姚 森,張 霽,李杰慶,王元忠*,劉鴻高*
(1.云南農(nóng)業(yè)大學(xué)農(nóng)學(xué)與生物技術(shù)學(xué)院,云南昆明650201;2.云南省農(nóng)業(yè)科學(xué)院藥用植物研究所,云南昆明650200;3.云南省省級(jí)中藥原料質(zhì)量檢測(cè)技術(shù)服務(wù)中心,云南昆明650200)
利用FTIR和化學(xué)計(jì)量學(xué)對(duì)牛肝菌親緣關(guān)系的研究
姚 森1,2,張 霽2,3,李杰慶1,王元忠2,3*,劉鴻高1*
(1.云南農(nóng)業(yè)大學(xué)農(nóng)學(xué)與生物技術(shù)學(xué)院,云南昆明650201;2.云南省農(nóng)業(yè)科學(xué)院藥用植物研究所,云南昆明650200;3.云南省省級(jí)中藥原料質(zhì)量檢測(cè)技術(shù)服務(wù)中心,云南昆明650200)
采用傅里葉變換紅外光譜結(jié)合化學(xué)計(jì)量學(xué)對(duì)不同種牛肝菌親緣關(guān)系進(jìn)行研究,為該種群親緣關(guān)系鑒定提供依據(jù),同時(shí)為人工栽培牛肝菌奠定理論基礎(chǔ)。采集12個(gè)種類72份牛肝菌樣品的紅外光譜,采用二階導(dǎo)數(shù)(2D)、標(biāo)準(zhǔn)正態(tài)(SNV)變量和小波壓縮(WC)等方法對(duì)牛肝菌的原始紅外光譜進(jìn)行優(yōu)化處理,結(jié)合偏最小二乘判別分析(PLS-DA)建立鑒別模型。將PLS-DA得到的前8個(gè)主成分?jǐn)?shù)據(jù)作為提取數(shù)據(jù)代入系統(tǒng)聚類分析(HCA),獲得親緣關(guān)系樹(shù)狀圖。結(jié)果顯示:12種牛肝菌的原始紅外光譜較為相似,共有峰主要?dú)w屬為蛋白質(zhì)、多糖、纖維素和氨基酸等物質(zhì)中O-H、C =O、C-O-H、C=O、C-C等官能團(tuán)的吸收峰。對(duì)比不同優(yōu)化處理的鑒別結(jié)果,發(fā)現(xiàn)2D+WC預(yù)處理方法對(duì)不同種類牛肝菌區(qū)分效果較好。HCA親緣關(guān)系樹(shù)狀圖表明,按照物種層面劃分,中華牛肝菌和遠(yuǎn)東疣柄牛肝菌親緣關(guān)系最近,且2種牛肝菌與圓花孢牛肝菌親緣關(guān)系較近;深褐牛肝菌和美味牛肝菌親緣關(guān)系較近;小美牛肝菌和美柄牛肝菌親緣關(guān)系較近,且2種牛肝菌與栗色牛肝菌親緣關(guān)系較近。傅里葉變換紅外光譜法可應(yīng)用于牛肝菌的親緣關(guān)系分析,能為野生食用菌的親緣關(guān)系研究提供一種新方法。
傅里葉變換紅外光譜;偏最小二乘判別分析;系統(tǒng)聚類分析;牛肝菌;親緣關(guān)系
牛肝菌屬于大型真菌,為牛肝菌科和松塔牛肝菌科的統(tǒng)稱,大部分品種可以食用,富含蛋白質(zhì)、氨基酸、多糖、礦質(zhì)元素、維生素等[1-3]。因其味道鮮美,營(yíng)養(yǎng)豐富,口感細(xì)膩,是煲湯和火鍋的優(yōu)質(zhì)食材,也可加工成糕點(diǎn)食用。牛肝菌兼具食藥用價(jià)值,具有增強(qiáng)免疫、保護(hù)肝臟、降血脂、抗病毒、抗腫瘤及減肥的功效[4-6]。我國(guó)已報(bào)道的牛肝菌目中具菌管及菌褶類群的種類多達(dá)28屬397種[7],可食用種類有199種,其中云南、四川、西藏、貴州等地可食用牛肝菌種類最為豐富[8],云南省已知的牛肝菌有224種,其中可食用的有144種[9-10]。據(jù)報(bào)道,2015年2月以來(lái),在昆明、西雙版納等市場(chǎng)上已經(jīng)有大量人工栽培牛肝菌出售,在此之前市場(chǎng)上銷售均為野生牛肝菌[11];人工栽培的牛肝菌可以實(shí)現(xiàn)四季生長(zhǎng),產(chǎn)量高,平均日產(chǎn)能夠達(dá)到500 kg[12]。