張 夢(mèng) 陳超英 呂 賓#
浙江中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院1(310053) 浙江中醫(yī)藥大學(xué)第一附屬醫(yī)院消化科2
肌球蛋白輕鏈磷酸化在腹瀉型IBS大鼠腸黏膜屏障功能障礙中的作用*
張 夢(mèng)1陳超英2呂 賓2#
浙江中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院1(310053) 浙江中醫(yī)藥大學(xué)第一附屬醫(yī)院消化科2
背景:肌球蛋白輕鏈(MLC)是調(diào)控細(xì)胞間緊密連接和腸道通透性的啟動(dòng)因子,磷酸化MLC(pMLC)可引起緊密連接相關(guān)蛋白重新分布,破壞緊密連接結(jié)構(gòu)和完整性,最終引起腸黏膜屏障功能障礙。目的:探討MLC磷酸化在腹瀉型IBS(IBS-D)大鼠腸黏膜屏障功能障礙中的作用。方法:將8只Sprague-Dawley孕鼠隨機(jī)分為模型組和對(duì)照組,采用母嬰分離法構(gòu)建IBS-D大鼠模型。記錄大鼠造模成功后1 h內(nèi)糞便性狀和顆粒數(shù),采用腹壁回撤反射(AWR)評(píng)分評(píng)估大鼠內(nèi)臟敏感性,免疫熒光法觀察結(jié)腸組織纖維狀肌動(dòng)蛋白(F-actin)、細(xì)胞緊密連接相關(guān)蛋白ZO-1、claudin-1的分布,蛋白質(zhì)印跡法檢測(cè)腸黏膜MLC、pMLC、F-actin、ZO-1、claudin-1蛋白的表達(dá),透射電鏡觀察細(xì)胞間緊密連接。結(jié)果:與對(duì)照組相比,模型組內(nèi)臟敏感性顯著升高;免疫熒光法顯示claudin-1熒光強(qiáng)度減弱,結(jié)構(gòu)紊亂,重新分布,F(xiàn)-actin和ZO-1結(jié)構(gòu)模糊;蛋白質(zhì)印跡結(jié)果顯示pMLC/MLC比值和pMLC表達(dá)明顯升高,claudin-1表達(dá)明顯降低,MLC、F-actin和ZO-1表達(dá)無(wú)明顯差異;透射電鏡顯示細(xì)胞緊密連接破壞,細(xì)胞間隙擴(kuò)大。結(jié)論:MLC磷酸化水平升高介導(dǎo)細(xì)胞骨架蛋白F-actin重組,引起細(xì)胞緊密連接蛋白結(jié)構(gòu)和功能的改變,細(xì)胞間隙增加,導(dǎo)致腸黏膜屏障功能障礙,在IBS-D的發(fā)病中發(fā)揮重要作用。
肌球蛋白輕鏈; 纖維狀肌動(dòng)蛋白; 緊密連接; 腸易激綜合征
腸易激綜合征(irritable bowel syndrome, IBS)是一種常見(jiàn)的功能性胃腸病,歐美國(guó)家IBS發(fā)病率高達(dá)10%~20%[1],亞洲國(guó)家達(dá)6.5%~10.1%[2]。其以腹痛、腹部不適伴隨排便習(xí)慣和糞便性狀改變?yōu)橹饕憩F(xiàn)。臨床以腹瀉型IBS(IBS-D)患者最為常見(jiàn),因腹瀉反復(fù)發(fā)生,嚴(yán)重影響患者的學(xué)習(xí)、工作和生活,但具體的發(fā)病機(jī)制尚未完全闡明?,F(xiàn)有研究表明IBS的發(fā)病可能與腸道感染、腦-腸軸紊亂、精神心理因素、腸黏膜免疫功能異常、飲食、遺傳等因素有一定關(guān)系[3-4]。近年研究發(fā)現(xiàn),IBS發(fā)病與腸黏膜屏障功能障礙有關(guān),而腸黏膜屏障功能障礙又與細(xì)胞收縮、細(xì)胞骨架重組、細(xì)胞間緊密連接的改變關(guān)系密切,肌球蛋白輕鏈(myosin light chain, MLC)磷酸化是引起細(xì)胞收縮、細(xì)胞骨架重組的始動(dòng)因子[5],故推測(cè)MLC磷酸化在IBS引起的腸黏膜屏障功能障礙中可能發(fā)揮重要作用。本研究通過(guò)經(jīng)典的母嬰分離法構(gòu)建慢性IBS-D大鼠模型,旨在闡明MLC磷酸化介導(dǎo)肌動(dòng)蛋白重組在IBS-D發(fā)病中的作用。
