劉桃花,侯木舟
(1.中南大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,中國(guó) 長(zhǎng)沙 410083; 2.邵陽(yáng)學(xué)院理學(xué)系,中國(guó) 邵陽(yáng) 422004)
一類(lèi)分?jǐn)?shù)階反應(yīng)擴(kuò)散方程的差分方法
劉桃花1,2,侯木舟1
(1.中南大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,中國(guó) 長(zhǎng)沙 410083; 2.邵陽(yáng)學(xué)院理學(xué)系,中國(guó) 邵陽(yáng) 422004)
分?jǐn)?shù)階反應(yīng)擴(kuò)散方程可以用來(lái)模擬反常擴(kuò)散運(yùn)動(dòng),它是由傳統(tǒng)的反應(yīng)擴(kuò)散方程演變而來(lái)的.本文對(duì)帶變系數(shù)的空間分?jǐn)?shù)階反應(yīng)擴(kuò)散方程的初邊值問(wèn)題進(jìn)行了數(shù)值研究,采用了移位的Grunwald公式對(duì)空間分?jǐn)?shù)階導(dǎo)數(shù)進(jìn)行離散,在此基礎(chǔ)上建立了經(jīng)典的隱性Euler差分格式.然后討論了該格式的解的存在唯一性,分析了該方法相容性、穩(wěn)定性及收斂性,得到了O(τ+h)收斂階.最后用數(shù)值實(shí)驗(yàn)證明了該格式的有效性.
分?jǐn)?shù)階反應(yīng)擴(kuò)散方程; 隱性Euler差分格式;相容性;無(wú)條件穩(wěn)定;收斂性
分?jǐn)?shù)階(空間分?jǐn)?shù)階、時(shí)間分?jǐn)?shù)階和空間-時(shí)間分?jǐn)?shù)階)反應(yīng)擴(kuò)散方程是傳統(tǒng)的整數(shù)階反應(yīng)擴(kuò)散方程的推廣,即用分?jǐn)?shù)階導(dǎo)數(shù)代替相應(yīng)的整數(shù)階導(dǎo)數(shù)[1].由于分?jǐn)?shù)階微分方程比整數(shù)階方程更精確地描述了客觀世界,因此它在描述自然界擴(kuò)散現(xiàn)象中起到非常重要的作用,已廣泛地應(yīng)用于物理[2-4]、化學(xué)[5]、環(huán)境[6]等領(lǐng)域.空間分?jǐn)?shù)階反應(yīng)擴(kuò)散方程被用來(lái)模擬反常擴(kuò)散運(yùn)動(dòng),若粒子以連續(xù)方式擴(kuò)散,就是經(jīng)典的布朗模型.
本文將考慮如下帶變系數(shù)的空間分?jǐn)?shù)階反應(yīng)擴(kuò)散方程:
(1)
初邊值條件為:
c(x,0)=s(x),L≤x≤R,
(2)
c(L,t)=0,c(R,t)=b(t),t≥0.
(3)
其中擴(kuò)散系數(shù)d(x)≥0;v(x)≥0,耗散系數(shù) p(x)≥0,均為[L,R]上的連續(xù)函數(shù).
(4)
目前,已有很多學(xué)者研究其解的存在性和唯一性,取得了很好的結(jié)果[9-10].關(guān)于同類(lèi)別的問(wèn)題的數(shù)值方法有很多學(xué)者進(jìn)行了研究[11-14],Xie等[15]在研究空氣中PM2.5的擴(kuò)散情況時(shí),給出了此類(lèi)分?jǐn)?shù)階擴(kuò)散方程的Crank-Nicholson格式.本文在采用移位Grunwald公式對(duì)空間分?jǐn)?shù)階導(dǎo)數(shù)進(jìn)行離散,構(gòu)造了經(jīng)典的隱性Eluer差分格式來(lái)求出此方程的數(shù)值解.
文章其它部分安排如下:第2部分,對(duì)帶變系數(shù)的空間分?jǐn)?shù)階的分?jǐn)?shù)階擴(kuò)散方程構(gòu)建了隱性Eluer差分方法并證明其解的存在唯一性,以及穩(wěn)定性、收斂性.第3部分,給出一個(gè)數(shù)值實(shí)驗(yàn),來(lái)檢驗(yàn)此方法的有效性.
(5)
其中g(shù)k為Grunwald權(quán)系數(shù)
定義一階空間及時(shí)間導(dǎo)數(shù):
其中,τ=Δt,因此,可得到
(6)
存在M為正常數(shù),使得:
|Ri,n+1|≤M(τ+h).
由上式,對(duì)問(wèn)題(1)~(3)可以建立隱性的Eluer格式如下:
(7)
(8)
(9)
由上可知式(7)~(9)與帶初邊值條件方程(1)~(3)相容.
方程(7)通過(guò)整理得如下形式
(10)
(Ei=viΔt/h,Bi=diΔt/hα).
可進(jìn)一步將分?jǐn)?shù)階方程改寫(xiě)為矩陣形式
ACn+1=Cn+ΔtFn+1,
A=[Ai,j]是一個(gè)(K-1)×(K-1)系數(shù)矩陣,當(dāng)i=1,…,K-1和j=1,…,K-1時(shí)
(11)
引理1[10]當(dāng)1<α≤2時(shí),Grunwald權(quán)系數(shù)gi(i=0,1,2,…)滿(mǎn)足:
定理2 差分格式(6)~(8)的解存在唯一,而且差分格式是無(wú)條件穩(wěn)定的.