由此可見(jiàn),人工馴化栽培牛肝菌將會(huì)成為一種發(fā)展趨勢(shì)。但是隨著牛肝菌人工栽培的發(fā)展,會(huì)發(fā)生出菇率低、畸形菌、病害、蟲害等問(wèn)題,需要培育優(yōu)種和抗病菌株。牛肝菌親緣關(guān)系研究對(duì)培育高產(chǎn)、抗蟲、抗病菌株有巨大幫助。近年來(lái),關(guān)于牛肝菌親緣關(guān)系的研究報(bào)道較少。因此,對(duì)牛肝菌進(jìn)行親緣關(guān)系研究具有重要意義。
目前,植物親緣關(guān)系的研究方法除了簡(jiǎn)單的植物形態(tài)特征觀察外,SRAP[13]、ISSR[14]、RAPD[15]、AFLP[16]等分子標(biāo)記法應(yīng)用廣泛,但這些方法需要復(fù)雜的儀器設(shè)備和專業(yè)知識(shí),操作繁瑣、費(fèi)時(shí)、費(fèi)力。傅里葉變換紅外光譜法(FTIR)具有快速、無(wú)損、準(zhǔn)確等特點(diǎn),所得圖譜能宏觀地表達(dá)被測(cè)樣品化學(xué)信息,具有整體性[17]。在生物親緣關(guān)系研究中,傅里葉變換紅外光譜法得到了廣泛應(yīng)用,Hu等[18]采用FTIR結(jié)合離散小波變換和概率神經(jīng)網(wǎng)絡(luò)判別方法對(duì)2種葡萄進(jìn)行了準(zhǔn)確的分類鑒別;Demir等[19]釆用紅外光譜結(jié)合層次聚類分析和主成分分析成功區(qū)分了小麥的耕作種與野生種;Jin等[20]采用FTIR結(jié)合離散小波變換對(duì)不同種類的柴胡進(jìn)行了準(zhǔn)確鑒別。本研究采用二階導(dǎo)數(shù)(second derivative,SD)、標(biāo)準(zhǔn)正態(tài)(standard normal variate,SNV)變量和小波壓縮(wavelet compression,WC)等方法對(duì)12個(gè)種72份牛肝菌樣品的紅外光譜進(jìn)行優(yōu)化處理,結(jié)合偏最小二乘判別分析(partial least squares discriiminate analysis,PLS-DA)、系統(tǒng)聚類分析(hierarchical cluster analysis,HCA)方法對(duì)其親緣關(guān)系進(jìn)行分析,為牛肝菌遺傳學(xué)研究奠定理論基礎(chǔ),同時(shí)為分析野生食用菌親緣關(guān)系提供一種簡(jiǎn)便、快捷的方法。
1.1 試驗(yàn)材料
2013年采自云南8個(gè)產(chǎn)地12個(gè)種類的72份牛肝菌子實(shí)體詳細(xì)信息見(jiàn)表1,所有樣品由云南農(nóng)業(yè)大學(xué)劉鴻高教授鑒定。
1.2 試驗(yàn)儀器及參數(shù)
Frontier型傅里葉變換紅外光譜儀(配備DTGS檢測(cè)器,掃描范圍為4 000~400 cm-1,掃描信號(hào)累加16次,分辨率為4 cm-1,美國(guó)Perkin Elmer公司)、KBr(分析純,天津市風(fēng)船化學(xué)試劑科技有限公司)、YP-2型壓片機(jī)(上海市山岳科學(xué)儀器有限公司)、FW-100型高速粉碎機(jī)(天津市華鑫儀器廠)、0.180 mm標(biāo)準(zhǔn)篩盤(浙江上虞市道墟五四儀器廠)。
1.3 樣品處理和光譜采集