一、實(shí)驗(yàn)動(dòng)物
清潔級(jí)Sprague-Dawley (SD)孕鼠(由浙江中醫(yī)藥大學(xué)動(dòng)物實(shí)驗(yàn)研究中心提供)8只,體質(zhì)量320~350 g,由專人飼養(yǎng)于屏障環(huán)境中,控制晝夜明暗交替。孕鼠每籠一只,出生后SD大鼠每籠4只,自由攝食、飲水。
二、研究方法
1. 模型的建立:適應(yīng)性喂養(yǎng)大鼠1周后,采用隨機(jī)數(shù)字表法分為對(duì)照組和模型組。采用母幼分離方式建立慢性IBS-D模型[6]。SD孕鼠分娩后,剔除雌幼鼠,以母鼠為單位平均分成2組,模型組自出生后第2天起,每日上午(8:00-11:00)與母鼠分離3 h,持續(xù)14 d,對(duì)照組不予任何處理,與母鼠同籠。兩組大鼠喂養(yǎng)至8周齡,確保大鼠健康以及避開(kāi)各種傷害性刺激。8周齡后,觀察大鼠的一般情況、排便數(shù)量、糞便性狀。
2. 模型的評(píng)估:采用腹壁回撤反射(AWR)評(píng)分標(biāo)準(zhǔn)驗(yàn)證大鼠模型[7]。在大鼠清醒狀態(tài)、不限制活動(dòng)的情況下將8F帶氣囊導(dǎo)尿管外涂石蠟油后經(jīng)肛門插入,氣囊末端距肛緣1 cm。導(dǎo)尿管肛門外部分以棉線固定于鼠尾根部。30 min后待大鼠適應(yīng)環(huán)境呈安靜狀態(tài)時(shí),擴(kuò)張球囊使球囊內(nèi)壓力逐漸升高,觀察腹部抬離桌面(AWR=3)時(shí)的氣囊壓力,由非實(shí)驗(yàn)者記錄,共進(jìn)行3次實(shí)驗(yàn),每次持續(xù)30 s,間隔3 min,取均值。大鼠AWR評(píng)分標(biāo)準(zhǔn):0分:對(duì)結(jié)腸擴(kuò)張無(wú)行為學(xué)反應(yīng);1分:結(jié)腸擴(kuò)張時(shí)身體靜止不動(dòng),頭部運(yùn)動(dòng)減少;2分:結(jié)腸擴(kuò)張時(shí)腹肌收縮,但腹部未抬離桌面;3分:結(jié)腸擴(kuò)張時(shí)腹肌收縮并抬離桌面;4分:結(jié)腸擴(kuò)張時(shí)骨盆抬起,身體呈弓形。
3. 標(biāo)本采集:AWR評(píng)分結(jié)束后,大鼠腹腔注射40 mg/kg 3%戊巴比妥鈉麻醉,剖腹手術(shù)分離近端結(jié)腸,取距回盲部5 cm處結(jié)腸組織2塊,以0.9% NaCl溶液漂洗,置于液氮中保存?zhèn)溆谩?/p>
4. 免疫熒光法檢測(cè)大鼠腸道F-actin、ZO-1、claudin-1的分布:取結(jié)腸組織,石蠟包埋,8 μm厚連續(xù)冰凍組織切片,脫水、固定、透膜、封閉后,加入F-aticn(工作濃度為1∶200,購(gòu)自Abcam公司)、ZO-1(工作濃度為8 μg/mL,購(gòu)自Life Technologies公司)、claudin-1(工作濃度為1∶200, 購(gòu)自Cell Signaling Technology公司)一抗4 ℃孵育過(guò)夜,PBS漂洗,滴加二抗(工作濃度均為1∶400,購(gòu)自Abcam公司),DAPI標(biāo)記細(xì)胞核,室溫避光孵育1 h,PBS漂洗,封片,激光共聚焦顯微鏡下(×400)觀察各細(xì)胞間緊密連接的分布并拍照。
