国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

花生四烯酸對日本沼蝦肝胰腺細胞脂質代謝基因表達的影響

2017-02-28 05:04丁志麗曹訪羅娜孔有琴張易祥李景芬葉金云
動物營養(yǎng)學報 2017年2期
關鍵詞:沼蝦細胞培養(yǎng)培養(yǎng)液

丁志麗曹 訪羅 娜孔有琴張易祥李景芬葉金云?

(1.浙江省水生生物資源養(yǎng)護與開發(fā)技術研究重點實驗室,中國水產科學研究院水生動物繁育與營養(yǎng)重點實驗室,湖州師范學院生命科學學院,湖州 313000;2.大連海洋大學水產與生命科學學院,大連 116000)

花生四烯酸對日本沼蝦肝胰腺細胞脂質代謝基因表達的影響

丁志麗1曹 訪1羅 娜2孔有琴1張易祥1李景芬1葉金云1?

(1.浙江省水生生物資源養(yǎng)護與開發(fā)技術研究重點實驗室,中國水產科學研究院水生動物繁育與營養(yǎng)重點實驗室,湖州師范學院生命科學學院,湖州 313000;2.大連海洋大學水產與生命科學學院,大連 116000)

本試驗旨在評價細胞培養(yǎng)液中花生四烯酸(arachidonic acid,ARA)濃度對日本沼蝦肝胰腺細胞活力及脂質代謝相關基因表達的影響。分離日本沼蝦肝胰腺細胞,使用M199完全培養(yǎng)液培養(yǎng)5 d后換成含ARA的培養(yǎng)液,ARA濃度分別為0(ARA1)、50(ARA2)、100(ARA3)、200(ARA4)和1 000 μmol/L(ARA5),測定12和24 h時脂質代謝相關基因的表達水平,以及24 h時細胞活力。結果表明:原代肝胰腺細胞使用完全培養(yǎng)液時,生長狀況良好,能存活15 d左右;ARA5組24 h時細胞活力顯著低于ARA1和ARA2組(P<0.05);高濃度的ARA降低了12和24 h時Δ4脫飽和酶(Δ4FAD)、Δ6脫飽和酶(Δ6FAD)、碳鏈延長酶6(Elovl6)、B類Ⅰ型清道夫受體(SR-BⅠ)、脂肪酸結合蛋白10(FABP10)、乙酰輔酶A結合蛋白(ACBP)基因表達水平;ARA作用12 h時,ARA2組SR-BⅠ基因表達水平顯著高于其余各組(P<0.05),ARA2和ARA3組FABP10基因表達水平顯著高于ARA1和ARA5組(P<0.05),ARA3組ACBP基因表達水平顯著高于其余各組(P<0.05);ARA作用24 h時,ARA2組SR-BⅠ、FABP10和ACBP基因表達水平顯著高于其余各組(P<0.05)。由此可見,細胞培養(yǎng)液中ARA濃度會影響日本沼蝦肝胰腺細胞活力及脂質代謝相關基因的表達,過高的ARA濃度(1 000 μmol/L)會降低細胞的活力,適宜的ARA濃度(50~100 μmol/L)可促進脂肪酸脫飽和酶、碳鏈延長酶及脂肪酸轉運相關基因的表達。

日本沼蝦;花生四烯酸;細胞培養(yǎng);基因表達

脂肪酸是一種重要的營養(yǎng)素,能維持細胞膜的流動性,調節(jié)機體的生長性能、脂質代謝和免疫功能[1-2]。花生四烯酸(20∶4n-6,ARA)作為一種n-6高不飽和脂肪酸(highly unsaturated fatty acid,HUFA),是類二十烷酸的前體物質[3],能參與機體應激和炎癥反應[4-5],調節(jié)機體的免疫性能[6]。 此外,ARA及其代謝物能調節(jié)過氧化物酶體增殖受體(PPAR)γ[7],從而影響脂質代謝相關基因的轉錄,調節(jié)脂肪酸合成與儲存[8-10]。

目前,在水產動物主要集中于通過體內攝食營養(yǎng)來分析ARA對魚類生長性能和機體脂肪酸組成[5,11-15]、抗 應 激[5,13]、免 疫 性 能[15]以 及 代謝[16-17]的影響,或通過體外魚頭腎細胞培養(yǎng)試驗分析ARA對細胞通路基因和脂肪酸代謝相關基因表達[18]、類二十烷酸物質生成[6,18]和免疫功能[19]的影響。此外,在經濟蝦蟹類等甲殼動物也開展了對ARA的相關研究。Xu等[20]對中國對蝦的研究發(fā)現(xiàn),相比亞油酸或亞麻酸,ARA具有更高的營養(yǎng)價值;對斑節(jié)對蝦的研究表明,當飼料中其他必需脂肪酸滿足需求時,添加ARA不能提高其生長性能[21];飼料中添加ARA能改變凡納濱對蝦免疫相關基因的表達[22]。由于傳統(tǒng)的攝食營養(yǎng)試驗受到體內復雜的細胞代謝通路統(tǒng)一調節(jié),存在飼喂條件及養(yǎng)殖環(huán)境應激等諸多影響因素,使得研究某種或某些營養(yǎng)素的生理作用及機制受到一定限制,利用體外細胞培養(yǎng)可以克服這些困難[6,23]。然而,利用甲殼動物的體外細胞培養(yǎng)系統(tǒng)研究脂肪酸的營養(yǎng)代謝未見報道。