樣品采集后清洗干凈,50℃烘干,粉碎后過(guò)0.180 mm標(biāo)準(zhǔn)篩,備用。按1∶100的比例,準(zhǔn)確稱取1.5 mg牛肝菌樣品和150 mg KBr粉末,放入瑪瑙研缽充分混合研磨成細(xì)粉,將細(xì)粉倒入壓制磨具中壓制成片。傅里葉紅外光譜儀預(yù)熱30 m in后測(cè)定光譜,樣品重復(fù)測(cè)定2次,取平均光譜;掃描前使用空白樣本扣除CO2和H2O的干擾。
1.4 數(shù)據(jù)處理
原始光譜通過(guò)OMNIC 8.0軟件進(jìn)行平均光譜、自動(dòng)基線校正、平滑、縱坐標(biāo)歸一化等預(yù)處理。SIMCA-P+10.0軟件對(duì)原始光譜進(jìn)行預(yù)處理并進(jìn)行PLS-DA分析,PLS-DA為有監(jiān)督的模式識(shí)別,是一種將X變量分類標(biāo)簽作為Y變量的偏最小二乘回歸方法[21-22]。采用SPSS 20.0軟件對(duì)樣品的主成分進(jìn)行HCA分析。
傅里葉變換紅外光譜儀所采集的光譜信息夾雜了背景噪音、散光等干擾信息[23]。為消除其他因素干擾,采用2D+SNV和2D+WC對(duì)光譜進(jìn)行優(yōu)化處理。二階導(dǎo)數(shù)主要消除光譜中基線的平移和漂移(散射),并消除組分之間的相互干擾,提高分辨率和靈敏度[24-25]。標(biāo)準(zhǔn)正態(tài)變量主要消除固體顆粒大小,表面散射以及光程變化對(duì)漫反射光譜的影響[26-27]。小波壓縮因其優(yōu)越的時(shí)頻局部化特性,可在基本不損失有效光譜信息條件下,壓縮光譜數(shù)據(jù),將壓縮后變量作為校正模型輸入變量,提高收斂速度,改善預(yù)測(cè)的精度[28]。
2.1 方法學(xué)考察
運(yùn)用OMNIC 8.0軟件的光譜檢索功能,建立穩(wěn)定性、精確度、重復(fù)性的光譜數(shù)據(jù)庫(kù),分別計(jì)算樣品與數(shù)據(jù)庫(kù)的匹配度,匹配值越高方法越可靠。經(jīng)測(cè)定,本次試驗(yàn)的穩(wěn)定性、精確度、重復(fù)性的匹配值分別在99.85%~99.91%、99.90%~99.91%、98.56%~99.87%,相對(duì)標(biāo)準(zhǔn)偏差的值分別為0.022 5%、0.004 1%、0.490 2%。測(cè)定結(jié)果表明,該試驗(yàn)穩(wěn)定性好、精密度高、重復(fù)性高。
2.2 原始紅外光譜分析
釆用OMNIC 8.0軟件對(duì)72個(gè)牛肝菌子實(shí)體的紅外光譜進(jìn)行平滑、基線校正和縱坐標(biāo)歸一化等預(yù)處理。預(yù)處理樣品的平均紅外光譜如圖1所示,不同種類牛肝菌的紅外光譜較為相似,共有峰波數(shù)大致相同。紅外光譜在3 300 cm-1附近的強(qiáng)吸收峰歸屬為蛋白質(zhì)、多糖、纖維素等O-H伸縮振動(dòng)或者蛋白質(zhì)中的N-H伸縮振動(dòng);2 931 cm-1附近吸收峰主要為多糖、蛋白質(zhì)等甲基對(duì)稱伸縮振動(dòng);1 634 cm-1附近吸收峰為C=O伸縮振動(dòng),為蛋白質(zhì)酰胺I帶;1 480 cm-1附近歸屬為亞甲基的彎曲振動(dòng);1 400、1 319、1 253 cm-1等附近為多糖、蛋白質(zhì)等的C-O-H彎曲振動(dòng)和亞甲基的變形振動(dòng);1 078、1 057 cm-1附近分別為糖類的C-O和C-C伸縮振動(dòng);950~710 cm-1范圍多個(gè)弱吸收峰,主要為糖類異構(gòu)體的特征峰[29-30]。
2.3 偏最小二乘判別分析
對(duì)72個(gè)子實(shí)體樣品的紅外光譜進(jìn)行偏最小二乘判別分析,其中圖2A是經(jīng)過(guò)2D+SNV預(yù)處理得到的三維圖,圖2B是經(jīng)過(guò)2D+WC預(yù)處理得到的三維圖。圖2A中大部分樣品被區(qū)分開(kāi),但是第1組樣品出現(xiàn)聚類錯(cuò)誤,圖2B能夠準(zhǔn)確無(wú)誤地將各種樣品區(qū)分開(kāi)。結(jié)果顯示,與2D+SNV預(yù)處理相比,2D+WC對(duì)不同種類牛肝菌區(qū)分的效果較好。
