我國的海水養(yǎng)殖點(diǎn)重點(diǎn)分布于沿海地區(qū),抗性菌株和抗性基因很容易擴(kuò)散進(jìn)入海灣和公海水域。抗性基因一旦傳播給水生生物,將對整個(gè)水生生態(tài)系統(tǒng)造成不可逆的破壞,甚至對相鄰國家造成抗性基因的污染,這將直接影響我國在國際上進(jìn)出口貿(mào)易的國際形象和經(jīng)濟(jì)收益[27]。
現(xiàn)有的研究表明,抗性基因的存在導(dǎo)致細(xì)菌存在多重耐藥性[29-31]。目前,已有的研究證實(shí),水生生態(tài)系統(tǒng)是多種抗生素抗性基因的富集庫,外源性抗生素對水生生態(tài)系統(tǒng)的污染是誘導(dǎo)ARGs富集、散播的重要因素[32-34]。最新的研究報(bào)道指出,全球多個(gè)地區(qū)都檢測到了多種ARGs的存在[35],這表明水環(huán)境中ARGs污染問題已經(jīng)成為全球性的問題。這不僅僅是一個(gè)地區(qū)或者一個(gè)國家的問題,世界各國都面臨著嚴(yán)峻的考驗(yàn)。眾所周知,水產(chǎn)養(yǎng)殖中抗生素的使用量通常比較大,并且養(yǎng)殖水體一般都不會(huì)經(jīng)過特殊的處理而是直接排放到江河湖泊之中,因此,由水產(chǎn)養(yǎng)殖業(yè)所引起的水環(huán)境中的ARGs污染則更為嚴(yán)重。
針對水產(chǎn)養(yǎng)殖水環(huán)境中抗生素及ARGs污染的問題,國外的研究起步較早。水產(chǎn)養(yǎng)殖中抗生素的大量使用,致使魚類致病菌產(chǎn)生耐藥性,從而導(dǎo)致難以有效的治療魚類甚至動(dòng)物、人類的疾病。LALUMERA等[36]對意大利2個(gè)鮭魚養(yǎng)殖場和3個(gè)鱸魚養(yǎng)殖場的底泥進(jìn)行檢測分析時(shí)發(fā)現(xiàn),抗生素的使用,導(dǎo)致環(huán)境中ARGs的富集,其中土霉素和氟甲喹的最高濃度分別達(dá)到了246.3μg ·kg-1和578.8μg·kg-1,在水產(chǎn)養(yǎng)殖中持續(xù)使用抗生素,會(huì)造成抗性基因和耐藥性細(xì)菌的持續(xù)性增加。這種狀況也會(huì)促使多重耐藥性基因和攜帶菌株的產(chǎn)生、增加及傳播。經(jīng)研究發(fā)現(xiàn),水產(chǎn)養(yǎng)殖不僅會(huì)導(dǎo)致附近水域富集各種具有多重耐藥性的細(xì)菌[37],還會(huì)使遠(yuǎn)離水產(chǎn)養(yǎng)殖區(qū)域的環(huán)境中同樣具有非常高的多重耐藥性的細(xì)菌檢出率[38]。由于抗性基因可以在水生菌、陸生菌、人類致病菌之間流動(dòng)、散播,因此水產(chǎn)養(yǎng)殖產(chǎn)業(yè)大的國家和地區(qū),水環(huán)境中的細(xì)菌會(huì)攜帶大量的抗性基因[39],并且這些抗性基因轉(zhuǎn)移到陸生菌和人類致病菌的可能性會(huì)大大增加,抗性基因的密度也會(huì)大幅度上升??股貢?huì)篩選出那些具有抗性基因的細(xì)菌,使其數(shù)量大量增加,并誘使抗性基因的產(chǎn)生或傳播,促使水體中的抗性基因向陸生菌或人類致病菌散播。大量的實(shí)驗(yàn)數(shù)據(jù)及野外證據(jù)表明,水生菌可以頻繁的通過基因的水平轉(zhuǎn)移[40],使新型的抗性基因成為陸生菌(包括人類致病菌)基因的一部分,從而導(dǎo)致抗生素?zé)o法有效的治療人類疾病?;虻乃揭苿?dòng),使水生菌的遺傳基因可以傳播和分散,并且遺傳片段也會(huì)呈現(xiàn)出多樣性。比如人類腸道擬桿菌可以從水生菌中獲得降解海藻多糖的基因,從而使其自身具有降解海藻多糖的能力[41]。近年來,隨著人們對食品安全問題的重視,養(yǎng)殖水環(huán)境中抗生素及ARGs污染影響水產(chǎn)品質(zhì)量安全的問題也日益突出[3]。KANG等[42]在從韓國西部海域貝類樣品中分離篩選的24株腐敗希瓦氏菌(Shewanella putrefaciens)對16種抗生素具有耐藥性。CIZEK等[43]從鯉(Cyprinus carpio)皮膚中也分離培養(yǎng)了出了具有多重抗藥的氣單胞菌(Aeromonas spp.)。HAMMAD等[44]研究也發(fā)現(xiàn),生魚片是腸球菌(Enterococcus spp.)的富集庫,且攜帶多重抗性因子。
