国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

耕作方式對土壤水分入滲、有機碳含量及土壤結(jié)構(gòu)的影響*

2017-02-16 08:01:34楊永輝武繼承張潔梅潘曉瑩
關(guān)鍵詞:導水率土壤結(jié)構(gòu)土柱

楊永輝,武繼承,張潔梅,潘曉瑩,王 越,何 方

(1.河南省農(nóng)業(yè)科學院植物營養(yǎng)與資源環(huán)境研究所 鄭州 450002; 2.農(nóng)業(yè)部作物高效用水科學觀測實驗站 原陽 453514)

耕作方式對土壤水分入滲、有機碳含量及土壤結(jié)構(gòu)的影響*

楊永輝1,2,武繼承1,2,張潔梅1,2,潘曉瑩1,2,王 越1,2,何 方1,2

(1.河南省農(nóng)業(yè)科學院植物營養(yǎng)與資源環(huán)境研究所 鄭州 450002; 2.農(nóng)業(yè)部作物高效用水科學觀測實驗站 原陽 453514)

為探明不同耕作方式對土壤剖面結(jié)構(gòu)、水分入滲過程等的作用機理,采集田間長期定位耕作措施(常規(guī)耕作、免耕、深松)試驗中的原狀土柱(0~100 cm)及0~10 cm、10~20 cm、…、90~100 cm環(huán)刀樣、原狀土及混合土樣,通過室內(nèi)模擬試驗進行了0~100 cm土層土壤入滲過程和飽和導水率的測定,分析了不同土層的土壤有機碳含量、土壤結(jié)構(gòu)特征及相互關(guān)系。結(jié)果表明: 從土柱頂部開始供水(恒定水頭)到水分全部入滲到土柱底部的時間為: 常規(guī)耕作>免耕>深松; 土柱土壤入滲速率和累積入滲量為: 深松>免耕>常規(guī)耕作; 土柱累積蒸發(fā)量為: 常規(guī)耕作>免耕>深松。土壤的飽和導水率表現(xiàn)為: 0~10 cm和50~60 cm土層,免耕>深松>常規(guī)耕作; 20~50 cm和60~100 cm土層,深松>免耕>常規(guī)耕作。隨土層的加深,>0.25 mm水穩(wěn)性團聚體含量和土壤有機碳含量均表現(xiàn)為先增加(10~20 cm)再降低的趨勢。在0~40 cm土層和80~100 cm土層,均以深松處理>0.25 mm水穩(wěn)性團聚體含量最高。在60 cm以上土層,土壤有機碳含量表現(xiàn)為: 免耕>深松>常規(guī)耕作,而60 cm土層以下土壤有機碳顯著降低,均低于4 g·kg-1,且在70 cm以下土層,常規(guī)耕作>免耕>深松。綜上,耕作措施能夠改變土壤有機碳含量,改善土壤結(jié)構(gòu),促進土壤蓄水保墑; 深松更利于水分就地入滲,而免耕則更利于有機碳的提升和水分的儲存,其作用深度在0~60 cm土層。

常規(guī)耕作; 深松; 免耕; 水分入滲; 土壤有機碳; 土壤結(jié)構(gòu)

免耕、深松與表土作業(yè)等土壤耕作措施可改善土壤結(jié)構(gòu)[1-2],降低坡耕旱地水土流失,增強土壤微生物活性,降低作物干旱脅迫的傷害[3]。同時,可提高土壤肥力[4]和土壤孔隙度,降低土壤容重,促進作物生長[5]。秸稈還田+免耕可增加表層土壤的通氣孔隙,降低其無效孔隙,改善土壤結(jié)構(gòu),提高土壤持水性能,增加土壤水分庫容[6]。少耕或免耕有利于接納降雨和水分儲存,促進作物產(chǎn)量與水分利用率的提高[7-9]。免耕+秸稈覆蓋能有效保持土壤剖面水分含量,減少土壤蒸發(fā)量[10],提高土壤的飽和導水率[11]。于同艷等[12]研究表明,免耕雖不利于水分入滲,但可有效保持土壤中的水分。楊永輝等[13]研究表明,連續(xù)2年免耕可改善土壤結(jié)構(gòu),降低土壤容重,改善土壤孔隙狀況。深松能夠打破土壤犁底層,改善土壤孔隙,促進土壤蓄水保墑,有利于作物根系利用深層土壤水[14],且深松能夠顯著提高>0.25 mm水穩(wěn)性團聚體含量,有效提高土壤的儲水量[15]。深松+地面覆蓋可改善土壤團粒結(jié)構(gòu),提高土壤剖面的水分狀況[16]。免耕與深松輪作能顯著提高土體的蓄水量[17-18]。以往的研究多偏重于免耕覆蓋或深松覆蓋或二者輪作,且研究深度為犁底層以上的土壤,對于深層土壤的影響,以及長期單獨深松或免耕對土壤剖面物理特征、入滲過程及有機碳分布特征及其作用深度等影響如何目前尚鮮見報道,需要深入研究,以闡明長期深松和免耕對土壤的作用機理。