2.4 系統(tǒng)聚類分析
將PLS-DA得到的前8個(gè)主成分作為紅外光譜提取數(shù)據(jù)代入SPSS 20.0軟件進(jìn)行系統(tǒng)聚類分析。采用ward聯(lián)接法,以Euclidean距離為度量標(biāo)準(zhǔn)進(jìn)行計(jì)算,得到12種牛肝菌樣品的親緣關(guān)系樹(shù)狀圖(圖3)。親緣關(guān)系樹(shù)狀圖顯示:中華牛肝菌和遠(yuǎn)東疣柄牛肝菌在距離系數(shù)為1處聚為一類。深褐牛肝菌和美味牛肝菌在距離系數(shù)為4處聚為一類??喾坻吲8尉突液峙8尉诰嚯x系數(shù)為2處聚為一類。小美牛肝菌和美柄牛肝菌在距離系數(shù)為2處聚為一類,但是有1個(gè)美柄牛肝菌樣品存在聚類錯(cuò)誤,可能是由生存環(huán)境的差異造成了化學(xué)成分積累的差異。圓花孢牛肝菌、中華牛肝菌和遠(yuǎn)東疣柄牛肝菌在距離系數(shù)為3處聚為一類。小美牛肝菌、美柄牛肝菌和栗色牛肝菌在距離系數(shù)為3處聚為一類。
根據(jù)物種層次劃分,不同種類牛肝菌的聚類結(jié)果表明,中華牛肝菌和遠(yuǎn)東疣柄牛肝菌親緣關(guān)系最近,并且2種牛肝菌與圓花孢牛肝菌親緣關(guān)系較近;深褐牛肝菌和美味牛肝菌親緣關(guān)系較近;小美牛肝菌和美柄牛肝菌親緣關(guān)系較近,且2種牛肝菌與栗色牛肝菌親緣關(guān)系較近。
采用傅里葉變換紅外光譜法測(cè)定12個(gè)不同種類牛肝菌的紅外光譜,12種牛肝菌的紅外光譜相似度較高。對(duì)12種牛肝菌的紅外光譜進(jìn)行2D+SNV和2D+WC預(yù)處理,結(jié)合PLS-DA發(fā)現(xiàn)2D+WC預(yù)處理方法對(duì)牛肝菌種類鑒別效果優(yōu)于2D+SNV。經(jīng)2D+WC處理后,利用PLS-DA得到前8個(gè)主成分作為牛肝菌紅外光譜提取數(shù)據(jù)代入到HCA,結(jié)果顯示,中華牛肝菌和遠(yuǎn)東疣柄牛肝菌親緣關(guān)系最近,并且2種牛肝菌與圓花孢牛肝菌親緣關(guān)系較近;深褐牛肝菌和美味牛肝菌親緣關(guān)系較近;小美牛肝菌和美柄牛肝菌親緣關(guān)系較近,且2種牛肝菌皆與栗色牛肝菌親緣關(guān)系較近。傅里葉變換紅外光譜法可以應(yīng)用于牛肝菌的親緣關(guān)系研究并成為分析野生食用菌親緣關(guān)系的新方法。
[1] 杜敏華,張英君,劉明星,等.野生牛肝菌多糖提取工藝的優(yōu)化及其對(duì)自由基的清除作用[J].食品工業(yè)科技,2012,33(22):292-295.
[2] Wang X M,Zhang J,Wu L H,et al.A m ini-review of chemical composition and nutritional value of edible wildgrown mushroom from China[J].Food Chemistry,2014,151:279-285.
[3] Reis F S,Barros L,Martins A,et al.Chemical com position and nutritional value of the most widely appreciated cultivated mushrooms:An inter-species comparative study[J]. Food and Chem ical Toxicology,2012,50(2):191-197.
