許 朝,謝人超,黃 韜,劉 江,張云勇
(1.北京未來網(wǎng)絡科技高精尖創(chuàng)新中心,北京 100124;2.北京郵電大學 網(wǎng)絡與交換國家重點實驗室,北京 100876;3.中國聯(lián)合網(wǎng)絡通信集團有限公司研究院,北京 100032)
移動流量特征模型研究與分析
許 朝1,2,謝人超1,2,黃 韜1,2,劉 江1,2,張云勇3
(1.北京未來網(wǎng)絡科技高精尖創(chuàng)新中心,北京 100124;2.北京郵電大學 網(wǎng)絡與交換國家重點實驗室,北京 100876;3.中國聯(lián)合網(wǎng)絡通信集團有限公司研究院,北京 100032)
不斷增加的移動數(shù)據(jù)流量給運營商的網(wǎng)絡帶來了前所未有的挑戰(zhàn),因此,準確地表示網(wǎng)絡流量特征對于合理規(guī)劃網(wǎng)絡結構和配置網(wǎng)絡資源有著重要意義。主要介紹移動網(wǎng)絡流量特征模型,并對現(xiàn)網(wǎng)數(shù)據(jù)進行分析,得出網(wǎng)絡流量概率密度服從對數(shù)正態(tài)分布,在未來網(wǎng)絡架構的設計中可作為數(shù)據(jù)輸入模型,用于網(wǎng)絡進行仿真和性能驗證。
移動網(wǎng)絡;流量分布;流量模型;流量概率密度
隨著通信技術的發(fā)展和用戶需求的不斷提高,越來越多的移動業(yè)務和應用場景不斷涌現(xiàn),使得移動網(wǎng)絡流量呈現(xiàn)出爆炸式的增長。同時,智能終端的普及以及可穿戴設備、智慧城市、智慧家居、數(shù)字健康、機器通信(Machine-to-Machine,M2M)等業(yè)務的出現(xiàn),也加劇了網(wǎng)絡流量增長。Cisco公司的統(tǒng)計預測數(shù)據(jù)表明,預計到2020年,智能手機流量將超過PC端流量,占總流量的30%;電視、平板電腦、智能手機和M2M(machine-to-machine)產(chǎn)生的流量將分別以17%、39%、58%和44%的年復合增長率增長;Wi-Fi和移動設備產(chǎn)生的IP流量將占總流量的66%[1]。
網(wǎng)絡流量的增長速度,特別是視頻流量的增長,遠遠超過了摩爾定律和路由性能提升的速度,為應對這種情況,各個組織、地區(qū)與國家已經(jīng)啟動了第五代移動通信(5G)網(wǎng)絡的研究,諸如歐盟的METIS項目與5GPPP合作研究項目、中國IMT-2020(5G)推進組,國際電信聯(lián)盟的ITU-R2020工作組以及韓國的5G論壇等。同時,中國移動、西班牙電信、AT&T、華為、愛立信與阿爾卡特朗訊等運營商與設備商也先后發(fā)布了5G白皮書和技術研究報告,業(yè)界關注的重點主要從網(wǎng)絡架構、技術創(chuàng)新以及業(yè)務應用場景等方面開展研究。
無論是工業(yè)界還是學術界的研究人員都越來越意識到現(xiàn)網(wǎng)數(shù)據(jù)分析的重要性,并將數(shù)據(jù)的建模和分析結果用于網(wǎng)絡優(yōu)化和下一代網(wǎng)絡的設計當中[2]。因此,對于移動網(wǎng)絡流量特征的提取和分析成為網(wǎng)絡規(guī)劃和設計中的重要參考因素。本文將重點介紹當前主要的移動網(wǎng)絡流量特征模型,并對現(xiàn)網(wǎng)流量進行分析,驗證符合實際網(wǎng)絡流量的特征模型,最后對研究內(nèi)容做簡單總結。
不斷增加的移動數(shù)據(jù)流量給運營商的網(wǎng)絡帶來了巨大的挑戰(zhàn),因此,準確地表示網(wǎng)絡流量特征對于合理規(guī)劃網(wǎng)絡結構和配置網(wǎng)絡資源有著重要意義。目前,流量特征模型包括空間泊松點過程模型、對數(shù)正態(tài)分布模型、指數(shù)分布模型、高斯分布模型以及離散余弦變換模型等。本節(jié)將主要介紹以上幾種模型。
1.1 空間泊松點過程模型(Spatial Poisson Point Process,SPPP)
SPPP主要應用于基站的位置建模和分析用戶位置的隨機特性,其中,均勻SPPP模型是蜂窩網(wǎng)絡分析中常見的隨機幾何模型,該模型中用戶分布服從均勻分布,是最簡單而且在仿真研究中使用最為廣泛的模型之一。均勻SPPP模型能夠很好地反映相互獨立條件下隨機點的分布情況。