5. 蛋白質(zhì)印跡法觀察大鼠腸道MLC、pMLC、F-actin、ZO-1、claudin-1表達(dá):取結(jié)腸組織,加入RIPA裂解液,混勻,充分裂解后離心,取上清,BCA法測(cè)蛋白濃度。SDS-PAGE電泳、轉(zhuǎn)膜、封閉、割膜,分別加入GAPDH、MLC、pMLC(工作濃度均為1∶1 000,均購(gòu)自美國(guó)Cell Signailing Technology公司)、F-actin(工作濃度為1∶500,購(gòu)自Abcam公司)、ZO-1(工作濃度為8 μL/mL,購(gòu)自Life Technologies公司)、claudin-1(工作濃度為1∶1 000,購(gòu)自Cell Signaling Technology公司)4 ℃過(guò)夜;TBST洗滌;加入二抗(工作濃度1∶1 000,購(gòu)自北京中杉金橋生物技術(shù)有限公司)孵育1~2 h,TBST洗滌,選用電化學(xué)發(fā)光成像儀曝光,Quantity One軟件對(duì)目的條帶進(jìn)行半定量分析。以目的條帶灰度值與內(nèi)參GAPDH條帶灰度值的比值作為該目的條帶的表達(dá),并計(jì)算pMLC與MLC的比值。
6. 透射電鏡觀察細(xì)胞間緊密連接:將組織樣本置于2.5%戊二醛PBS沖液固定4 h或更長(zhǎng)時(shí)間,PBS漂洗,1%鋨酸固定液固定1 h,ddH2O漂洗,2%乙酸雙氧鈾固定30 min,梯度脫水、滲透、包埋、聚合、切片,乙酸雙氧鈾-檸檬酸鉛染色,透射電鏡觀察細(xì)胞間緊密連接。
三、統(tǒng)計(jì)學(xué)分析
一、一般情況
模型組大鼠造模后表現(xiàn)為緊張易激惹,反應(yīng)遲鈍,活動(dòng)減少,糞便質(zhì)軟甚至呈稀水樣,體質(zhì)量降低。對(duì)照組一般情況均良好。模型組的糞便顆粒數(shù)顯著高于對(duì)照組(5.70±0.93對(duì)2.00±0.64;t=-6.065,P=0.000)。
二、內(nèi)臟敏感性
AWR評(píng)分結(jié)果顯示,模型組大鼠內(nèi)臟敏感性明顯高于對(duì)照組[(36.66±2.09) Pa對(duì)(65.33±1.95) Pa;t=-28.383,P=0.000]。
三、免疫熒光法
對(duì)照組腸上皮細(xì)胞中F-actin主要環(huán)繞于細(xì)胞
周邊,形成周邊肌動(dòng)蛋白絲帶,細(xì)胞中央偶爾可見(jiàn)不規(guī)則纖維絲;claudin-1和ZO-1沿細(xì)胞膜分布,呈蜂窩狀線性熒光。模型組F-actin沿細(xì)胞膜分布,但其結(jié)構(gòu)發(fā)生改變,周邊肌動(dòng)蛋白致密帶毛糙,細(xì)胞質(zhì)內(nèi)出現(xiàn)應(yīng)力纖維;claudin-1熒光強(qiáng)度減弱,結(jié)構(gòu)模糊,胞質(zhì)內(nèi)熒光強(qiáng)度增高;ZO-1線性熒光結(jié)構(gòu)紊亂、斷裂(圖1)。
圖1 各組F-actin、ZO-1、claudin-1免疫熒光結(jié)果(×400)
四、蛋白質(zhì)印跡法
與對(duì)照組相比,模型組pMLC/MLC比值明顯升高(2.27±1.09對(duì)0.48±0.20;t=-2.243,P=0.018),MLC表達(dá)無(wú)明顯差異,pMLC表達(dá)明顯升高;claudin-1表達(dá)明顯降低(0.69±0.21對(duì)1.57±0.27;t=5.163,P=0.002);F-actin和ZO-1表達(dá)無(wú)明顯差異(1.10±0.19對(duì)0.93±0.11,t=-1.547,P=0.185;1.15±0.19對(duì)0.88±0.14;t=-2.233,P=0.058)(圖2)。
圖2 各組MLC、F-actin、claudin-1、ZO-1蛋白表達(dá)(蛋白質(zhì)印跡法)
五、透射電鏡結(jié)果
與對(duì)照組相比,模型組細(xì)胞緊密連接破壞,細(xì)胞間隙擴(kuò)大(圖3)。
A:對(duì)照組;B:模型組
圖3 各組細(xì)胞透射電鏡圖(×10 000)(箭頭所示處為細(xì)胞間緊密連接)