[4] 李月梅.食用菌的功能成分與保健功效[J].食品科學(xué),2005,26(8):517-521.
[5] Roupas P,Keogh J,Noakes M,et al.The role of edible mushrooms in health:Evaluation of the evidence[J]. Journal of Functional Foods,2012,4(4):687-709.
[6] Giavasis I.Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals[J]. Current Opinion in Biotechnology,2014,26:162-173.
[7] 李泰輝,宋斌.中國(guó)牛肝菌分屬檢索表[J].生態(tài)科學(xué),2002,21(3):240-245.
[8] 周在進(jìn),劉剛,任先培.不同產(chǎn)地小美牛肝菌的紅外光譜聚類分析研究[J].激光與紅外,2009,39(11):1158-1162.
[9] 戴玉成,周麗偉,楊祝良,等.中國(guó)食用菌名錄[J].菌物學(xué)報(bào),2010,29(1):1-21.
[10] 李泰輝,宋斌.中國(guó)食用牛肝菌的種類及其分布[J].食用菌學(xué)報(bào),2002,9(2):22-30.
[11] 姬丹丹.云南:人工牛肝菌熱銷鮮品價(jià)格達(dá)120元/公斤[EB/OL].(2015-03-30)[2016-04-22].http:// ynsyj.yncoop.com/.
[12] 謝先斌.全球首家人工種植牛肝菌實(shí)現(xiàn)工廠化生產(chǎn)[EB/OL].(2015-04-27)[2016-04-22].http://www. bndaily.com/.
[13] Cheng Y,Ma X,Zhou K,et a l.Phylogenetic analysis of Festuca-Lolium com plex using SRAP markers[J]. Genetic Resources and Crop Evolution,2016,63(1):7-18.
[14] Kumar M,Chhokar V,Kumar A,et al.A comparative study of genetic diversity in chickpea based upon touchdown and non-touchdown PCR using ISSR markers[J].Chiang Mai Journal of Science,2015,42(1):117-125.
[15] Zargar S M,F(xiàn)arhat S,Mahajan R,et a l.Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean[J].Saudi Journal of Biological Sciences,2016,23(1):139-149.
[16] Yotsukura N,Maeda T,Abe T,et al.Genetic differences among varieties of Saccharina japonica in northern Japan as determ ined by AFLP and SSR analyses[J].Journal of Applied Phycology,2016,28(5):1-13.
[17] Alexandrakis D,Downey G,Scannell A G M.Rapid nondestructive detection of spoilage of intact chicken breast musc le using near-infrared and fourier transform m id-infrared spectroscopy and multivariate statistics[J].Food and Bioprocess Technology,2012,5(1):338-347.
[18] Hu J,Liu G,Zhao X,et al.Identification of two grape cultivars by FTIR combined with chemometrics[J].Agricultural Biotechnology,2015,4(2):14-16.
[19] Demir P,Onde S,Severcan F.Phylogeny of cultivated and w ild wheat species using ATR-FTIR spectroscopy[J].Spectrochim ica Acta Part A(Molecu lar and Biomolecular Spectroscopy),2015,135:757-763.
[20] Jin W,W an C,Cheng C.Study on the identification of radix bupleuri from its unofficial varieties based on discrete wavelet transformation feature extraction of atrftir spectroscopy combined with probability neural network[J].International Journal of Analytical Chemistry,2015.DOI:10.1155/2015/950209.
[21] Pérez-Enciso M,Tenenhaus M.Prediction of clinical outcome with microarray data:A partial least squares discriminant analysis(PLS-DA)approach[J].Human Genetics,2003,112(5/6):581-592.
[22] Gromski P S,Muhamadali H,Ellis D I,et al.A tutorial review:Metabolomics and partial least squaresdiscriminant analysis—a marriage of convenience or a shotgun wedding[J].Analytica Chimica Acta,2015,879:10-23.
[23] Hendler R W,Meuse CW,Gallagher T,et al.Stray light correction in the optical spectroscopy of crystals[J].Applied Spectroscopy,2015,69(9):1106-1111.
[24] Mezzetti A,Kish E,Robert B,et al.Assignment of IR bands of isolated and protein-bound peridinin in its fundamental and triplet state by static FTIR,time-resolved step-scan FTIR and DFT calculations[J].Journal of Molecular Structure,2015,1090:58-64.