筆者對長期深松和免耕條件下 0~100 cm土層的土壤結(jié)構(gòu)、水分入滲過程與蒸發(fā)特征、有機碳分布及相互關(guān)系進行了研究,為闡明在小麥(Triticum aestivum)、玉米(Zea mays)輪作過程中,長期進行深松和免耕對土壤剖面物理特征的改善及其作用機理提供科學依據(jù)。

1 材料與方法

1.1 研究區(qū)概況

試驗設(shè)置在河南省禹州試驗基地(113°03′~113°39′E,33°59′~34°24′N,海拔116.1 m)進行,多年平均降水量674.9 mm,其中60%以上降雨集中在夏季; 土壤類型為褐土。研究區(qū)地勢平坦,耕層土壤有機質(zhì)含量12.3 g·kg-1、全氮含量0.80 g·kg-1、水解氮含量47.82 mg·kg-1、速效磷含量6.66 mg·kg-1、速效鉀含量114.8 mg·kg-1。研究區(qū)為小麥-玉米輪作區(qū)。2014年度小麥品種為‘周麥22’,玉米品種為‘鄭單958’。土壤機械組成為: 砂粒(2~0.02 mm)占59.1%,粉粒(0.02~0.002 mm)占22.5%,黏粒(<0.002 mm)占18.4%。

1.2 試驗設(shè)計

長期定位試驗于2006年10月中旬小麥播種時開始,耕作措施在每年小麥播種時實施,玉米均為免耕播種。試驗共設(shè)置3個處理: 常規(guī)耕作(耕作深度為15 cm)、免耕、深松(深度30 cm),試驗小區(qū)未進行秸稈還田。肥料采用N25P15K15復合型肥料,在小麥播種時一次性底施。在小麥播種前將肥料均勻撒于小區(qū)內(nèi),然后進行常規(guī)耕作和深松; 免耕的施肥方式為小麥、玉米播種后點施。

于2014年玉米收獲后(10月12日)從定位試驗每個處理的 3個重復小區(qū)中間位置采用原狀土柱采集器采集0~100 cm原狀土柱,測定土壤入滲過程。即將有機玻璃管放入采集器中,用鐵錘于采集器上方進行豎直敲擊,待采集器進入土中深度110 cm時,將采集器拔出,并從采集器的下方取出采集器內(nèi)的有機玻璃管。同時在采集原狀土柱的旁邊挖剖面,并分層采集(0~10 cm、10~20 cm、…、90~100 cm)環(huán)刀樣(測定飽和導水率)、原狀土(測定團粒結(jié)構(gòu))及混合土壤樣品(測定土壤有機碳含量)。每個處理取3個重復帶回室內(nèi)進行分析。

1.3 測定項目與方法

1)土壤飽和導水率采用恒定水頭法[19]測定,水穩(wěn)性團聚體采用維諾夫法[20](濕篩法)分級測定,土壤有機碳采用改進的外加熱重鉻酸鉀氧化法[21]測定。

2)土壤入滲過程測定。將田間采集的原狀土柱(土柱長110 cm,直徑20 cm,壁厚1 cm)帶到室內(nèi),放置,待土柱含水量為 8%~10%左右(表 1),進行土柱水分入滲過程的觀測。觀測前,對土柱進行稱重并記錄其初始重量。在土柱(透明有機玻璃)側(cè)面,平行于土柱方向粘貼帶有刻度的坐標紙,從上至下標注土柱的深度,精確度為1 mm。采用馬氏瓶在土柱上方(土柱上方留有 10 cm高度空間,以接納供水)進行恒定水頭的供水。調(diào)節(jié)馬氏瓶高度,土柱上方的水層厚度控制在5 cm左右。從土柱供水時開始計時,并觀測土柱剖面的水分入滲距離,每個土柱上觀測3組數(shù)據(jù)(土柱側(cè)面等間距豎直粘貼3條坐標紙,以獲得 3組數(shù)據(jù),計算其平均值作為觀測值,最小刻度為mm),每個處理3個土柱共9組數(shù)據(jù)計算平均值。開始觀測時每分鐘觀測 1次土柱水分入滲距離,同時觀測馬氏瓶中水層下降高度。待入滲距離推進緩慢時,延長觀測記錄數(shù)據(jù)時間。待水分入滲至土柱底層時,測量滲流出來的水分,當滲流水量恒定時(土柱含水量達到飽和,見表 1),停止對土柱進行供水,并用膠帶封住土柱底部,防止水分從土柱底部流出。觀測結(jié)束后計算土柱累積入滲量、入滲速率。并采用精確度為1 g的電子天平對土柱進行稱重,獲得土柱飽和后的總重量。每隔1 d對土柱稱重 1次,觀測其累計蒸發(fā)量,觀測前后土柱含水量見表1。

表1 不同土柱初始含水量、飽和含水量及蒸發(fā)試驗結(jié)束后的含水量Table 1 Initial water content,saturated water content and water content after the end of evaporation experiment %

土柱入滲速率計算方法如下:

式中:V為滲透速率,mm·min-1;Qn為n次馬氏瓶中進入土柱的水量,mL,即cm3;tn為每次滲透所間隔時間,min;S為土柱橫截面積,cm2; 10為由cm換算成mm所乘倍數(shù); 60為將滲透速率(V)單位 mm·min-1轉(zhuǎn)換為mm·h-1。

