丁世超,張培華
(廣東醫(yī)科大學(xué)附屬醫(yī)院整形外科研究所,廣東湛江524001)
自體脂肪干細(xì)胞移植在創(chuàng)面愈合的研究進(jìn)展
丁世超,張培華
(廣東醫(yī)科大學(xué)附屬醫(yī)院整形外科研究所,廣東湛江524001)
難愈性和不愈性創(chuàng)面一直是整形科的一大難題。傳統(tǒng)的治療慢性創(chuàng)面的方法的局限性,通常達(dá)不到其理想的治療效果。目前,脂肪干細(xì)胞應(yīng)用于創(chuàng)面愈合,其基礎(chǔ)和臨床已深入研究,在此就創(chuàng)面愈合機(jī)制、脂肪干細(xì)胞特性與作用和臨床細(xì)胞移植的方法等方面的研究進(jìn)展展開綜述。
脂肪干細(xì)胞;創(chuàng)面愈合;脂肪移植
皮膚的創(chuàng)面愈合可以分為四個(gè)彼此相互連貫的階段:止血期、炎癥期、增生期(包括肉芽組織的形成)和組織重構(gòu)期[1]。傷口不愈合的原因是皮膚自我修復(fù)過程中的某一細(xì)胞或生化過程的中斷。慢性傷口的特點(diǎn)是炎癥期的延長(zhǎng),傷口缺乏有效的新陳代謝,不能清除有害物質(zhì),傷口持續(xù)的感染,微生物耐藥機(jī)制的形成等等導(dǎo)致真皮和表皮細(xì)胞不能對(duì)機(jī)體的再生刺激做出反應(yīng)[2]。
在創(chuàng)面愈合的研究中,我們發(fā)現(xiàn)其關(guān)鍵作用是血管發(fā)生(vasculogenesis)和血管新生(angiogenesis)。血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)和成纖維細(xì)胞生長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF)在血管生成因子中至關(guān)重要[3]。FGF應(yīng)用于創(chuàng)面愈合能促進(jìn)肉芽組織的生成,減少粘連的同時(shí)促進(jìn)血管的新生[4]。此外,角質(zhì)形成細(xì)胞生長(zhǎng)因子(keratinocyte growth factor,KGF)和成纖維細(xì)胞生長(zhǎng)因子(FGF)被認(rèn)為可以促進(jìn)角質(zhì)細(xì)胞的增殖、遷移,膠原蛋白的合成和誘導(dǎo)血管新生[5-6]。
近些年,干細(xì)胞的應(yīng)用被認(rèn)為是再生醫(yī)學(xué)的一種新穎的療法。主要是由于其具有無(wú)限的自我更新的能力以及在適當(dāng)?shù)拇碳l件下,可以分化為不同種類的細(xì)胞[7]。特別是脂肪干細(xì)胞(asipose Derived Stem Cells,ADSCs)最近幾年引起了廣泛的關(guān)注。相比較于骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs),脂肪干細(xì)胞來(lái)源廣泛、含量較多、獲取方式簡(jiǎn)單、患者承受的痛苦也較少[8]。
脂肪干細(xì)胞與骨髓間充質(zhì)干細(xì)胞一樣,具有多項(xiàng)分化的能力,能表達(dá)相同的表面標(biāo)志物,具有相似的基因結(jié)構(gòu)以及相同的分化潛能[9]。所以,在適當(dāng)?shù)沫h(huán)境下,脂肪干細(xì)胞可以分化為脂肪細(xì)胞、成骨細(xì)胞、成軟骨細(xì)胞以及肌細(xì)胞等。脂肪干細(xì)胞還能分泌許多不同種的細(xì)胞因子[10],比如:堿性成纖維生長(zhǎng)因子(basic fibroblast growth factor,bFGF)、轉(zhuǎn)化生長(zhǎng)因子-β (transforming growth factor beta,TGF-β)、肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)和血管內(nèi)皮生長(zhǎng)因子(VEGF)[11]。
皮膚損傷以后會(huì)生成許多生長(zhǎng)因子來(lái)促進(jìn)血管的新生。例如:VEGF、纖維母細(xì)胞生長(zhǎng)因子-2 (FGF-2)和血小板原性生長(zhǎng)因子(PDGF)。同時(shí),內(nèi)皮細(xì)胞基底膜開始降解并遷移至損傷區(qū)域進(jìn)行增殖,形成新的血管。在這階段,脂肪干細(xì)胞起了主要作用,因其分泌了大量細(xì)胞因子、bFGF、KGF、TGF-b、HGF和VEGF來(lái)刺激血管新生,促進(jìn)創(chuàng)面愈合。