腸黏膜屏障是維持腸腔和機(jī)體內(nèi)環(huán)境穩(wěn)定的動(dòng)能隔離帶,腸上皮細(xì)胞、細(xì)胞間緊密連接結(jié)構(gòu)和細(xì)胞骨架蛋白構(gòu)成了腸道機(jī)械屏障,能有效阻止腸道內(nèi)細(xì)菌、毒素和炎性介質(zhì)經(jīng)細(xì)胞旁途徑入侵機(jī)體。腸黏膜屏障功能主要與腸黏膜上皮細(xì)胞間緊密連接有關(guān)[8]。緊密連接是維持腸上皮屏障完整性的重要結(jié)構(gòu)[9],是由咬合蛋白(occludin)、閉合蛋白(claudin)、帶狀閉合蛋白(ZO)、β-連環(huán)蛋白和連接黏附因子等構(gòu)成的相鄰細(xì)胞間連接復(fù)合體,使相鄰兩個(gè)細(xì)胞的縫隙完全閉鎖。ZO-1與緊密連接和黏附連接密切相關(guān),其C端區(qū)域還可與肌動(dòng)蛋白和其他骨架相關(guān)蛋白直接結(jié)合[10],claudin蛋白C端的結(jié)合序列可與胞質(zhì)內(nèi)其他緊密連接蛋白直接連接,與肌動(dòng)蛋白發(fā)生間接作用[11-13],故肌動(dòng)蛋白和其他骨架蛋白的改變可引起緊密連接蛋白的改變。
MLC是肌球蛋白重要的調(diào)節(jié)結(jié)構(gòu)域[14]。肌球蛋白除作為馬達(dá)分子為細(xì)胞內(nèi)分子運(yùn)動(dòng)提供動(dòng)力外,還參與細(xì)胞收縮、分裂、黏附、趨化以及細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)和細(xì)胞骨架結(jié)構(gòu)的調(diào)控。MLC激酶(MLCK)是使MLC磷酸化的重要激酶,由Ca2+/鈣調(diào)復(fù)合體(CaM)激活后,引起MLC20位點(diǎn)Ser19、Thr18磷酸化,Ser19磷酸化可激活肌球蛋白頭部的Mg2+-ATP酶,Thr18磷酸化可增加Mg2+-ATP酶活性。ATP酶水解產(chǎn)生能量,骨架蛋白活動(dòng)和細(xì)胞收縮,引起緊密連接蛋白結(jié)構(gòu)和功能失調(diào),細(xì)胞間隙形成,導(dǎo)致腸黏膜屏障功能障礙[15-17]。
MLC磷酸化通過(guò)介導(dǎo)緊密連接蛋白的開(kāi)放,引起細(xì)胞間隙增加,最終導(dǎo)致腸黏膜屏障功能障礙。Shen等[18]通過(guò)構(gòu)建持續(xù)激活MLCK的腸道上皮細(xì)胞模型發(fā)現(xiàn)MLCK表達(dá)增加MLC磷酸化,引起結(jié)合前肌動(dòng)蛋白重組,ZO-1和occludin蛋白的再分布和結(jié)構(gòu)改變,細(xì)胞旁通透性增加,說(shuō)明MLC磷酸化可引起緊密連接的變化和腸黏膜屏障功能障礙。Guo等[19]發(fā)現(xiàn)MLC磷酸化在燒傷早期腸黏膜屏障損害中發(fā)揮重要作用,在采用N-甲酰甲硫氨酰-亮氨酰-苯丙氨酸(fMLP)誘導(dǎo)的單層上皮細(xì)胞損傷模型中發(fā)現(xiàn)MLC磷酸化水平增高,跨細(xì)胞電阻降低,肌動(dòng)球蛋白環(huán)收縮,claudin-1發(fā)生重新分布,在胞質(zhì)內(nèi)的分布增加。
為闡明IBS-D腸道黏膜屏障功能破壞的機(jī)制,本研究采用國(guó)際公認(rèn)的母嬰分離法構(gòu)建IBS-D大鼠模型,分別采用免疫熒光和蛋白質(zhì)印跡法觀察相關(guān)蛋白的變化,透射電鏡觀察細(xì)胞間緊密連接。結(jié)果顯示,與對(duì)照組相比,模型組pMLC/MLC比值上調(diào),pMLC表達(dá)升高,claudin-1表達(dá)下調(diào),免疫熒光示claudin-1熒光強(qiáng)度減弱,結(jié)構(gòu)紊亂,在胞質(zhì)中的分布增加;雖然F-actin和ZO-1表達(dá)下調(diào)不明顯,但免疫熒光結(jié)果表明F-actin束狀結(jié)構(gòu)模糊,ZO-1結(jié)構(gòu)紊亂,提示MLC磷酸化水平升高,可通過(guò)介導(dǎo)肌動(dòng)蛋白重組在IBS腸黏膜屏障功能破壞中發(fā)揮重要作用。