假設SPPP強度為λ,B={B1,B2…Bk}是互不相交的Borel集,N(B)={N(B1),N(B2)…N(Bk)}是獨立隨機變量,用來表示在任何有界的Borel集B中點的數(shù)量。某個區(qū)域中用戶數(shù)量可表示為:
(1)
式中,A(B)表示區(qū)域,在區(qū)域A(B)中N(B)服從強度為λA(B)的泊松分布。在Borel集B中存在k個點的概率可表示為:
(2)
由于實際用戶分布并不服從均勻分布,均勻SPPP分布無法表示用戶分布的隨機性。與均勻SPPP不同,非均勻SPPP用來描述某個區(qū)域的聚集現(xiàn)象,在Borel集B中存在k個點的概率可表示為:
(3)
為表示用戶的非均勻分布,文獻[3]基于均勻SPPP分布提出了修正的Matern模型,在該模型中,首先生成一個均勻SPPP分布的集群中心,然后以集群中心的每個點為圓心,以預設值r為半徑的范圍內(nèi)生成用戶位置,這些用戶分布服從均勻SPPP分布。其中,預設值r以及每個集群中平均用戶數(shù)需要預先確定以保證整體的用戶密度和均勻分布中一致。
在小區(qū)非空閑狀態(tài),均勻用戶分布概率(PH)可用式(4)表示,非均勻用戶分布概率(PI)可用式(5)表示:
(4)
PI≈1-e-(1-e-ρR2π),
(5)
式中,R為小區(qū)的半徑,r為集群中心的預設半徑,ρ為用戶密度。
此外,文獻[4]分別對密集城區(qū)、普通城區(qū)以及郊區(qū)3個地區(qū)做了研究,結論表明SPPP模型只適用于普通城區(qū)和郊區(qū),而密集城區(qū)則用Matern模型更為合適。
1.2 對數(shù)正態(tài)分布模型(LogNormalDistributionModel)
如果隨機變量的對數(shù)服從正態(tài)分布,那么隨機變量就服從對數(shù)正態(tài)分布。文獻[5]通過對現(xiàn)網(wǎng)數(shù)據(jù)的測量和分析表明:流量密度可用對數(shù)正態(tài)分布近似表示。由于流量分布在時間和空間上的不固定性,文獻還分析了流量在空間上的相關性,并結合對數(shù)正態(tài)分布提出了一種空間流量模型。
該模型中,區(qū)域被劃分為M×N個像素區(qū)域,給定像素區(qū)域gm,n(m=1,2…M,n=1,2…N)的流量密度為ρm,n/(bytes/km2),假設ρ=(ρm,n)m-1…M;n-1…N表示流量密度矩陣,xm,n,ym,n為二維笛卡爾坐標,生成高斯隨機分布矩陣:
(6)
式中,和il、jl為(0,ωmax)之間的均勻隨機變量,ωmax用來決定隨機波動率,φl、ψl為(0,2π)之間的均勻隨機變量。得到式(6)之后,可根據(jù)式(7)生成對數(shù)正態(tài)分布矩陣。通過控制σ、μ可調(diào)節(jié)ρ的大小,使之與特定區(qū)域的流量密度相符。
(7)
此外,文獻[6]對E-Plus在德國某個城市的流量數(shù)據(jù)分析之后指出,這些數(shù)據(jù)得到的流量密度并不服從均勻分布。Gotzner和Michalopoulou的研究表明,在一段特定的時間內(nèi),不同2G小區(qū)中的語音業(yè)務量可以用對數(shù)正態(tài)分布來描述[6],并且在不同小區(qū)中GPRS和EDGE的數(shù)據(jù)流量可以用混合的對數(shù)正態(tài)分布來近似表示[7]。
1.3 指數(shù)分布模型(Exponential Distribution Model)
文獻[8]對不同地區(qū)蜂窩網(wǎng)絡流量數(shù)據(jù)進行了分析結果表明,隨著與市區(qū)中心距離的增大,流量密度以指數(shù)形式遞減。對市中心流量密度經(jīng)行歸一化之后,流量密度可表示為:
p(d)=e-d/k,
(8)
式中,d為距離市中心距離,單位為km,k為遞減參數(shù),且隨著地理位置的不同而不同。但需要注意的是,指數(shù)模型只適用于城區(qū),并不具有普適性,無法反應流量密度與距離的關系。因此,在流量的空間分布上,文獻[8]使用了指數(shù)線性模型式(9)和分段線性模型式(10)對不同地區(qū)的流量密度進行了研究,結果表明,這2種模型相對于指數(shù)模型來說更能反應流量密度與距離的關系,其中C和D為常數(shù)。