我國針對水產(chǎn)養(yǎng)殖環(huán)境中ARGs污染問題的研究起步較晚,但近年來的研究也取得了一定的進(jìn)展。我國是世界第一水產(chǎn)養(yǎng)殖大國,養(yǎng)殖產(chǎn)量約占世界總產(chǎn)量的60%以上[45]。然而,產(chǎn)量上的飛速發(fā)展與健康養(yǎng)殖的可持續(xù)性卻存在著嚴(yán)重的矛盾。在沿海的廣東[46-47]、河北[48]、上海[49]等許多地區(qū)均存在不同程度的ARGs污染。LING等[50]在南、北方的江河中均檢測出了磺胺類、四環(huán)素類ARGs。我國是抗生素生產(chǎn)和使用大國,抗生素年生產(chǎn)量接近21×104t,其中有9.7 ×104t用于畜牧水產(chǎn)養(yǎng)殖業(yè),占年總產(chǎn)量的46%[51]。在水產(chǎn)養(yǎng)殖業(yè)中,大量使用抗生素不僅會(huì)使抗生素殘留在水產(chǎn)品體內(nèi),導(dǎo)致我國水產(chǎn)品在國際市場上面臨巨大的綠色貿(mào)易壁壘,而且水體及底部沉積物中大量殘留的抗生素會(huì)誘導(dǎo)產(chǎn)生攜帶ARGs的抗藥菌株。DANG等[52]在中國北方的一個(gè)海參和海膽的養(yǎng)殖場內(nèi),從海參和海膽中分離出了抗氯霉素菌株,而氯霉素在1999年就被禁止用于海水養(yǎng)殖。在我國天津的6個(gè)水產(chǎn)養(yǎng)殖場檢測的四環(huán)素類和磺胺類抗生素的抗藥性基因,均普遍存在磺胺類抗藥性基因[53]。此外,陳琳琳等[54]對分離自水產(chǎn)養(yǎng)殖中的四環(huán)素耐藥菌、ARGs進(jìn)行檢測發(fā)現(xiàn),ARGs與耐藥菌的基因無直接關(guān)聯(lián),表明四環(huán)素ARGs可以在水產(chǎn)養(yǎng)殖環(huán)境中傳播擴(kuò)散。
隨著世界各國經(jīng)濟(jì)的不斷發(fā)展,水產(chǎn)養(yǎng)殖也得到了迅猛的發(fā)展,但水產(chǎn)養(yǎng)殖本身對環(huán)境和社會(huì)公共安全等方面所產(chǎn)生的負(fù)面影響,也越來越引起人們的關(guān)注,其中最為主要的問題就包括環(huán)境抗生素污染問題、水產(chǎn)品中抗生素殘留及其耐藥菌株的產(chǎn)生[55-56]??股匾坏┻M(jìn)入水生環(huán)境中,整個(gè)水體中的菌落結(jié)構(gòu)將發(fā)生改變,這種改變會(huì)使水生菌對抗生素產(chǎn)生耐受力,整個(gè)過程也會(huì)伴隨著某些益生菌的減少甚至消失,而具有耐受性的細(xì)菌就會(huì)增加,成為優(yōu)勢菌。水生環(huán)境中微生物結(jié)構(gòu)的改變,大多發(fā)生在對抗生素敏感和具有耐藥性的微生物之間[57]。在水產(chǎn)養(yǎng)殖場周圍的水生環(huán)境中,能夠耐受土霉素、喹諾酮類、磺胺類等藥物的微生物往往會(huì)大量繁殖[58]。研究發(fā)現(xiàn),抗生素的使用量及使用時(shí)間與周圍環(huán)境中具有相關(guān)耐藥性的微生物的數(shù)量和規(guī)模具有極高的相關(guān)性[59]。
由于各種抗生素的過度使用,細(xì)菌對抗生素的抗藥性已由單一抗藥逐漸發(fā)展為多重抗藥。細(xì)菌具有多重抗藥性的主要原因在于各種ARGs可以在環(huán)境微生物之間進(jìn)行連鎖傳播[60]。因此,ARGs污染已經(jīng)成為21世紀(jì)威脅人類健康的重大挑戰(zhàn)之一,由此產(chǎn)生的潛在生態(tài)風(fēng)險(xiǎn)也日益引起了人們的廣泛關(guān)注。有資料顯示,2010年,超級細(xì)菌新德里金屬β內(nèi)酰胺酶-1(New Delhi metallo-β-lactamase 1,簡稱NDM-1)的發(fā)現(xiàn),曾一度引發(fā)全球恐慌。2011年德國爆發(fā)的“毒黃瓜”事件,短期內(nèi)使得歐洲至少有9個(gè)國家受到了疫情的侵襲,確認(rèn)的死亡人數(shù)有33人,超過3 000人受到了感染,其中包括至少470人出現(xiàn)腎功能衰竭并發(fā)癥。