目前,報(bào)道過的脂肪干細(xì)胞應(yīng)用于創(chuàng)面和難治性潰瘍的愈合的案例僅有62例[12-15]。Amos等[16]討論可能用植皮術(shù)和脂肪移干細(xì)胞植術(shù)用于促進(jìn)慢性潰瘍創(chuàng)面愈合的長(zhǎng)期治療。Cervelli等[11]的研究證明,在下肢截肢患者的創(chuàng)面內(nèi)或是創(chuàng)面表面聯(lián)合應(yīng)用自體脂肪移植和富血小板血漿(PRP)都有促進(jìn)組織再生、誘導(dǎo)創(chuàng)面表皮化的能力。Marino等[13]從自體脂肪中提純出脂肪來(lái)源干細(xì)胞和再生細(xì)胞用于治療動(dòng)脈疾病導(dǎo)致的下肢慢性潰瘍的患者。在所有案例中,在創(chuàng)面邊緣注射脂肪干細(xì)胞能有效的減小創(chuàng)面的深度和范圍,超過一半的患者創(chuàng)面已經(jīng)完全愈合了。Lee等[14]研究表明,脂肪干細(xì)胞移植有效的促進(jìn)血管重建和組織灌流,從而促進(jìn)無(wú)血管重建的嚴(yán)重缺血的患者下肢創(chuàng)面和潰瘍的愈合。Lee等[15]證明,對(duì)于其他方法效果不佳的肢體嚴(yán)重缺血的患者體內(nèi),在肌肉組織多點(diǎn)注射脂肪干細(xì)胞是一個(gè)能促進(jìn)血管新生的安全有效的方法。
應(yīng)用最廣泛的組織再生技術(shù)1995年由Coleman[17]發(fā)明,主要抽取來(lái)自腹部、腰部脂肪堆積區(qū)以及大腿、膝蓋內(nèi)側(cè)或兩側(cè)的脂肪,分離后重新注射到受區(qū)。首先,在供區(qū)注射腫脹液(250 mL生理鹽水、20 mL 1%的卡波卡因、1 mL腎上腺素和2 mL碳酸氫鹽),等10~20 min待腫脹液完全擴(kuò)散后,用雙孔鈍頭Coleman抽吸管道和10 mL的注射器直接套在套管上,抽取脂肪以后直接轉(zhuǎn)移到離心機(jī)上進(jìn)行離心,1 300 r/min共5 min。離心后的組織分為三層:上層黃色的油脂是損傷的脂肪細(xì)胞,中間層是具有大量干細(xì)胞的脂肪組織移植物[18],最底層是血液。
去除油脂和血液以后,這些脂肪移植物分裝到1 mL的鈍頭Coleman注射器進(jìn)行組織移植。采用多層次注射法,在受區(qū)的皮下和真皮下不同層次分別注射少量的脂肪組織,以促進(jìn)脂肪組織植入?yún)^(qū)與周邊部位的融合[19]。這種方法可以減少脂肪的破壞和脂肪細(xì)胞的凋亡,促進(jìn)移植物的血管化和脂肪的三維分布。實(shí)際上,盡量縮小每個(gè)區(qū)域移植物的體積能使移植的脂肪與受區(qū)的接觸面積最大化。在血供豐富的地區(qū)移植脂肪,可以提高其存活率,并使脂肪的凋亡和鈣化最少[20]。
傳統(tǒng)的治療慢性創(chuàng)面的方法通常達(dá)不到理想的治療效果。越來(lái)越多比較新穎的治療方法,比如:生物敷料、皮膚替代品、生長(zhǎng)因子介導(dǎo)治療和去細(xì)胞基質(zhì)綜合治療被應(yīng)用于功能失調(diào)的細(xì)胞治療[21]。目前,應(yīng)用脂肪干細(xì)胞治療慢性創(chuàng)面的方法主要有:細(xì)胞介導(dǎo)治療和接種細(xì)胞的生物支架共同應(yīng)用治療。
4.1 自體脂肪干的應(yīng)用以細(xì)胞為基礎(chǔ)的治療包括間充質(zhì)干細(xì)胞,比如:脂肪干細(xì)胞,能夠改善傷口愈合的條件而不需要考慮外科手術(shù)和供體部位的不適。創(chuàng)面能得到有效的愈合,因?yàn)橹靖杉?xì)胞具有多向分化的能力,同時(shí)能分泌或抑制某些內(nèi)環(huán)境所必須的生長(zhǎng)激素和生長(zhǎng)因子,使細(xì)胞在穩(wěn)定的環(huán)境中擴(kuò)增。細(xì)胞治療能用于急性和慢性的創(chuàng)面中。