脂肪酸被機體吸收后用于胞內甘油三酯的儲存或作為燃料用于能量代謝。大量的研究證明,脂肪酸進出細胞是由多個蛋白介導的競爭性的脂肪酸轉運體系,這些不同的蛋白能夠顯著地促進細胞吸收和排出脂肪酸[24-25],如 CD36清道夫受體家族中的B類Ⅰ型清道夫受體(scavenger receptor class B typeⅠ,SR-BⅠ)[26-27]、脂肪酸轉位酶(fatty acid translocase,F(xiàn)AT/CD36)等[24]。研究表明,SR-BⅠ能結合各種配體,包括修飾及未經修飾的低密度脂蛋白、極低密度值蛋白及高密度脂蛋白膽固醇酯[26-27]。而在細胞內,脂肪酸主要與脂肪酸結合蛋白(fatty acid-binding protein,F(xiàn)ABP)結合,使其溶解性增加,從而促使脂肪酸轉運至不同的位點[28]。此外,胞內乙酰輔酶 A結合蛋白(acyl-CoA binding protein,ACBP)主要與長鏈脂酰輔酶A結合,在細胞內乙酰輔酶A的轉運和乙酰輔酶A池的形成方面起著非常重要的作用,ACBP與乙酰輔酶A結合后既可以合成磷脂和甘油三酯,也可以發(fā)生β-氧化,產生ATP[29]。

同時,一些生物在體內還可將多不飽和脂肪酸合成HUFA,脂肪酸脫飽和酶和碳鏈延長酶是HUFA合成的關鍵酶,前者能將雙鍵引入脂酰鏈,后者能將碳鏈進行延長[30]。目前,認為參與HUFA合成的去飽和酶類主要包括Δ6去飽和酶(delta-6 fatty acyl desaturase,Δ6 FAD)、Δ5去飽和酶(delta-5 fatty acyl desaturase,Δ5 FAD)、Δ4去飽和酶(delta-4 fatty acyl desaturase,Δ4 FAD)和 Δ8去飽和酶(delta-8 fatty acyl desaturase,Δ8 FAD)。在哺乳動物,已發(fā)現(xiàn)了7種碳鏈延長酶(elongases of very-long-chain fatty acids-1-7,Elovol1~Elovol7)參與脂肪酸的碳鏈延長作用,其中Elovl2和Elovl5以C18、C20或C22 PUFA作為延長底物[30]。對水產動物攝食營養(yǎng)試驗表明,脂肪的“質”或“量”會影響脂肪酸脫飽和酶和碳鏈延長酶基因的表達[31-32]。

日本沼蝦(Macrobrachium nipponense)又名青蝦、河蝦,是我國和東南亞一些國家重要的淡水經濟養(yǎng)殖種類之一[33]。目前,有關ARA對日本沼蝦的生長及營養(yǎng)生理作用還未見報道。肝胰腺是甲殼動物的脂質儲存和加工的主要器官[34],也是營養(yǎng)物質代謝的敏感監(jiān)測器[35-36]。有關日本沼蝦肝胰腺細胞的培養(yǎng)可見梁虹[37]摸索的細胞培養(yǎng)條件及王宏偉等[38]研究亞油酸對細胞培養(yǎng)的初步影響,但無后續(xù)研究報道。因此,本試驗擬培養(yǎng)日本沼蝦肝胰腺原代細胞,通過在肝胰腺細胞中添加不同濃度的ARA,分析ARA對肝胰腺細胞活力、脂肪酸脫飽和酶與碳鏈延長酶基因(Δ4FAD、Δ6FAD和Elovl6)以及脂肪酸轉運相關基因(SR-BⅠ、FABP10和ACBP)表達的影響。研究結果可為ARA脂質代謝作用機理研究提供一定的理論基礎,同時為其他營養(yǎng)物質的代謝研究提供有益的參考資料。