1.4 數(shù)據(jù)處理

不同結(jié)果數(shù)值均為3次重復的算術(shù)平均值,且所得數(shù)據(jù)采用Microsoft Excel及SPSS軟件進行處理。

2 結(jié)果與分析

2.1 長期不同耕作措施下水分入滲規(guī)律分析

2.1.1 水分運移規(guī)律分析

圖1 長期不同耕作措施對土壤入滲特征的影響Fig.1 Soil water infiltration characteristics under different long-term tillage measures

不同耕作措施對水分在土壤剖面中的運移規(guī)律各異(圖1)。由于3個處理的土柱初始含水量較低(表1),水分入滲較為迅速,3種耕作方式下,在很短時間內(nèi)到達35 cm處,其中以深松處理最快。之后土壤水分在土壤剖面上的入滲濕潤峰行進減緩,且各土柱之間差異顯著(P<0.01),常規(guī)耕作處理到達相同距離的時間明顯增加。而深松處理的水分運移仍較快,在不到3 h入滲到土柱底部; 免耕處理水分運移到底部的時間是深松處理的2倍,常規(guī)耕作則超過24 h。說明深松打破了犁底層,使得土壤上下層更加通透(運移曲線上下平直),更利于水分就地入滲; 而常規(guī)耕作因為犁底層的阻隔,入滲能力明顯降低; 免耕雖也受到犁底層的影響,但由于其改善了表層土壤結(jié)構(gòu),進而入滲能力大于常規(guī)耕作。

2.1.2 累計入滲量分析

不同耕作措施土壤的初始入滲量基本相當,但隨時間的推移,差異逐漸增大(圖2),且達極顯著水平(P<0.01)。在土壤水分進入土壤3 h后,深松處理的土柱土壤到達飽和。常規(guī)耕作處理達到土壤飽和含水量的時間遠大于其他處理,且其累計入滲量均小于其他處理。在相同時間內(nèi),累計入滲量大小為: 深松>免耕>常規(guī)耕作(P<0.01)。說明深松后土壤蓄水容量顯著提高,免耕的擴蓄增容效果也十分明顯,分別較常規(guī)耕作提高27.3%和22.8%。

2.1.3 入滲速率分析

隨時間的推移,土壤入滲速率逐漸降低。在整個入滲過程中,以深松處理的入滲速率最高,其次為免耕處理,常規(guī)耕作處理最低(P<0.05),尤其在0~2.0 h間差異較大(P<0.01)(圖3)。隨時間的推移,各處理的入滲速率降低幅度逐漸減小,最終趨于恒定值,且深松與免耕仍高于常規(guī)耕作(P<0.05)。

圖2 長期不同耕作措施對土壤累計入滲量的影響Fig.2 Soil cumulative infiltrations under different long-term tillage measures

圖3 長期不同耕作措施對土壤入滲速率的影響Fig.3 Soil infiltration rates under different long-term tillage measures

2.2 累計蒸發(fā)量分析

隨時間的推移,不同耕作處理的土壤累計蒸發(fā)量逐漸增大,且差異顯著(圖4)(P<0.01)。雖然常規(guī)耕作處理飽和時的含水率低于其他處理(表1),但其初始及隨后的蒸發(fā)量仍明顯高于其他處理(P<0.01)。而免耕處理的蒸發(fā)量均顯著低于其他處理(P<0.01),其次為深松處理。說明實施深松和免耕耕作能夠有效減少土壤的無效蒸發(fā)量。

2.3 不同土壤剖面飽和導水率差異分析

從圖5中可知,20~30 cm土層的土壤飽和導水率最低,而10~20 cm土層最高(免耕處理除外),隨土層的加深,土壤飽和導水率趨于平緩。在0~10 cm土層,土壤飽和導水率表現(xiàn)為: 免耕>深松>常規(guī)耕作(P<0.05); 在10~20 cm土層,深松處理明顯高于其他處理(P<0.05),這可能是深松后作物根系和蚯蚓活動頻繁所致; 在20~30 cm土層,各處理之間差異較小(P>0.05),但仍以深松處理的飽和導水率最高; 30~40 cm土層,各處理的土壤飽和導水率均增大,其中仍以深松處理最高,其次為免耕處理,常規(guī)耕作最低(P<0.05)。隨土層的進一步加深,各處理的土壤飽和導水率趨于穩(wěn)定,但整體來看,60 cm以下土層,免耕和常規(guī)耕作處理土壤飽和導水率較低,而深松處理土壤飽和導水率較高(P<0.05)。說明經(jīng)過長期免耕和深松措施后,土壤剖面導水性能提高,尤其是20~30 cm以上土層效果更為顯著,深松處理效果最佳。

圖4 長期不同耕作措施對土壤蒸發(fā)過程的影響Fig.4 Soil evaporations under different long-term tillage measures

圖5 長期不同耕作措施對剖面土壤飽和導水率的影響Fig.5 Soil saturated hydraulic conductivities under different long-term tillage measures