在急性創(chuàng)面的治療中,脂肪干細(xì)胞能促進(jìn)創(chuàng)面愈合,減少瘢痕攣縮,最小化供體部位的不適。相反,在慢性創(chuàng)面的治療中,通過有創(chuàng)面愈合能力的細(xì)胞移植,應(yīng)該盡可能大的實(shí)現(xiàn)受區(qū)的創(chuàng)面愈合[22],受區(qū)的條件必須在移植之前達(dá)到要求,包括組織、感染情況、創(chuàng)面濕度和創(chuàng)面的周邊環(huán)境[23]。此外,根據(jù)脂肪干細(xì)胞的特點(diǎn),應(yīng)該要盡可能消除靜脈回流和靜脈瘀滯效應(yīng),以營(yíng)造合適的細(xì)胞環(huán)境,促進(jìn)脂肪干細(xì)胞的粘附生長(zhǎng)。
4.2 脂肪干細(xì)胞與生物支架聯(lián)合應(yīng)用脂肪干細(xì)胞聯(lián)合生物支架應(yīng)用于創(chuàng)面是組織工程用于修復(fù)損傷的常用方法。而理想的細(xì)胞支架應(yīng)該具備以下條件:(1)生物降解性;(2)無(wú)炎癥反應(yīng);(3)具有表面物質(zhì)促進(jìn)細(xì)胞黏附、增殖和分化;(4)能模擬皮膚離體培養(yǎng);(5)具有合適的機(jī)械性能;(6)能夠變出各種形狀[24]。適合脂肪干細(xì)胞移植的支架主要有:Ⅰ型膠原蛋白海綿、透明質(zhì)酸、無(wú)紡聚乙醇酸。透明質(zhì)酸是天然的不含硫化物的粘多糖,存在于結(jié)締組織、關(guān)節(jié)腔滑液和眼球的玻璃體中。是細(xì)胞外基質(zhì)的天然組成部分,在細(xì)胞分化和組織修復(fù)中起重要作用。透明質(zhì)酸被認(rèn)為是“脂肪組織工程的合適支架”,具有高度的生物復(fù)合性,不會(huì)引起任何不良排斥反應(yīng),能被宿主組織再吸收[25]。在一項(xiàng)對(duì)照試驗(yàn)中證明了透明質(zhì)酸是治療全層皮膚損傷潰瘍的最合適的組織修復(fù)和再生的支架材料[26];而且,透明質(zhì)酸及其衍生物具有促血管生成的作用:在體模型的初步結(jié)果顯示:在透明質(zhì)酸制成的假體中發(fā)現(xiàn)了完整再生的腔靜脈[25,27]。在最近的研究中,Altman等[28]發(fā)現(xiàn)由絲素蛋白-殼聚糖組成的支架結(jié)合脂肪干細(xì)胞能促進(jìn)干細(xì)胞的移植和分化成表皮細(xì)胞、纖管的成分,來(lái)促進(jìn)損傷組織的修復(fù)和愈合。這種傷口再生的微環(huán)境主要決定于干細(xì)胞的祖細(xì)胞和他們的移植部位之間的關(guān)系[29]。因此,任何重建組織工程應(yīng)該提供合適的微環(huán)境,以利于細(xì)胞增殖和分化。
綜上所述,據(jù)目前研究表明,脂肪干細(xì)胞(ADSCs)主要通過釋放血管生成因子來(lái)促進(jìn)創(chuàng)面的血管新生,從而加速創(chuàng)面愈合。無(wú)論是直接注射還是通過支架應(yīng)用于創(chuàng)面都能促進(jìn)血管新生。但是,目前脂肪干細(xì)胞應(yīng)用還不廣泛,許多分泌和分化機(jī)制仍不清楚,希望有更多的研究投入到脂肪干細(xì)胞中,加速脂肪干在難治或不愈性創(chuàng)面中的應(yīng)用。
[1]Bielefeld KA,Amini-Nik S,Alman BA.Cutaneous wound healing: recruiting developmental pathways for regeneration[J].Cellular andMolecular Life Sciences,2013,70(12):2059-2081.
[2]Fromm-Dornieden C,Koenen P.Adipose-derived stem cells in wound healing:recent results in vitro and in vivo[J].OA Mol Cell Biol,2013,1(1):8.
[3]Bauer SM,Bauer RJ,Velazquez OC.Angiogenesis,vasculogenesis, and induction of healing in chronic wounds[J].Vascular and Endovascular Surgery,2005,39(4):293-306.