pMLC/MLC比值升高可激活肌球蛋白頭部的Mg2+-ATP酶水解產(chǎn)生能量使肌球蛋白與肌動(dòng)蛋白結(jié)合,介導(dǎo)肌動(dòng)蛋白收縮,胞內(nèi)細(xì)胞骨架F-actin發(fā)生改變和重組,而ZO-1與細(xì)胞骨架F-actin相連,并且ZO-1又與claudin-1等特異蛋白構(gòu)成緊密連接,故使胞內(nèi)細(xì)胞骨架與細(xì)胞外連接蛋白信號(hào)互通,進(jìn)而引起緊密連接結(jié)構(gòu)和功能的改變,細(xì)胞間隙擴(kuò)大,最終引起腸黏膜屏障功能障礙。上述結(jié)果說(shuō)明MLC磷酸化介導(dǎo)肌動(dòng)蛋白重組在IBS的發(fā)病機(jī)制中發(fā)揮重要作用,但其上游引起MLC磷酸化的相關(guān)信號(hào)通路變化仍有待研究,基于細(xì)胞間信號(hào)通路的復(fù)雜性,除MLC磷酸化介導(dǎo)肌動(dòng)蛋白重組參與腸上皮屏障功能的調(diào)控外,可能存在其他信號(hào)通路影響細(xì)胞間緊密連接蛋白的變化導(dǎo)致IBS腸黏膜屏障功能障礙。
1 Spinelli A. Irritable bowel syndrome[J]. Clin Drug Investig, 2007, 27 (1): 15-33.
2 Chang FY, Lu CL, Chen TS. The current prevalence of irritable bowel syndrome in Asia[J]. J Neurogastroenterol Motil, 2010, 16 (4): 389-400.
3 Gwee KA, Bak YT, Ghoshal UC, et al; Asian Neurogastroenterology and Motility Association. Asian consensus on irritable bowel syndrome[J]. J Gastroenterol Hepatol, 2010, 25 (7): 1189-1205.
4 Ringel Y, Maharshak N. Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305 (8): G529-G541.
5 Turner JR, Rill BK, Carlson SL, et al. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation[J]. Am J Physiol, 1997, 273 (4 Pt 1): C1378-C1385.
6 劉雁冰, 袁耀宗, 陶然君, 等. 大鼠腸道高敏性模型的建立及其內(nèi)臟敏感性評(píng)估[J]. 中華消化雜志, 2003, 23 (1): 34-37.
7 Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development[J]. Gastroenterology, 2000, 119 (5): 1276-1285.
8 Xiao L, Rao JN, Cao S, et al. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins[J]. Mol Biol Cell, 2016, 27 (4): 617-626.
9 Cereijido M, Contreras RG, Shoshani L, et al. Tight junction and polarity interaction in the transporting epithelial phenotype[J]. Biochim Biophys Acta, 2008, 1778 (3): 770-793.
10 Yu D, Marchiando AM, Weber CR, et al. MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function[J]. Proc Natl Acad Sci U S A, 2010, 107 (18): 8237-8241.