2013年,美國疾病和預(yù)防控制中心發(fā)布的報(bào)告《美國2013年抗生素耐藥威脅》顯示,美國每年至少有200萬人感染耐藥菌,其中2.3萬人死亡,感染導(dǎo)致250億美元的醫(yī)療支出和350億生產(chǎn)損失,耐藥菌產(chǎn)生的速度遠(yuǎn)遠(yuǎn)超過新藥研制的速度,若不加以嚴(yán)格控制,未來人類的某些病癥將處于無藥可救的境地。以上這些均表明抗生素污染及由此導(dǎo)致的耐藥菌株的產(chǎn)生已對人類健康構(gòu)成了嚴(yán)重威脅,應(yīng)引起人們的高度重視。目前,我國水產(chǎn)養(yǎng)殖環(huán)境中ARGs的污染問題尚未引起人們的足夠重視,抗生素濫用現(xiàn)象比較普遍,直接導(dǎo)致了環(huán)境中ARGs的產(chǎn)生和傳播擴(kuò)散。作為一個(gè)水產(chǎn)養(yǎng)殖大國,為實(shí)現(xiàn)水產(chǎn)養(yǎng)殖業(yè)的健康可持續(xù)發(fā)展,在當(dāng)前抗生素與ARGs污染日趨嚴(yán)峻的形勢下,加強(qiáng)ARGs這一新型環(huán)境污染的研究力度、探清其污染機(jī)理、制定相應(yīng)的控制措施及監(jiān)管制度已刻不容緩,也責(zé)無旁貸。
針對水產(chǎn)養(yǎng)殖水體中ARGs污染所導(dǎo)致的環(huán)境和食品安全問題,研究制定有效的ARGs污染防控措施已經(jīng)成為當(dāng)前急需攻克的難題。我國是世界第一水產(chǎn)養(yǎng)殖大國,細(xì)菌性疾病對水產(chǎn)養(yǎng)殖的危害極大,特別是在密集型的養(yǎng)殖系統(tǒng)中,發(fā)生的更為頻繁[60-61],因此,抗生素濫用現(xiàn)象仍普遍存在。針對這一現(xiàn)狀,應(yīng)系統(tǒng)且具有針對性的開展水產(chǎn)養(yǎng)殖環(huán)境中抗生素及ARGs污染的研究。首先,必須建立水產(chǎn)養(yǎng)殖中抗性基因污染的定性和定量的方法。目前ARGs的檢測方法主要有兩種:一種是傳統(tǒng)的微生物抑制法。通過微生物培養(yǎng)法,即基于最小抑制濃度的藥敏試驗(yàn)[62]。傳統(tǒng)檢測法由于對其最適生長溫度、pH、營養(yǎng)成分等不十分清楚,因此許多微生物難以進(jìn)行平板培養(yǎng)。另一種是分子生物學(xué)方法。利用PCR技術(shù)對樣品總DNA進(jìn)行分析,該方法具有提取DNA率高,簡便快捷的優(yōu)點(diǎn)[63]。而近年來的熒光定量PCR技術(shù),更是實(shí)現(xiàn)了從定性到定量的飛躍。其次,分析環(huán)境因子(抗生素、溫度、pH、溶氧等)對ARGs傳播擴(kuò)散的影響及其機(jī)制,揭示ARGs在水產(chǎn)養(yǎng)殖環(huán)境中的擴(kuò)散和傳播規(guī)律,對于評價(jià)ARGs的生態(tài)風(fēng)險(xiǎn)十分必要,這將極大地促進(jìn)我國水產(chǎn)養(yǎng)殖的可持續(xù)發(fā)展,加快建立我國水產(chǎn)品生態(tài)安全體系,快速提升我國水產(chǎn)養(yǎng)殖業(yè)的國際市場競爭力。最后,研究相應(yīng)的控制和去除水產(chǎn)養(yǎng)殖環(huán)境中抗生素與ARGs的方法。目前,關(guān)于如何降解和消除水體中ARGs污染問題的研究,主要集中在對城市污水的處理[64-66]。在水產(chǎn)養(yǎng)殖業(yè)中,如何降解和消除養(yǎng)殖水體中ARGs的污染還未得到足夠的重視,進(jìn)行ARGs對水產(chǎn)動(dòng)物相關(guān)風(fēng)險(xiǎn)性研究,了解ARGs與水產(chǎn)動(dòng)物以及人類致病菌之間的關(guān)系,建立ARGs的生態(tài)環(huán)境安全評價(jià)體系及預(yù)警體系,不僅能確保我國水產(chǎn)養(yǎng)殖業(yè)的健康可持續(xù)發(fā)展,而且對于我國的生態(tài)安全和經(jīng)濟(jì)發(fā)展同樣具有重要的現(xiàn)實(shí)意義。