2.4 不同耕作措施0~100 cm土層土壤有機碳分布特征

圖6顯示,不同耕作處理土壤有機碳含量在40 cm以上土層含量豐富,特別是20 cm以上的表層,40~70 cm為含量過渡層,70 cm以下為穩(wěn)定層,總體隨深度增加而衰減。在 60 cm以上土層,均以免耕處理的土壤有機碳含量最高,其次為深松處理,常規(guī)耕作最低。而70~100 cm土層土壤有機碳變化較平緩,其有機碳含量為2~4 g·kg-1。在80~100 cm土層,常規(guī)耕作處理的土壤有機碳均高于免耕和深松處理。說明經(jīng)過長期免耕和深松促進了根系的生長和土壤生物的活動,土體有機碳得到改善的作用深度達60 cm以上。

圖6 長期不同耕作措施對0~100 cm土層有機碳含量的影響Fig.6 Distribution characteristics of soil organic carbon in 0-100 cm soil layer under different long-term tillage measures

2.5 不同耕作措施0~100 cm土層>0.25 mm水穩(wěn)性團聚體含量分析

>0.25 mm水穩(wěn)性團聚體含量表征了土壤結(jié)構(gòu)的穩(wěn)定性。從圖7可知,隨土層的加深,>0.25 mm水穩(wěn)性團聚體含量表現(xiàn)為先增加再顯著降低的趨勢。在0~10 cm和10~20 cm土層,>0.25 mm水穩(wěn)性團聚體含量表現(xiàn)為: 深松>免耕>常規(guī)耕作(P<0.05)。在0~40 cm和80~100 cm土層,均以深松處理>0.25 mm水穩(wěn)性團聚體含量最高(P<0.05)。常規(guī)耕作處理除70~90 cm土層>0.25 mm水穩(wěn)性團聚體含量較高外,其他土層均最低。說明不同耕作措施改善了土壤剖面的團粒結(jié)構(gòu),提高了土壤結(jié)構(gòu)的穩(wěn)定性,尤其是 60 cm以上土層。

圖7 長期不同耕作措施對0~100 cm土層>0.25 mm團聚體含量分布特征的影響Fig.7 Distribution characteristics of > 0.25 mm aggregate content in 0-100 cm soil layer under different long-term tillage measures

2.6 >0.25 mm 水穩(wěn)性團聚體含量、有機碳含量及飽和導水率相關(guān)性分析

>0.25 mm水穩(wěn)性團聚體含量與土壤有機碳含量及土壤飽和導水率、土壤有機碳含量與土壤飽和導水率均表現(xiàn)為二次曲線關(guān)系(圖8),且相關(guān)性均為極顯著水平(P<0.01)。隨土壤有機碳含量的增加,>0.25 mm水穩(wěn)性團聚體含量增加,土壤飽和導水率則表現(xiàn)為先降低再增加的趨勢; 隨著>0.25 mm水穩(wěn)性團聚體含量增加到一定閥值(占總團聚體 30%)后繼續(xù)增加,飽和導水率呈逐漸增加趨勢。說明合理的耕作措施能夠提高土壤中的有機碳,從而改善土壤結(jié)構(gòu),促進了土壤滲透能力的提高。

圖8 >0.25 mm團聚體含量、飽和導水率及土壤有機碳相關(guān)性分析Fig.8 Correlation analysis between >0.25 mm soil aggregate content,saturated hydraulic conductivity and soil organic carbon content

3 結(jié)論與討論

深松、免耕可促進土壤有機質(zhì)含量提高,改善土壤結(jié)構(gòu)[22,24-25],提高土壤結(jié)構(gòu)的穩(wěn)定性,改善土壤的水分環(huán)境[26]。進行長期深松和免耕會對剖面土壤的物理性質(zhì)產(chǎn)生重要影響。本研究發(fā)現(xiàn),在35 cm以上土層,水分運移較快,而以深松處理最快。但在35 cm以下,常規(guī)耕作處理水分運移速度明顯減緩,深松處理水分運移較快。最終水分從土柱頂部入滲到底層的時間為: 常規(guī)耕作>免耕>深松。在0~2.0 h時間段各處理的入滲速率差異較大,且以深松處理最大,其次為免耕處理,常規(guī)耕作處理最低。隨時間的推移,各處理的入滲速率逐漸降低,并趨于恒定,且仍以深松處理最高,其次為免耕處理。土壤飽和導水率反映了不同土層之間土壤結(jié)構(gòu)的差異,而水分在土壤中的蓄存能力反映了不同措施對土壤結(jié)構(gòu)的改善能力。以往的研究多偏重于耕層,對于土壤剖面不同土層而言,本研究發(fā)現(xiàn),在0~10 cm和50~60 cm 土層,免耕處理更利于土壤飽和導水率的提高,其次為深松處理,常規(guī)耕作處理最低; 而在10~50 cm和60~100 cm土層,深松處理最高。說明深松打破了犁底層,改善了土壤孔隙狀況[14],增加了土壤的通透性[27],促進了水分就地入滲,并向更深土層的運移[28],提高土體的含水量[16]。而免耕條件下形成的良好土體結(jié)構(gòu),使其有效毛細管增多,且孔管連續(xù)不間斷,從而有利于水分的快速移動[29],改善土體的入滲能力。這與高建華等[30]和于同艷等[12]研究結(jié)果相反,而與 Dao[31]和 Hati等[32]研究結(jié)果一致,這可能與免耕時間[33]、土壤類型、種植制度等有關(guān),需要進一步研究。此外,實施免耕和深松能夠提高土壤的累積入滲量,增加土壤水分庫容量,且降低了土壤的無效蒸發(fā),各處理中,深松更利于水分入滲,而免耕更利于水分的保持。而有研究表明[18],深松1年后進行免耕也能促進土壤蓄水保墑,而在長期深松后進行免耕的結(jié)果如何,需要進一步研究。