11 González-Mariscal L, Quirós M, Díaz-Coránguez M. ZO proteins and redox-dependent processes[J]. Antioxid Redox Signal, 2011, 15 (5): 1235-1253.
12 van Hinsbergh VW, van Nieuw Amerongen GP. Intracellular signalling involved in modulating human endothelial barrier function[J]. J Anat, 2002, 200 (6): 549-560.
13 Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application[J]. Am J Pathol, 2006, 169 (6): 1901-1909.
14 Gerrits L, Overheul GJ, Derks RC, et al. Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes[J]. Eur J Cell Biol, 2012, 91 (8): 629-639.
15 Xie C, Zhang Y, Wang HH, et al. Calcium regulation of non-kinase and kinase activities of recombinant myosin light-chain kinase and its mutants[J]. IUBMB Life, 2009, 61 (11): 1092-1098.
16 Hong F, Facemyer KC, Carter MS, et al. Kinetics of myosin light chain kinase activation of smooth muscle myosin in aninvitromodel system[J]. Biochemistry, 2013, 52 (47): 8489-8500.
17 Gao N, Huang J, He W, et al. Signaling through myosin light chain kinase in smooth muscles[J]. J Biol Chem, 2013, 288 (11): 7596-7605.
18 Shen L, Black ED, Witkowski ED, et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure[J]. J Cell Sci, 2006, 119 (Pt 10): 2095-2106.
19 Guo M, Yuan SY, Frederich BJ, et al. Role of non-muscle myosin light chain kinase in neutrophil-mediated intestinal barrier dysfunction during thermal injury[J]. Shock, 2012, 38 (4): 436-443.
(2016-06-12收稿;2016-08-14修回)
Role of Myosin Light Chain Phosphorylation in Intestinal Mucosal Barrier Dysfunction in Diarrhea-predominant IBS Rats
ZHANGMeng1,CHENChaoying2,LüBin2.
1theFirstClinicalMedicalCollege,ZhejiangChineseMedicalUniversity,Hangzhou(310053);2DepartmentofGastroenterology,theFirstAffiliatedHospitalofZhejiangChineseMedicalUniversity,Hangzhou
Lü Bin, Email: lvbin@medmail.com.cn
Myosin Light Chains; Fibrous-Actin; Tight Junction; Irritable Bowel Syndrome
10.3969/j.issn.1008-7125.2017.01.005
*本課題由國(guó)家自然科學(xué)資金資助(編號(hào):81470814)
#本文通信作者,Email: lvbin@medmail.com.cn
Background: Myosin light chain (MLC) is the initiating factor that regulating tight junction and intestinal permeability. Phosphorylated MLC (pMLC) can cause redistribution of tight junction related protein, and break the structure and integrity of tight junction, thus induces the dysfunction of intestinal mucosal barrier. Aims: To explore the role of MLC phosphorylation in intestinal mucosal barrier dysfunction in diarrhea-predominant IBS (IBS-D) rats. Methods: Eight Spague-Dawley pregnant rats were randomly divided into model group and control group, IBS-D rat model was established by maternal separation. The character and particles of feces were record 1 hour after establishing the model. Abdominal withdrawal reflex (AWR) was used to evaluate visceral sensitivity. The distributions of fibrous actin (F-actin), tight junction associated protein ZO-1 and claudin-1 in colon were assessed by immunofluorescence. The expressions of MLC, pMLC, F-actin, ZO-1 and claudin-1 were measured by Western blotting. Tight junction was observed by transmission electron microscope (TEM). Results: Compared with control group, visceral sensitivity was significantly increased. Immunofluorescence showed the decrease in fluorescence intensity, structural distortion and redistribution of claudin-1 and the fussy structure of F-actin and ZO-1 in model group. Western blotting showed that pMLC/MLC ratio and expression of pMLC were significantly increased and expression of claudin-1 was significantly decreased in model group, but no significant differences in expressions of MLC, F-actin and ZO-1 were found between the two groups. TEM showed that tight junction was broken and cell space was enlarged. Conclusions: The increased MLC phosphorylation may induce the redistribution of cell cytoskeletal protein F-actin, cause the change of structure and function of intercellular tight junction proteins and enlargement of intercellular space, thus may induce the dysfunction of intestinal mucosal barrier, and play an important role in the pathogenesis of IBS-D.