[1] 黃志堅(jiān),陳旭凌,路曉峰,等.水產(chǎn)養(yǎng)殖生物和養(yǎng)殖環(huán)境細(xì)菌鑒定及抗生素抗性基因檢測[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,51(6):92-96.HUANG Z J,CHEN X L,LU X F,et al.Identification and antibiotic resistance gences detection of Bacteria in aquaculture organisms and aquatic environment[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2012,51(6):92-96.
[2] RODRíGUEZ-ROJAS A,RODRíGUEZ-BELTRáN J,COUCE A,et al.Antibiotics and antibiotic resistance:A bitter fight against evolution[J].International Journal of Medical Microbiology,2013,303(6-7):293-297.
[3] NAWAZM,KHAN SA,TRAN Q,et al.Isolation and characterization of multidrug-resistant Klebsiella spp.isolated from shrimp imported from Thailand[J].International Journal of Food Microbiology,2012,155(3):179-184.
[4] 祁彥潔,劉 菲.地下水中抗生素污染檢測分析研究進(jìn)展[J].巖礦測試,2014,33(1):1-7.QI Y J,LIU F.Analysis of antibiotics in groundwater:A review[J].Rock and Mineral Analysis,2014,33(1):1-7.
[5] 蘇建強(qiáng),黃福義,朱永官.環(huán)境抗生素抗性基因研究進(jìn)展[J].生物多樣性,2013,21(4):481-487.SU J Q,HUANG F Y,ZHU Y G.Antibiotic resistance genes in the environment[J].Biodiversity Science,2013,21(4):481-487.
[6] DAVIES J,DAVIES D.Origins and evolution of antibiotic resistance[J].Microbiology and Molecular Biology Reviews,2010,74(3):417-433.
[7] WEBSTER L F,THOMPSON B C,F(xiàn)ULTON M H,et al.Identification of sources of Escherichia coli in South Carolina estuaries using antibiotic resistance analysis[J].Journal of ExperimentalMarine Biology and Ecology,2004,298(2):179-195.
[8] JAKOBSEN L,SANDVANG D,HANSEN L H,et al.Characterisation,dissemination and persistence of gentamicin resistant Escherichia coli from a Danish university hospital to the waste water environment[J].Environment International,2008,34(1):108 -115.
[9] KNAPP C W,DOLFING J,EHLERT P,et al.Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940[J].Environmental Science and Technology,2010,44(2):580-587.
[10] POPOWSKA M,RZECZYCKA M,MIERNIK A,et al.Influence of soil use on prevalence of tetracycline,streptomycin,and erythromycin resistance and associated resistance genes[J].Antimicrobial Agents and Chemotherapy,2012,56(3):1434-1443.