土壤入滲過程及蓄水能力與土壤結(jié)構(gòu)[34]和有機質(zhì)含量[35]緊密相關(guān),可通過提高土壤有機質(zhì)來改善土壤結(jié)構(gòu),進而調(diào)節(jié)水分在土壤中的轉(zhuǎn)化、保持與供應,從而提高土壤的生產(chǎn)與生態(tài)功能。本研究發(fā)現(xiàn),土壤有機碳含量隨土層的加深而先增加(10~20 cm)再降低,到 70 cm以下土層土壤有機碳趨于穩(wěn)定。在 60 cm土層以上,均以免耕處理的土壤有機碳含量最高,其次為深松處理,常規(guī)耕作處理最低。說明長期免耕和深松有利于水分的保持,促進了作物根系的生長和土壤生物的活動,而作物根系殘留物或根系分泌物和土壤生物糞便又促進了土壤有機碳含量提高,改善了土壤結(jié)構(gòu)。因此,>0.25 mm水穩(wěn)性團聚體含量隨土層的加深也表現(xiàn)為先增加(10~20 cm)再降低的趨勢。除60~80 cm土層外,均以深松處理>0.25 mm水穩(wěn)性團聚體含量最高,其次為免耕處理,特別在60 cm以上土層,效果更為顯著。陳強等[36]的研究也得到了相同結(jié)論,而高建華等[30]研究表明免耕對土壤結(jié)構(gòu)的改良并不明顯,這可能與耕作時間或土壤類型有關(guān),需要進一步研究。此外,相關(guān)研究僅基于表層土壤,而對于深層土壤的影響研究涉及較少。

綜上,合理的長期耕作措施能夠提高土壤剖面中的有機碳含量,從而改善土體土壤結(jié)構(gòu),促進土體土壤滲透能力和蓄水保墑能力的提高。而深松更利于水分就地入滲,免耕更利于有機碳的提升和水分的儲存。但本研究為實行長期定位試驗 8年后的結(jié)果,而對于更長年限的免耕、深松或持續(xù)免耕后進行深松及持續(xù)深松后進行免耕等對土壤剖面物理特性的影響差異及程度如何,有待下一步研究。

References

[1]Martínez E,Fuentes J P,Silva P,et al.Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile[J].Soil and Tillage Research,2008,99(2): 232–244

[2]雷金銀,吳發(fā)起,王健,等.保護性耕作對土壤物理特性及玉米產(chǎn)量的影響[J].農(nóng)業(yè)工程學報,2008,24(10): 40–45 Lei J Y,Wu F Q,Wang J,et al.Effects of conservation tillage on soil physical properties and corn yield[J].Transactions of the CSAE,2008,24(10): 40–45

[3]周靜,張仁陟.不同耕作措施下春小麥應對干旱脅迫的生理響應[J].干旱區(qū)研究,2010,27(1): 39–43 Zhou J,Zhang R Z.Physiological response of spring wheat to drought stress under different cultivation measures[J].Arid Zone Research,2010,27(1): 39–43

[4]康紅,朱保安,洪利輝,等.免耕覆蓋對旱地土壤肥力和小麥產(chǎn)量的影響[J].陜西農(nóng)業(yè)科學,2001(9): 1–3 Kang H,Zhu B A,Hong L H,et al.Effects of zero-tillage and mulching on the soil fertility and wheat yield in the arid land[J].Shaanxi Journal of Agricultural Sciences,2001(9): 1–3

[5]Acharya C L,Sharma P D.Tillage and mulch effects on soil physical environment,root growth,nutrient uptake and yield of maize and wheat on an alfisol in north-west India[J].Soil and Tillage Research,1994,32(4): 291–302

[6]劉定輝,陳尚洪,舒麗,等.四川盆地丘陵區(qū)秸稈還田少免耕對土壤水分特征的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2009,27(6): 119–122 Liu D H,Chen S H,Shu L,et al.Impact of straw mulching and no-tillage on soil water characteristics of paddy field in hilly area of Sichuan basin[J].Agricultural Research in the Arid Areas,2009,27(6): 119–122

[7]姚宇卿,呂軍杰,王育紅,等.保持耕作對豫西旱地冬小麥產(chǎn)量及效益的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2002,20(4): 42–44 Yao Y Q,Lv J J,Wang Y H,et al.Effect of conservation tillage on yield and benefit of winter wheat in dry-land in west Henan[J].Agricultural Research in the Arid Areas,2002,20(4): 42–44

[8]江曉東,李增嘉,侯連濤,等.少免耕對灌溉農(nóng)田冬小麥/夏玉米作物水、肥利用的影響[J].農(nóng)業(yè)工程學報,2005,21(7): 20–24 Jiang X D,Li Z J,Hou L T,et al.Impacts of minimum tillage and no-tillage systems on soil NO3--N content and water use efficiency of winter wheat/summer corn cultivation[J].Transactions of the CSAE,2005,21(7): 20–24