[4]Akasaka Y,Ono I,Tominaga A,et al.Basic fibroblast growth factor in an artificial dermis promotes apoptosis and inhibits expression of α-smooth muscle actin,leading to reduction of wound contraction [J].Wound repair and regeneration,2007,15(3):378-389.
[5]Barrientos S,Stojadinovic O,Golinko M S,et al.Growth factors and cytokines in wound healing[J].Wound Repair and Regeneration, 2008,16(5):585-601.
[6]Greenhalgh DG.The role of growth factors in wound healing[J]. Journal of Trauma andAcute Care Surgery,1996,41(1):159-167.
[7]De Ugarte D A,Morizono K,Elbarbary A,et al.Comparison of multi-lineage cells from human adipose tissue and bone marrow[J]. Cells tissues organs,2003,174(3):101-109.
[8]Baglioni S,Francalanci M,Squecco R,et al.Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue[J].The FASEB Journal,2009,23(10):3494-3505.
[9]Hassan W U,Greiser U,Wang W.Role of adipose-derived stem cells in wound healing[J].Wound Repair and Regeneration,2014,22(3): 313-325.
[10]Kim WS,Park BS,Sung JH.The wound-healing and antioxidant effects of adipose-derived stem cells[J].Expert Opinion on Biological Therapy,2009,9(7):879-887.
[11]Cervelli V,De Angelis B,Lucarini L,et al.Tissue regeneration in loss of substance on the lower limbs through use of platelet-rich plasma,stem cells from adipose tissue,and hyaluronic acid[J].Advances in Skin&Wound Care,2010,23(6):262-272.
[12]Lafosse A,Desmet C,Aouassar N,et al.Autologous adipose stromal cells seeded onto a human collagen matrix for dermal regeneration in chronic wounds:clinical proof of concept[J].Plastic and Reconstructive Surgery,2015,136(2):279-295.
[13]Bura A,Planat-Benard V,Bourin P,et al.Phase I trial:the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia[J].Cytotherapy, 2014,16(2):245-257.
[14]Lee HC,An SG,Lee HW,et al.Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia[J].Circulation Journal,2012,76(7):1750-1760.