[11] LANG A S,ZHAXYBAYEVA O,BEATTY J T.Gene transfer agents:Phage-like elements of genetic exchange[J].Nature Reviews Microbiology,2012,10(7):472-482.
[12] BAHAROGLU Z,KRIN E,MAZEL D.Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase[J].Journal ofBacteriology,2012,194(20):1659-1667.
[13] NIKAIDO H.Multidrug resistance in bacteria[J].Annual Review of Biochemistry,2009,78(10):119-146.
[14] KOHANSKIM A,DEPRISTO M A,COLLINS J J.Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis[J].Molecular Cell,2010,37(3):311-320.
[15] CAMBRAY G,GUEROUT AM,MAZEL D.Integrons[J].Genetics,2010,44(1):141-165.
[16] STALDER T,BARRAUD O,CASELLASM,et al.Integron involvement in environmental spread of antibiotic resistance[J].Front Microbiol,2012,3(9):119.
[17] LEUNG KY,SIAME BA,TENKINK BJ,et al.Edwardsiella tarda-virulence mechanisms of an emerging gastroenteritis pathogen[J].Microbes Infect,2012,14(1):26-34.
[18] SHAH SQA,KARATAS S,NILSEN H,et al.Characterization and expression of the gyr Agene from quinolone resistant Yersinia ruckeristrains isolated from Atlantic salmon(Salmosalar L.)in Norway[J].Aquaculture,2012a,350-353(6):37-41.
[19] 胡瑩瑩,王菊英,馬德毅.近岸養(yǎng)殖區(qū)抗生素的海洋環(huán)境效應(yīng)研究進(jìn)展[J].海洋環(huán)境科學(xué),2004,23(4):76-80.HU Y Y,WANG JY,MA D Y,Research progress on environmental effect of antibiotic agents inmarine aquaculuture[J].Marine Environmental Scinece,2004,23(4):76-80.
[20] ROBERTS M C.Update on acquired tetracycline resistance gene[J].FEMS Micribiology Letters,2005,245(2):195-203.
[21] 徐永剛,宇萬太,馬 強(qiáng),等.環(huán)境中抗生素及其生態(tài)毒性效應(yīng)研究進(jìn)展[J].生態(tài)毒理學(xué)報(bào),2015,10(3):11-27.XU Y G,YUW T,MA Q,et al.The antibiotic in environment and its ecotoxicity:A review[J].Asian Journal of Ecotoxicology,2015,10(3):11-27.
[22] CESARE A D,VIGNAROLIC,LUNA G M,et al.Antibiotic-resistant Enterococci in seawater and sediments from a coastal fish farm[J].Microbial Drug Resistance,2012,18(5):502-509.
[23] HOA PTP,NONANA L,VIETPH,et al.Detection of the sul1,sul2,and sul3 genes in sulfonamideresistant bacteria from wastewater and shrimp ponds of North Vietnam[J].Science of the Total Environment,2008,405(1-3):377-384.
[24] 梁惜梅,聶湘平,施 震.珠江口典型水產(chǎn)養(yǎng)殖區(qū)抗生素抗性基因污染的初步研究[J].環(huán)境科學(xué),2013,34(10):4073-4080.LIANG X M,NIE X P,SHIZ.Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the Pearl River Estuary[J].Environmrntal Science,2013,34(10):4073 -4080.
[25] SCHMIDT A S,BRUUN M S,DALSGAARD I,et al.Incidence distribution and spread of tetracycline resistance detrrminants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment[J].Applied and Environmental Microbiology,2001,67(12):5675-5682.
[26] SCHMIDT A S,BRUUN M S,DALSGAARD I,et al.Occurrence of antimicrobial resistance in fishpathogenic and environmental bacteria associated with four danishrainbow trout farms[J].Applied and Environmental Microbiology,2000,66(11):4908 -4915.
[27] 羅 義,周啟星.抗生素抗性基因(ARGs)—一種新型環(huán)境污染物[J].環(huán)境科學(xué)學(xué)報(bào),2008,28(8):1499-1505.LUO Y,ZHOU Q X.Antibiotic resistance genes(ARGs)as emerging pollutants[J].Acta Scientiae Circumstantiae,2008,28(8):1499-1505.
[28] WITTE W.Ecological impact of antibiotic use in animals on different complex microfloraenvironment[C].International Journal of Antimicrobial Agents,2000,14(4):321-325.