[9]毛紅玲,李軍,賈志寬,等.旱作麥田保護性耕作蓄水保墑和增產(chǎn)增收效應[J].農(nóng)業(yè)工程學報,2010,26(8): 44–51 Mao H L,Li J,Jia Z K,et al.Soil water conservation effect,yield and income increments of conservation tillage measures on dryland wheat field[J].Transactions of the CSAE,2010,26(8): 44–51

[10]武海霞,耿寶江.保護性耕作對黑土區(qū)坡耕地土壤水分的影響[J].人民長江,2011,42(9): 105–107 Wu H X,Geng B J.Effects of conservation tillage on soil moisture content of slope land in black soil area[J].Yangtze River,2011,42(9): 105–107

[11]蔡立群,羅珠珠,張仁陟,等.不同耕作措施對旱地農(nóng)田土壤水分保持及入滲性能的影響研究[J].中國沙漠,2012,32(5): 1362–1368Cai L Q,Luo Z Z,Zhang R Z,et al.Effect of different tillage methods on soil water retention and infiltration capability of rainfed field[J].Journal of Desert Research,2012,32(5): 1362–1368

[12]于同艷,張興.耕作措施對黑土農(nóng)田耕層水分的影響[J].西南大學學報: 自然科學版,2007,29(3): 121–124 Yu T Y,Zhang X.Effects of different soil tillage systems on soil water in the black farmland[J].Journal of Southwest Agricultural University: Natural Science Edition,2007,29(3): 121–124

[13]楊永輝,武繼承,毛永萍,等.利用計算機斷層掃描技術(shù)研究土壤改良措施下土壤孔隙[J].農(nóng)業(yè)工程學報,2013,29(23): 99–108 Yang Y H,Wu J C,Mao Y P,et al.Using computed tomography scanning to study soil pores under different soil structure improvement measures[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(23): 99–108

[14]呂巨智,程偉東,鐘昌松,等.不同耕作方式對土壤物理性狀及玉米產(chǎn)量的影響[J].中國農(nóng)學通報,2014,30(30): 38–43 Lü J Z,Cheng W D,Zhong C S,et al.Effects of different cultivation methods on the soil physical properties and yield of maize[J].Chinese Agricultural Science Bulletin,2014,30(30): 38–43

[15]劉緒軍,榮建東.深松耕法對土壤結(jié)構(gòu)性能的影響[J].水土保持應用技術(shù),2009(1): 9–11 Liu X J,Rong J D.Effect of deep tillage on soil structure and properties[J].Technology of Soil and Water Conservation,2009(1): 9–11

[16]李榮,侯賢清.深松條件下不同地表覆蓋對馬鈴薯產(chǎn)量及水分利用效率的影響[J].農(nóng)業(yè)工程學報,2015,31(20): 115–123 Li R,Hou X Q.Effects of different ground surface mulch under subsoiling on potato yield and water use efficiency[J].Transactions of the CSAE,2015,31(20): 115–123

[17]侯賢清,賈志寬,韓清芳,等.不同輪耕模式對旱地土壤結(jié)構(gòu)及入滲蓄水特性的影響[J].農(nóng)業(yè)工程學報,2012,28(5): 85–94 Hou X Q,Jia Z K,Han Q F,et al.Effects of different rotational tillage patterns on soil structure,infiltration and water storage characteristics in dryland[J].Transactions of the CSAE,2012,28(5): 85–94

[18]孫貴臣,馮瑞云,陳凌,等.深松免耕種植對土壤環(huán)境及玉米產(chǎn)量的影響[J].作物雜志,2014(4): 129–132 Sun G C,Feng R Y,Chen L,et al.Effect of deep loosening and zero tillage on soil environment and maize growth[J].Crops,2014(4): 129–132

[19]歐少亭.林業(yè)管理常用標準及政策法規(guī)匯編——森林土壤滲透性測定[M].長春: 吉林電子出版社,2002 Ou S T.Compilation of Commonly Used Standards,Policies and Regulations for Forestry Management: Determination of Forest Soil Permeability[M].Changchun: Jilin Electronic Publishing House,2002

[20]中國科學院土壤研究所.土壤物理性質(zhì)測定方法[M].北京:科學出版社,1978: 328–331 Institute of Soil Science,Chinese Academy of Sciences.Method for Determination of Soil Physical Properties[M].Beijing: Science Press,1978: 328–331

[21]林心雄,文啟孝,徐寧.廣州地區(qū)土壤中植物殘體的分解速率[J].土壤學報,1985,22(1): 47–55 Lin X X,Wen Q X,Xu N.Study on decomposition of plant residues in soils of Guangzhou and Wuxi[J].Acta Pedologica Sinica,1985,22(1): 47–55

[22]Chan K Y,Heenan D P,Oates A.Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J].Soil and Tillage Research,2002,63(3/4): 133–139