[25] He J,Tang Y,Wang SY.Differences in morphological characteristics of bamboo fibres and other natural cellulose fi-bres:Studies on X-Ray siffraction,solid state13C-CP/MAS NMR,and second derivative FTIR spectroscopy data[J].I-ranian Polymer Journal,2007,16(12):807-818.
[26] DeJong S A,O′Brien W L,Lu Z,et al.Optimization of gap derivatives for measuring blood concentration of fabric using vibrational spectroscopy[J].Applied Spectroscopy,2015,69(6):733-748.
[27] Genkawa T,Shinzawa H,Kato H,et al.Baseline correction of diffuse reflection near-infrared spectra using searching region standard normal variate(SRSNV)[J]. Applied Spectroscopy,2015,69(12):1432-1441.
[28] Grinsted A,Moore J C,Jevrejeva S.Application of the cross wavelet transform and wavelet coherence to geophysical time series[J].Nonlinear Processes in Geophysics,2004,11(5/6):561-566.
[29] 劉飛,王元忠,楊春艷,等.紅外光譜結(jié)合判別分析對(duì)三七道地性及產(chǎn)地的鑒別研究[J].光譜學(xué)與光譜分析,2015,35(1):108-112.
[30] Calamari L,F(xiàn)errari A,Minuti A,et a l.Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on fourier transform mid-infrared spectroscopy:Preliminary results[J].BMC Veterinary Research,2016.DOI:10.1186/s12917-015-0621-4.
Genetic Relationship of Bolete Mushrooms by FTIR Combined with Chemometrics
YAO Sen1,2,ZHANG Ji2,3,LI Jieqing1,WANG Yuanzhong2,3*,LIU Honggao1*
(1.College of Agronomy and Biotechnology,Yunnan Agricultural University,Kunming 650201,China;2.Institute of Medicinal Plants,Yunnan Academy of Agricultural Sciences,Kunming 650200,China;3.Yunnan Technical Service Center for Quality Testing of Chinese Medicine Raw Materials,Kunm ing 650200,China)
In order to establish a new method for identifying the genetic relationships and provide theoretical basis for artificial cultivation of boletemushrooms,fourier transform infrared(FTIR)spectroscopy combined with Chemometrics was used to study the genetic relationships among different species of bolete mushrooms samp les.A total of 72 infrared spectra of 12 different species of boletes were collected and processed by using second derivative(2D),standard normal variate(SNV)and wavelet compression(WC). Then the processed spectra were used to establish a discrim ination model based on partial least squares discriminant analysis(PLS-DA).H ierarchical cluster analysis was performed by the method of betweengroups linkage and Euclidean distance according to the eight principal components which were obtained by PLS-DA and the results of HCA were displayed as dendrograms.The results showed that all of the original infrared spectra were similar.The common absorption peakswere mainly assigned to the functional groups of O-H,C=O,C-O-H,C=O and C-C of protein,polysaccharide,fibres and amino acid. Comparing the discrimination results of samples with spectra processed by different methods,better discrimination could be accomplished when the spectra were processed by 2D+WC.From the clustering results of different species,Boletus sinicus and Leccinum eχtremiorientale had the closest relationship andthese two species were close to Heimioporus retisporus.B.obscureumbrinus and B.edulis had a close relationship while the relationship between B.speciosus and B.calopus was also close and both of these two mushrooms were similar to B.umbriniporus.The results suggest that FTIR can be used in the study of genetic relationship of bolete mushrooms,which may provide a new method for studying the genetic relationship of wild edible mushrooms.
fourier transform infrared spectroscopy;partial least squares discriminant analysis;hierarchical cluster analysis;boletes;genetic relationship
S646.3
A
1004-3268(2017)01-0110-06
2016-06-23
國(guó)家自然科學(xué)基金項(xiàng)目(31260496,31460538)
姚 森(1992-),男,河北唐山人,在讀碩士研究生,研究方向:牛肝菌光譜指紋圖譜。E-mail:yaosen0402@163.com
*通訊作者:王元忠(1981-),男,云南怒江人,助理研究員,碩士,主要從事藥用真菌研究。E-mail:boletus@126.com劉鴻高(1974-),男,云南楚雄人,教授,碩士,主要從事食用菌研究。E-mail:honggaoliu@126.com