[29] HOA P T P,MANAGAKI S,NAKADA N,et al.Antibiotic contamination and occurrence of antibioticresistant bacteria in aquatic environments of northern Vietnam[J].Science of the Total Environment,2011,409(15):2894-2901.
[30] KIRCHNER M,MAFURA M,HUNT T,et al.Antibiotic resistance gene profiling of faecal and oral anaerobes collected during an antibiotic challenge trial[J].Anaerobe,2013,23(17):20-22.
[31] LING Z H,YANG Y,HUANG Y L,et al.A preliminary investigation on the occurrence and distribution of antibiotic resistance genes in the Beijiang River,South China[J].Journal of Environmental Sciences,2013,25(8):1656-1661.
[32] TACAO M,MOURA A,CORREIA A,et al.Coresistance to different classes of antibiotics amongESBL-producers from aquatic systems[J].Water Research,2014,48(14):100-107.
[33] AMOSG C A,ZHANG L,HAWKEY P M,et al.Functionalmetagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes[J].Veterinary Microbiology,2014,171(3-4):441-447.
[34] MARTI E,VARIATZA E,BALCAZAR J L.The role of aquatic ecosystems as reservoirs of antibiotic resistance[J].Trends in Microbiology,2014,22(1):36-41.
[35] SEGAWA T,TAKEUCHI N,RIVERA A,et al.Distribution of antibiotic resistance genes in glacier environments[J].Environmental Microbiology Reports,2013,5(1):127-134.
[36] LALUMERA G M,CALAMARID,GALIP,et al.Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy[J].Chemosphere,2004,54(5):661-668.
[37] LABELLA A,GENNARIM,GHIDINI V,et al.High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming[J].Marine Pollution Bulletin,2013,70(1-2):197-203.
[38] OZAKTAST,TASKIN B,GOZEN A G.High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment[J].Water Research,2012,46(19):6382-6390.
[39] BUSCHMANN AH,TOMOVA A,LOPEZ A,et al.Salmon aquaculture and antimicrobial resistance in themarine environment[J].PLoS ONE,2012,7(8):e42724.
[40] LUPO A,COYNE S,BERENDONK TU.Origin and evolution of antibiotic resistance:The common mechanisms of emergence and spread in water bodies[J].Frontiers in Microbiology,2012,3(1):18.
[41] HEHEMANN JH,KELLY AG,PUDLO NA,et al.Bacteria of the human gutmicrobiome catabolize red seaweed glycans with carbohydrateactive enzyme updates from extrinsic microbes[J].Proceedings of the National Academy of Sciences,2012,109(48):19786-19791.
[42] KANG C H,SHIN Y,JEON H,et al.Antibiotic resistance of Shewanella putrefaciens isolated from shellfish collected from the West Sea in Korea[J].Marine Pollution Bulletin,2013,76(1-2):85-88.
[43] CIZEK A,DOLEJSKA M,SOCHOROVA R,et al.Antimicrobial resistance and its genetic determinants in aeromonads isolated in ornamental(koi)carp(Cyprinuscarpio koi)and common carp(Cyprinuscarpio)[J].Veterinary Microbiology,2010(142):435-439.
[44] HAMMAD A M,SHIMAMOTO T,SHIMAMOTO T.Genetic characterization of antibiotic resistance and virulence factors in Enterococcus spp.from Japanese retail ready-to-eat raw fish[J].Food Microbiology,2014,38(11):62-66.
[45] FAO.Fishery and Aquaculture Statistics[DB].FAO Fisheries and Aquaculture Department,America,F(xiàn)ood and Agriculture Organization of the United Nations.2012.
[46] 楊 穎.北江水環(huán)境中抗生素抗性基因污染分析[D].廣州:中山大學(xué),2010:36-60.YANG Y.Characterizing the pollution by the representative antibiotic resistance genes(ARGs)in the Beijing River,south China[D].Guangzhou:Sun Yat-sen University,2010:36-60.
[47] 張瑞泉,應(yīng)光國,丁永禎,等.廣東西枝江-東江流域抗生素抗性基因污染特征研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(12):2471-2479.ZHANG R Q,YING G G,DING Y Z,et al.Pollution characteristics of antibiotic resistance genes in Xizhijiang-Dongjiang River Basin,Guangdong Province,China[J].Journal of Agro-Environment Science,2013,32(12):2471-2479.