[23]李琳,李素娟,張海林,等.保護性耕作下土壤碳庫管理指數(shù)的研究[J].水土保持學報,2006,20(3): 106–109 Li L,Li S J,Zhang H L,et al.Study on soil C pool management index of conversation tillage[J].Journal of Soil and Water Conservation,2006,20(3): 106–109

[24]王新建,張仁陟,畢冬梅,等.保護性耕作對土壤有機碳組分的影響[J].水土保持學報,2009,23(2): 115–121 Wang X J,Zhang R Z,Bi D M,et al.Effects of conservation tillage on soil organic carbon fractions[J].Journal of Soil and Water Conservation,2009,23(2): 115–121

[25]劉中良,宇萬太.土壤團聚體中有機碳研究進展[J].中國生態(tài)農(nóng)業(yè)學報,2011,19(2): 447–455 Liu Z L,Yu W T.Review of researches on soil aggregate and soil organic carbon[J].Chinese Journal of Eco-Agriculture,2011,19(2): 447–455

[26]楊永輝.土壤結(jié)構(gòu)特征對坡地雨水轉(zhuǎn)化的影響[D].咸陽:中國科學院水土保持與生態(tài)環(huán)境研究中心,2006 Yang Y H.Effects of soil structure characteristics on the transformation of slope land[D].Xianyang: Center for Soil and Water Conservation and Ecological Environment Research,Chinese Academy of Sciences,2006

[27]Wang X B,Cai D X,Hoogmoed W B,et al.Developments in conservation tillage in rainfed regions of North China[J].Soil and Tillage Research,2007,93(2): 239–250

[28]黃健,王愛文,張艷茹,等.玉米寬窄行輪換種植、條帶深松、留高茬新耕作制度對土壤性狀的影響[J].土壤通報,2002,33(3): 168–171 Huang J,Wang A W,Zhang Y R,et al.Effects of new cropping system on soil properties of wide and narrow spacing maize rotation planting,striply deep loosening and leaving high stubble on the ground[J].Chinese Journal of Soil Science,2002,33(3): 168–171

[29]Shaver T M,Peterson G A,Ahuja L R,et al.Surface soil physical properties after twelve years of dryland no-till management[J].Soil Science Society of America Journal,2002,66(4): 1296–1303

[30]高建華,張承中.不同保護性耕作措施對黃土高原旱作農(nóng)田土壤物理結(jié)構(gòu)的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2010,28(4): 192–196 Gao J H,Zhang C Z.The effects of different conservation tillage on soil physical structures of dry farmland in the Loess Plateau[J].Agricultural Research in the Arid Areas,2010,28(4): 192–196

[31]Dao T H.Tillage and winter wheat residue management effects on water infiltration and storage[J].Soil Science Society of America Journal,1993,57(6): 1586–1595

[32]Hati K M,Chaudhary R S,Mandal K G,et al.Effects of tillage,residue and fertilizer nitrogen on crop yields,and soil physical properties under soybean-wheat rotation in Vertisols of central India[J].Agricultural Research,2015,4(1): 48–56

[33]羅珠珠,黃高寶,張國盛.保護性耕作對黃土高原旱地表土容重和水分入滲的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2005,23(4): 7–11 Luo Z Z,Huang G B,Zhang G S.Effects of conservation tillage on bulk density and water infiltration of surface soil in semi-arid area of west Loess Plateau[J].Agricultural Research in the Arid Areas,2005,23(4): 7–11

[34]楊永輝,趙世偉,雷廷武,等.寧南黃土丘陵區(qū)不同植被下土壤入滲性能[J].應用生態(tài)學報,2008,19(5): 1040–1045 Yang Y H,Zhao S W,Lei T W,et al.Soil infiltration capacity under different vegetations in southern Ningxia loess hilly region[J].Chinese Journal of Applied Ecology,2008,19(5): 1040–1045

[35]宋日,劉利,吳春勝,等.東北松嫩草原土壤開墾對有機質(zhì)含量及土壤結(jié)構(gòu)的影響[J].中國草地學報,2009,31(4): 91–95 Song R,Liu L,Wu C S,et al.Reclamation on organic matter content and structural properties in steppe soil of northeast Songnen Plain[J].Chinese Journal of Grassland,2009,31(4): 91–95

[36]陳強,Kravchenko Y S,陳淵,等.少免耕土壤結(jié)構(gòu)與導水能力的季節(jié)變化及其水保效果[J].土壤學報,2014,51(1): 11–21 Chen Q,Kravchenko Y S,Chen Y,et al.Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage[J].Acta Pedologica Sinica,2014,51(1): 11–21

Effect of tillage method on soil water infiltration,organic carbon content and structure*

YANG Yonghui1,2,WU Jicheng1,2,ZHANG Jiemei1,2,PAN Xiaoying1,2,WANG Yue1,2,HE Fang1,2
(1.Institute of Plant Nutrition & Resource Environment,Henan Academy of Agricultural Sciences,Zhengzhou 450002,China; 2.Yuanyang Experimental Station of Crop Water Use,Ministry of Agriculture,Yuanyang 453514,China)