(9)
(10)
1.4 高斯分布模型(Gaussian distribution model)
二維高斯分布模型可近似表示移動蜂窩網(wǎng)絡中用戶的分布情況,用戶密度可表示為:
(11)
式中,(x,y)為用戶位置,η可通過對比實驗仿真結果來確定,根據(jù)每個小區(qū),可動態(tài)調(diào)整均值μ1、μ2和標準差σ1、σ2,生成包括均勻分布和非均勻分在內(nèi)的適用范圍更廣的分布模型。
文獻[9]使用二維高斯分布模型模擬移動網(wǎng)絡中的用戶分布情況,研究了各個參數(shù)取不同值時對網(wǎng)絡容量的影響。通過文獻[10]中的方法計算小區(qū)間的平均干擾和反向鏈路容量,并與文獻[11]中的模型進行了對比,結果表明使用高斯分布模型對于大型WCDMA網(wǎng)絡的規(guī)劃速度更快,準確度更高。
1.5 離散余弦變換模型(DiscreteCosineTransformModel)
文獻[12]對國內(nèi)某地區(qū)一周的的現(xiàn)網(wǎng)流量做了研究,通過對密集城區(qū)、普通城區(qū)和郊區(qū)三種區(qū)域流量特征的分析提出了截斷二維離散余弦變換模型,其表達式如下:
(12)
具體參數(shù)含義如表1所示。
表1 截斷二維離散余弦變換模型參數(shù)含義
1.6 模型對比
從前文的介紹可以看出不同的模型具有不同的適用范圍和特征,具體區(qū)別如表2所示。
表2 流量特征模型對比
本文采集了國內(nèi)某運營商在某市一周的移動網(wǎng)絡流量數(shù)據(jù),地理位置涵蓋整個城市,包括67 610個基站的流量數(shù)據(jù)及經(jīng)緯度地理坐標。采用網(wǎng)格化的方法將所在地區(qū)分為面積相等的小網(wǎng)格,每個網(wǎng)格的面積是0.009 550 8 km2,同一區(qū)域中的各個基站流量大小相加作為本區(qū)域整體的流量大小,并假設網(wǎng)格內(nèi)流量均勻分布。由于地理分布上不是一個規(guī)則的矩形,本文用MATLAB中的nonzeros函數(shù)來去除掉無效區(qū)域,得到圖1所示的網(wǎng)絡流量概率密度分布圖,該圖描繪了平均流量密度的分布情況。
圖1 整體網(wǎng)絡流量密度概率分布
結果顯示對數(shù)正態(tài)分布與數(shù)據(jù)最為吻合,擬合函數(shù)如下:
(13)
擬合函數(shù)中SSE(方差和)取值為0.000 017 38,接近于0;相關系數(shù)為0.999 9,接近于1,整體擬合效果較為理想,擬合參數(shù)如表3所示。
表3 擬合參數(shù)
在對該地區(qū)選取的住宅區(qū)、商業(yè)區(qū)和辦公區(qū)3個區(qū)域進行同樣的分析之后得到圖2、圖3和圖4的結果。
仿真分析表明這3個地區(qū)流量概率密度均服從對數(shù)正態(tài)分布。因此,無論是整體流量密度還是局部流量密度均可用式(14)表示,通過調(diào)節(jié)N可得到不同的流量特征。
(14)
圖2 住宅區(qū)流量密度概率分布
圖3 商業(yè)區(qū)流量密度概率分布
圖4 辦公區(qū)流量密度概率分布
本文主要對主要的移動網(wǎng)絡流量特征模型做了簡單介紹,并對不同模型的適用范圍和缺點作了總結和對比。通過對現(xiàn)網(wǎng)數(shù)據(jù)的處理和分析,得到了符合實際的移動網(wǎng)絡流量特征模型。
結果表明,無論是整體流量概率密度還是局部流量概率密度,均服從對數(shù)正態(tài)分布。因此在未來網(wǎng)絡設計中進行數(shù)據(jù)驗證時可采用對數(shù)正態(tài)分布模型模擬網(wǎng)絡流量,從而驗證網(wǎng)絡相關性能是否滿足設計要求,對于未來網(wǎng)絡的規(guī)劃和設計都具有重要意義。
[1] Cisco Visual Networking Index: Forecast and Methodology,2015-2020.[DB/OL].http:∥www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf.