[48] 徐 艷,張 遠(yuǎn),郭昌勝,等.石家莊汪洋溝地區(qū)抗生素、抗性細(xì)菌和抗性基因污染特征研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(6):1174-1182.XU Y,ZHANG Y,GUO C S,et al.Pollution characteristics of antibiotics,antibiotic resistance bacteria and genes in Wangyanggou River,Shijiazhuang[J].Journal of Agro-Environment Science,2014,33(6):1174-1182.
[49] 沈群輝,冀秀玲,傅淑珺,等.黃浦江水域抗生素及抗性基因污染初步研究[J].生態(tài)環(huán)境學(xué)報(bào),2012,21(10):1717-1723.SHEN Q H,JI X L,F(xiàn)U S J,et al.Preliminary studies on the pollution levels of antibiotic and antibiotic resistance genes in Huangpu River,China[J].Ecology and Environmental Sciences,2012,21(10):1717-1723.
[50] LING Z H,YANG Y,HUANG X L,et al.A preliminary investigation on thr occurrence anddistribution of antibiotic resistance and distribution of antibiotic resistace genes on the Beijiang River,South China[J].Journal of Environmental Science,2013,25(8):1656-1661.
[51] ZHOU L J,YING GG,ZHAO JL,etal.Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River,Hai River and Liao River in Northern China[J].Environmental Pollution,2011,159(7):1877-1885.
[52] DANG H Y,SONGLS,CHENM N,etal.Concurrence of cat and tet genes in multiple antibiotic resistant bacteria isolated from a sea cucumber and sea urchin marculture farm in China[J].Microbial Ecology,2006,52(4):634-643.
[53] GAO PP,MAO D Q,LUO Y,et al.Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J].Water Research,2012,46(7):2355-2364.
[54] 陳琳琳,劉維青,劉 靜,等.水產(chǎn)養(yǎng)殖環(huán)境常見四環(huán)素類抗生素抗性基因tet(M)的演化及傳播的初步分析[J].海洋科學(xué),2011,35(12):75-81.CHEN L L,LIU W Q,LIU J,et al.Study of evolution and dissemination of common tetracycline resistance tet(M)genes in aquaculture[J].Marine Sciences,2011,35(12):75-81.
[55] COLE D W,COLE R,GAYDOS S J,et al.Aquaculture:Environmental,toxicological,and health issues[J].International Journal of Hygiene and Environmental Health,2009,212(4):369-377.
[56] GRIGORAKISK,RIGOSG.Aquaculture effects on environmental and public welfare-The case of Mediterranean mariculture[J].Chemosphere,2011,855(6):899-919.
[57] ANDERSSON DI,HUGHES D.Persistence of antibiotic resistance in bacterial populations[J].FEMSMicrobiology Reviews,2011,35(5):901-911.
[58] GORDON L,GIAUD E,GANIERE J P,et al.Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms[J].Journal of Applied Microbiology,2007,102(4):1167-1176.
[59] TAMMINEN M,KARKMAN A,CORANDER J,et al.Differences in bacterial community composition in Baltic Sea sediment in response to fish farming[J].Aquaculture,2011a,313(1-4):15-23.
[60] SUN K,WANG H L,ZHANG M,et al.Genetic mechanisms of multi-antimicrobial resistance in a pathogenic Edwardsiella tardas train[J].Aquaclture,2009,195(3-4):193-204.
[61] QIZ Z,ZHANG X H,BOON N,etal.Probiotics in aquaculture of China-Current state,problems and prospect[J].Aquaculture,2009,290(1-2):15 -21.
[62] NCCLS(Natinoal Committee for Clinical Laboratory Standards).Performance Standards for Antimicrobial Disk Susceptibility Tests:Approved Standard[M].(8thEdn).NCCLS document M2-A8.PA:NCCLS,2003.
[63] CHEN Z,CHEN Y C,F(xiàn)U SY,et al.Methods for extracting DNA from environmental samples[J].Environmental Pollution&Control,2007,29(7):537-544.
[64] CHEN H,ZHANGM M.Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China[J].Environment International,2013,55(4):9-14.
[65] MARIA V,NOVAK J T,VIKESLAND P J,et al.Effect ofwastewater colloids onmembrane removal of antibiotic resistance genes[J].Water Research,2013,47(1):130-140.
[66] BERGLUND B,ALIKHAN G,WEISNER SE B,et al.Efficient removal of antibiotics in surface-flow constructed wetlands,with no observed impact on antibiotic resistance genes[J].Science of the Total Environment,2014,476-477(14):29-37.