證 假設(shè)λ為矩陣A的特征值,X為其對(duì)應(yīng)的特征向量,即AX=λX,設(shè)
(12)
將式(11)代入式(12)得
命題1 上面分析時(shí),已知該方法是相容的,且得到該方法的截?cái)嗾`差為O(τ+h).根據(jù)Lax等價(jià)定理[16],差分格式(6)~(8)的解cn以‖·‖∞收斂到初邊 值問(wèn)題的解,且收斂階為O(τ+h).
考慮如下分?jǐn)?shù)階反應(yīng)擴(kuò)散方程(α=1.5)
圖1 數(shù)值結(jié)果Fig.1 Numerical results
此方程的精確解為c(x,t)=x2e-t
圖1數(shù)值結(jié)果表明,在T=1時(shí)刻,取相同的空間、時(shí)間步長(zhǎng)(τ=h=1/10)時(shí),方程數(shù)值解與精確解相吻合,即所給出差分格式是有效的.
表1為T(mén)=1時(shí)刻,取相同的空間、時(shí)間步長(zhǎng)時(shí),數(shù)值解的最大誤差及誤差階.在表1中,當(dāng)空間步長(zhǎng)和時(shí)間步長(zhǎng)都減半時(shí),誤差接近原來(lái)的一半,這表明差分格式的收斂階為O(τ+h).
表1 最大誤差及誤差階
Tab.1 Max error and error rate
τ=h最大誤差誤差階1/108.03228×10-31/204.21272×10-31.906671/402.17059×10-31.940821/801.22580×10-31.77075
[1] METZLER R,KLAFTER J.The random walk’s guide to anomalous diffusion:A fractional dynamics approach[J].Phys Rep,2000,339(1):1-77.
[2] SAICHEV A I,ZASLAVSKY G M.Fractional kinetic equations:solutions and applications[J].Chaos,1997,7(4):753-764.
[3] ROSSILIHIN Y,SHITIKOVA M.Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids[J].Appl Mech Rev,1997,50(2):15-67.
[4] METZLER R,KLAFTER J.Boundary value problems for fractional diffusion equations[J].Phys A:Stat Mech Appl,2000,278(1-2):107-125.
[5] YUSTE S B,LINDENBERG K.Subdiffusion-limited A+A reactions[J].Phys Rev Lett,2001,87(11):118-301.
[6] BENSON D A,WHEATCRAFT S W,MEERSCHAERT M M.Application of a fractional advection-dispersion equation[J].Water Resour Res,2000,36(6):1403-1412.
[7] TADJERAN C,MEERSCHAERT M M,SCHEFFLER H P.A second-order accurate numerical approximation for the fractional diffusion equation[J].J Comput Phys,2006,213(1):205-213.
[8] TUAN V K,GORENFLO R.Extrapolation to the limit for numerical fractional differentiation[J].Z Agnew Math Mech,1995,75:646-648.
[9] KEMPPAINEN J.Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition [J].Abstr Appl Anal Article,2011,(11):ID321903.
[10] PODLUBNY I.Fractional Differential Equations,Volume 198.An introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications[M].San Diego:Academic Press,1998.
[11] MEERSCHAERT M M.TADJERAN C.Finite difference approximations for fractional advection-dispersion flow equations[J].J Comput Appl Math,2004,172(1):65-77.
[12] LIU F,ANH V,TURNER I.Numerical solution of space fractional Fokker-Planck equation[J].Comp Appl Math,2004,(166):209-219.
[13] 尹修草,周 均,胡 兵.分?jǐn)?shù)階對(duì)流-彌散方程的有限差分方法[J].四川大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,50(3):409-413.
[14] FIX G J,ROOP J P.Least squares finite-element solution of a fractional order two-point boundary value problem[J].Comput Math Appl,2004,48(7-8):1017-1033.
[15] XIE C P,LI L,HUANG Z Z,etal.Fractional difference approximations for fractional reaction-diffusion equations and the application in PM2.5[C].International Symposium on Energy Science and Chemical Engineering,2015-12,Guangzhou.
[16] CHAVES A.Fractional diffusion equation to describe Levy flights[J].Phys Lett A,1998,239(1-2):13-16.
(編輯 HWJ)
Finite Difference Approximations for Fractional Reaction-Diffusion Equations
LIUTao-hua1,2*,HOUMu-zhou1
(1.School of Mathematics and Statistics,Central South University,Changsha 410083,China;2.Department of Science,Shaoyang University,Shaoyang 422004,China)
Fractional reaction-diffusion equations are generalizations of classical reaction-diffusion equations,which are used in simulating the anomalous diffusion motion.In this paper,we examine a practical numerical method,which is called Euler method to solve a class of initial-boundary value a fractional reaction-diffusion equation with variable coefficients.Then we discuss the existence and uniqueness of solutions for the format.The stability,consistency and convergence of the method are established to get the convergence order ofO(τ+h).Finally,we use a numerical experiment to prove the effectiveness of the proposed format.
fractional reaction-diffusion equations; implicit Euler method; consistency; unconditional stability; convergence
10.7612/j.issn.1000-2537.2017.01.014
2016-09-04
國(guó)家自然科學(xué)基金資助項(xiàng)目(61672356,61375063,61271355,11271378,11301549);中南大學(xué)2015年實(shí)驗(yàn)室研究項(xiàng)目
* 通訊作者,E-mail:liutaohua2005@163.com
O241.82
A
1000-2537(2017)01-0091-04
湖南師范大學(xué)自然科學(xué)學(xué)報(bào)2017年1期