Long-term tillage can greatly influence the physical properties of soil profile.For example,subsoiling and no-tillage can increase soil organic matter content,improve soil structure,increase the stability of soil structure and thereby improve soil moisture environment.In addition,no-tillage and subsoiling rotation can significantly improve soil water storage.Mostreported studies were on no-tillage with mulching or subsoiling with mulching or no-tillage and subsoiling rotation.And the investigated soil profiles were usually focused on the ploughed layer.However,the effect of long-term subsoiling or no-tillage without mulching on the physical properties,infiltration processes,organic carbon distribution and structure of soil,especially for the deep soil has been rarely reported.Thus the objective of the study was to explore the effects of long-term no-tillage,subsoiling and conventional tillage,all without mulching,on the structure and water infiltration processes of the soil profile.An undisturbed 0-100 cm soil column,and the ring-cut samples of undisturbed soil and mixed soil samples of the 0-10 cm,10-20 cm,···,90-100 cm layers were collected in a long-term field experiment to determine the soil infiltration processes,saturated hydraulic conductivity,soil organic carbon content and soil structure.The results showed that the time for water infiltrating from the surface to the bottom of soil column under conventional tillage was longest among all treatments.The orders of permeability rate and cumulative infiltration of soil column were as follow: subsoiling > no-tillage > tillage.Then time for cumulative evaporation of the soil column arranged from max to min was from conventional tillage to no-tillage and then to subsoiling.Also the order of saturated hydraulic conductivity in the 0-10 cm and 50-60 cm soil layers was no-tillage >subsoiling > conventional tillage,and that in 20-50 cm and 60-100 cm soil layers was subsoiling > no-tillage > conventional tillage.With the increasing depth of soil,the content of > 0.25 mm water-stable aggregates and soil organic carbon initially increased (10-20 cm layer) and then gradually decreased.In the 0-40 cm and 80-100 cm soil layer,the content of > 0.25 mm water-stable aggregates under subsoiling was highest.The order of soil organic carbon content in the 0-60 cm soil layer was no-tillage > subsoiling > conventional tillage.While soil organic carbon below the 60 cm layer of all the treatments was lower than 4.0 g·kg-1,and followed the order of conventional tillage > no-tillage > subsoiling below the 70 cm soil layer.It was therefore concluded that reasonable tillage improved soil organic carbon content and soil structure,and then promoted soil water conservation.Subsoiling was more favorable to soil water infiltration and no-tillage more conducive for organic carbon and water storage,especially in the 0-60 cm soil layer.

Conventional tillage; Subsoiling; No-tillage; Soil water infiltration; Soil organic carbon; Soil structure

,YANG Yonghui,E-mail: yangyongh@mails.gucas.ac.cn

S152

: A

: 1671-3990(2017)02-0258-09

10.13930/j.cnki.cjea.160720

楊永輝,武繼承,張潔梅,潘曉瑩,王越,何方.耕作方式對土壤水分入滲、有機碳含量及土壤結(jié)構(gòu)的影響[J].中國生態(tài)農(nóng)業(yè)學報,2017,25(2): 258-266

Yang Y H,Wu J C,Zhang J M,Pan X Y,Wang Y,He F.Effect of tillage method on soil water infiltration,organic carbon content and structure[J].Chinese Journal of Eco-Agriculture,2017,25(2): 258-266

* 國家自然科學基金項目(U1404404)、河南省農(nóng)業(yè)科學院優(yōu)秀青年科技基金(2016YQ12)和國家高技術(shù)研究發(fā)展計劃(863計劃)課題(2013AA102904)資助

楊永輝,主要研究方向為土壤生態(tài)與節(jié)水農(nóng)業(yè)。E-mail: yangyongh@mails.gucas.ac.cn

2016-08-15 接受日期: 2016-10-14

* This study was supported by the National Natural Science Foundation of China (U1404404),the Excellent Youth Science and Technology Fund of Henan Academy of Agricultural Sciences (2016YQ12) and the National High-tech R&D Program of China (863 Program) (2013AA102904).

Received Aug.15,2016; accepted Oct.14,2016

猜你喜歡
導水率土壤結(jié)構(gòu)土柱
陜北山地蘋果園土壤飽和導水率和植物導水率特征
降雨條件下植物修復分層尾礦土壤重金屬遷移的模擬分析
基于線性源法與圖像處理的土壤飽和導水率快速測量方法
分層土壤的持水性能研究
海城市土壤飽和導水率空間分布特征
不同化學浸取劑對土壤鎘淋溶過程影響
化工管理(2017年1期)2017-03-05 23:32:20
不同灌水量對2種鹽堿土的洗鹽效果比較
論太原市櫻花栽培情況
土壤結(jié)構(gòu)三維可視化研究
地球(2015年6期)2015-03-31 07:03:10
沈陽地區(qū)開展機械化保護性耕作必要性分析
平远县| 皋兰县| 花莲市| 秦皇岛市| 大丰市| 锦屏县| 泰来县| 永寿县| 金溪县| 安西县| 太谷县| 增城市| 中江县| 江达县| 社会| 徐州市| 旬阳县| 东兰县| 济阳县| 定南县| 忻州市| 裕民县| 平乐县| 兖州市| 长乐市| 肥西县| 皮山县| 靖边县| 博白县| 甘孜| 增城市| 富阳市| 清镇市| 灵寿县| 安远县| 邹城市| 达孜县| 广安市| 万宁市| 莱州市| 奉化市|