[15]Bartsich S,Morrison N.Composite fat and skin grafting for the management of chronic sickle cell ulcers[J].Wounds,2012,24(3):51-54.
[16]Amos PJ,Kapur SK,Stapor PC,et al.Human adipose-derived stromal cells accelerate diabetic wound healing:impact of cell formulation and delivery[J].Tissue Engineering Part A,2010,16(5): 1595-1606.
[17]Coleman SR.Long-term survival of fat transplants:controlled demonstrations[J].Aesthetic Plastic Surgery,1995,19(5):421-425.
[18]Gardin C,Bressan E,Ferroni L,et al.In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their genomical analyses through comparative genomic hybridization array:novel strategies to increase the successful engraftment of tissue-engineered bone grafts[J].Stem Cells and Development,2011, 21(5):767-777.
[19]Coleman SR,Saboeiro AP.Fat grafting to the breast revisited:safety and efficacy[J].Plastic and Reconstructive Surgery,2007,119(3): 775-785.
[20]Kim HY,Jung BK,Lew DH,et al.Autologous fat graft in the reconstructed breast:fat absorption rate and safety based on sonographic identification[J].Archives of Plastic Surgery,2014,41(6):740-747.
[21]Rizzi SC,Upton Z,Bott K,et al.Recent advances in dermal wound healing:biomedical device approaches[J].Expert Review of Medical Devices,2010,7(1):143-154.
[22]You HJ,Han SK.Cell therapy for wound healing[J].Journal of Korean Medical Science,2014,29(3):311-319.
[23]Ayello EA,Dowsett C,Schultz GS,et al.TIME heals all wounds[J]. Nursing,2004,34(4):36-42.
[24]Croisier F,Jér?me C.Chitosan-based biomaterials for tissue engineering[J].European Polymer Journal,2013,49(4):780-792.
[25]Messina A,Bortolotto SK,Cassell OCS,et al.Generation of a vascularized organoid using skeletal muscle as the inductive source[J]. The FASEB journal,2005,19(11):1570-1572.
[26]Zavan B,Vindigni V,Vezz K,et al.Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study[J].Journal of Materials Science:Materials in Medicine,2009,20(1):235-247.
[27]Pandis L,Zavan B,Abatangelo G,et al.Hyaluronan-based scaffold for in vivo regeneration of the rat vena cava:Preliminary results in an animal model[J].Journal of Biomedical Materials Research Part A,2010,93(4):1289-1296.
[28]Altman AM,Yan Y,Matthias N,et al.IFATS collection:human adipose-derived stem cells seeded on a silk Fibroin-Chitosan scaffold enhance wound repair in a murine soft tissue injury model[J].Stem Cells,2009,27(1):250-258.
[29]Wong VW,Levi B,Rajadas J,et al.Stem cell niches for skin regeneration[J].International Journal of Biomaterials,2012,2012:926059. doi:10.1155/2012/926059
Research progress of autologous adipose-derived stem cells grafting for wound healing.
DING Shi-chao,ZHANG Pei-huang.Plastic Surgery Institute,Affiliated Hospital of Guangdong Medical University,Zhanjiang 524001,Guangdong, CHINA
Refractory and unhealed wound has been a major problem of plastic and constructive surgery.The limitation of traditional cure system of treating chronic wound make them generally less than ideal.At present,adipose-derived stem cell therapy has been applied to wound healing,and its basic mechanism and clinical methods have been studied in depth.In this paper,we reviewed the progress in wound healing mechanisms,adipose-derived stem cell characteristics and effects,and methods of clinical cell transplantation.
Adipose-derived stem cells;Wound healing;Fat transplantation
R641
A
1003—6350(2017)07—1127—03
10.3969/j.issn.1003-6350.2017.07.033
2016-08-15)
廣東省自然科學(xué)基金自由申請(qǐng)項(xiàng)目(編號(hào):2014A030313535)
張培華。E-mail:zhangph1128@126.cm