Current status and prospect ofantibiotic resistance genes(ARGs)pollution in the aquaculture
LIYun-li1,2,GAO Quan-xin1,ZHANG Chen-jie1,SHIZhao-hong1,PENG Shi-ming1,WANG Jian-gang1
(1.East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Shanghai 200090,China;2.College of Fisheries and Life Science,Shanghai Ocean University,Shanghai 201306,China)
In aquaculture,aquatic products is often affected by bacterial diseases,which leads to the decline in production,while antibiotics are the most effective drug to treat the bacterial diseases.However,recent studies have found that the excessive use of antibiotics did not get to increase the expected economic output.On the contrary,it induced a series of pathogenic bacteria carrying the resistance genes,which seriously restricted the development of aquaculture.Currently,there are two sources for the antibiotic resistance genes(ARGs).One is intrinsic resistance of bacteria in the environment which is the prototype of the resistance gene and quasi resistant gene existing in the bacterial genome or genes not expressed normally.The other is exogenous inputwhich refers to the bacteriawith resistance gene excreting through human or animal feceswith the intestinal bacteria,and then entering the environment.The resistance gene can enhance the resistance of bacteria to antibiotics.So when the antibiotics enter the aquatic environment,the bacteria carrying the resistance gene will quicklymultiply and become the dominant flora.In the water environment,because the genomes of aquatic bacteria are complex and diverse and they contain the genetic elements or genes that are capable of producing and spreading resistance genes.The resistance genes can transfer to the bacteria that do not contain resistance genes by horizontal gene transfer,and then through the food chain enrichment enter the human body eventnally.The majority of antibiotics in the environment will finally enter the water environment,therefore it is the most serious problem for the water environment and has become the most concerned environmental pollution.In some eastern coastal cities of China,aquaculture industry has become the pillar industry.And many breeding sites are located in the tidal flat,so the resistant strains and resistance genes is prone to diffusing into the Gulf and the waters of high seas.Once the resistance genes is transmitted to the aquatic organisms,it will cause irreversible damage to the whole aquatic ecosystem and even the neighboring countries can be polluted by the resistance genes,which will directly affect the our country’s image in the international import and export trade and the economic benefits.Existing studies have indicated that the presence of resistance genes led to themultiple drug resistance in bacteria.Aquatic ecosystem is the enriched library of the multiple antibiotic resistance genes,and the pollution of exogenous antibiotics to aquatic ecosystem is the important factor to induce ARGs’accumulation and dissemination.Researches about the pollution of the antibiotics and ARGs in the aquaculture environment stated relatively earlier abroad.A large number of antibiotics usage in aquaculture resulted in the emergence of drug resistance to the pathogens in fish,which led to the difficulies to be effective in the treatmentof fish and even animals or human diseases.Though China is the largest country in aquaculture in the world,the relevant research still lagged behind.Thus,with the rapid development of China’s aquaculture industry and the continuous expansion of the scale of aquaculture,resistance gene not only led to the continuous decline in aquaculture production,but also had caused great pressures on the environment.Moreover,withmore andmore attention paid on the food security,the possible problems brought by ARGs pollution in the aquaculture have been worried about in recent years.Therefore,it should systematically carry out antibiotics and ARGs pollution research in aquaculture environment,and establishmethods for screening and identifying the resistant strains in aquaculture organismsand their environment,and analyze the environmental factors’(antibiotics,temperature,pH,dissolved oxygen,etc.)influence on ARGs diffusion and the relevant mechanisms,and reveal the diffusion and propagation reguations of ARGs in aquaculture environment,and establish the method for the control and removal of antibiotics and ARGs in aquaculture environment.The paper summarized the research progress of the resistance gene pollution in cultured waters from four aspects,which were production and transmission of ARGs,the formation and harm of ARGs pollution,research status of ARGs pollution at home and abroad and the necessity of strengthening the study of ARGs pollution.The future research keynoteswere also discussed at the end of this paper.
antibiotic;antibiotic resistance gene;aquaculture
S 949
A
1004-2490(2017)03-0351-10
2016-08-18
國家自然基金項(xiàng)目(31202009);中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)(東2014Z02)
李云莉,碩士。E-mail:liyunli109@163.com
彭士明,副研究員。E-mail:shiming.peng@163.com