[2] 周 軒.下一代移動通信網(wǎng)絡中的業(yè)務特征認知及服務機制研究[D].杭州:浙江大學,2015.
[3] Vidacs A,Godor I.Power Saving Potential in Heterogeneous Cellular Mobile Networks[C]∥Personal,Indoor and Mobile Radio Communications(PIMRC).IEEE,2011:2412-2414.
[4] Zhang J,Wang W,Zhang X,et al.Base Stations from Current Mobile Cellular Networks: Measurement,Spatial Modeling and Analysis[C]∥Wireless Communications and Networking Conference Workshops (WCNCW).IEEE,2013:1-5.
[5] Lee D,Zhou S,Zhong X,et al.Spatial Modeling of the Traffic Density in Cellular Networks[J].IEEE Wireless Communications,2014,21(1): 80-88.
[6] Gotzner U,Rathgeber R.Spatial Traffic Distribution in Cellular Networks[C]∥Proc.VTC,1998,3(5):1994-1998.
[7] Michalopoulou M,Riihijarv J,Mahonen P.Towards Characterizing Primary Usage in Cellular Networks: A Traffic-based Study[C]∥New Frontiers in Dynamic Spectrum Access Networks(DySPAN).2011 IEEE Symposium,2011: 652-655.[8]AlmeidaS,QueijoJ,CorreiaLM.SpatialandTemporalTrafficDistributionModelsforGSM[C]∥Proc.IEEEVTS50thVehicularTechnologyConference,1999,1(9):131-135.
[9]SonN,RobertA.ApproximatingUserDistributionsinWCDMANetworksUsing2-DGaussian[C]∥InternationalConferenceonComputing,CommunicationsandControlTechnologies,2005:1-5.
[10]AklR,HegdeM,Naraghi-PourM,etal.Multi-cellCDMANetworkDesign[C]∥IEEETransVehTechnol,2001,50(5):711-722.
[11]AklR,ParvezA.ImpactofInterferenceModelonCapacityinCDMACellularNetworks[C]∥ProceedingsofSCI04:CommunicationandNetworkSystems,TechnologiesandApplications,2004,3(7):404-408.
[12]GuanL,ZhangX,LiuZ,etal.SpatialModelingandAnalysisofTrafficDistributionBasedonRealDatafromCurrentMobileCellularNetworks[C]∥IEEE,2013:135-138.
Research and Analysis of Mobile Traffic Model
XU Chao1,2,XIE Ren-chao1,2,HUANG Tao1,2,LIU Jiang1,2,ZHANG Yun-yong3
(1.Beijing Advanced Innovation Center for Future Internet Technology,Beijing 100124;2.Beijing University of Posts and Telecommunications,Beijing 100876;3.China Unicom Research Institute,Beijing 100032)
Increasing mobile traffic has brought great challenges to the operators’ network.It is significant to describe the features of traffic accurately fornetwork structure design and network resources configuration.In this paper,several mobile spatial traffic modelsare introduced and real network traffic data is analyzed.Result shows that the traffic probability density follows lognormal distribution which can be used as the input data model in future network designfornetwork simulation and performance validation.
mobile network;traffic distribution;traffic model;traffic probability density
10.3969/j.issn.1003-3114.2017.01.02
許 朝,謝人超,黃 韜,等.移動流量特征模型研究與分析[J].無線電通信技術,2017,43(1):07-10,22.
2016-09-02
國家高技術研究發(fā)展計劃(863計劃)項目(2015AA016101);國家自然科學基金項目(61501042);北京市科技新星計劃項目(Z151100000315078);北京郵電大學青年科研創(chuàng)新計劃專項(2015RC10)
許 朝(1993—),男,碩士研究生,主要研究方向:未來網(wǎng)絡關鍵技術、內(nèi)容中心網(wǎng)絡、網(wǎng)絡緩存等。張云勇(1976—),男,博士后,中國聯(lián)通研究院副院長,北京郵電大學兼職教授,主要研究方向:云計算、移動互聯(lián)網(wǎng)、融合網(wǎng)絡技術等。
TN915
A
1003-3114(2017)01-07-4