1 材料與方法

1.1 試驗動物

試驗用蝦購自于湖州日本沼蝦養(yǎng)殖基地,暫養(yǎng)1周后,選擇健康、體重均勻的日本沼蝦用于試驗。

1.2 細胞完全培養(yǎng)液的配制

基礎培養(yǎng)液為M199培養(yǎng)液(Gibco,美國)添加15%胎牛血清(Gibco,美國)、200 IU/mL的雙抗(青霉素和鏈霉素)、1 g/L葡萄糖、5.2 g/L NaCl、1.43 g/L CaCl2、0.05 g/L MgCl2、0.2 g/L NaHCO3,滲透壓為570 mmol/kg,pH為7.0~7.2。

1.3 花生四烯酸-牛血清白蛋白(ARA-BSA)無血清培養(yǎng)液的配制

將10 mg ARA(Sigma,美國)溶解于1 mL無水乙醇,氮氣吹干,加入 32.84 mL含 2%BSA(Sigma,美國)的 M199培養(yǎng)液,超聲波作用5 min,0.22 μmol/L濾膜過濾除菌,配制成1 000 μmol/L ARA-BSA M199培養(yǎng)液母液,分裝后于-20℃保存?zhèn)溆?。試驗開始前,將母液用含2%BSA的 M199溶液分別稀釋成200、100和50 μmol/L的培養(yǎng)液,所有培養(yǎng)液都添加抗氧化劑丁羥基甲苯(0.01%)和雙抗(200 IU/mL)。

1.4 日本沼蝦肝胰腺細胞的分離與培養(yǎng)

將日本沼蝦用75%酒精浸泡3 min,然后用D-hanks平衡鹽溶液漂洗3次;無菌條件下取出肝胰腺,用含雙抗的D-hanks平衡鹽溶液漂洗3次;將組織塊剪成1 mm3左右的小塊,然后用0.25%的胰酶消化組織塊,期間不斷吹打使細胞分散;用含胎牛血清的M199培養(yǎng)液終止消化,1 000 r/min離心3 min,棄上清,用完全培養(yǎng)液重新懸浮細胞,調整細胞濃度為1×105個/mL,按每孔200 μL的量接種于96孔細胞培養(yǎng)板,于27℃,5%CO2培養(yǎng)箱中培養(yǎng),每天觀察拍照,4~5 d換液1次。

細胞培養(yǎng)穩(wěn)定(5 d)后,將細胞完全培養(yǎng)液換成含不同濃度ARA的培養(yǎng)液繼續(xù)培養(yǎng),試驗分為5組,培養(yǎng)液分別含0(ARA1,對照)、50(ARA2)、100(ARA3)、200(ARA4)和1 000 μmol/L ARABSA(ARA5),并分別在12和24 h收集各組細胞,提取細胞總RNA,用于后續(xù)基因表達的測定。

1.5 細胞活力測定

細胞培養(yǎng)5 d時采用H33342/碘化丙啶(PI)染色液檢測細胞存活力,即200 μL細胞培養(yǎng)液中加入 H33342 1 μL,PI 2 μL。輕輕振蕩混勻后37℃避光孵育15 min,然后在熒光顯微鏡下統(tǒng)計細胞活力,活細胞為藍色,死細胞為紅色。

將不同濃度的ARA-BSA孵育肝胰腺細胞24 h時,采用噻唑藍(MTT)細胞增殖-毒性檢測試劑盒(南京建成生物工程研究所,南京)測定細胞活力,測定過程按照試劑盒說明書進行。

1.6 總RNA提取和cDNA的合成

使用總RNA提取試劑盒(北京艾德萊生物科技有限公司)提取肝胰腺總RNA,具體操作按照試劑盒說明書進行,電泳檢測總RNA的完整性、核酸蛋白測定儀檢測其濃度和純度。用反轉錄試劑盒(TaKaRa,日本)將總RNA反轉錄為cDNA,cDNA保存在-20℃用于基因表達分析。

1.7 基因表達的熒光定量PCR(qRT-PCR)分析

采用在線 Primer 3設計 Δ4FAD、Δ6FAD、Elovl6、SR-BⅠ、FABP10和ACBP基因 qRT-PCR所用引物,引物序列見表1。qRT-PCR反應體積為20 μL,包括:2 μL模板,上、下游引物各 0.2 μL(10 μmol/L),10 μL的2×SYBR Green Premix Ex Taq(TaKaRa,日本)以及7.6 μL雙蒸水(ddH2O)。反應條件為:95℃預變性30 s;94℃變性 15 s,58℃退火20 s,72℃延伸20 s,共40個循環(huán);PCR后溫度以每5 s上升5℃的速度從60℃上升到95℃,繪制熔解曲線,以判斷擴增產物的正確性。以日本沼蝦β-肌動蛋白(β-actin)為內參,對得到的各樣品循環(huán)數(shù)(Ct)值進行均一化處理,以ARA1組基因為基準,使用 2-ΔΔCt比較 Ct值方法[39]對目的基因相對表達水平進行分析。

表1 qRT-PCR引物序列Table 1 Primer sequence for qRT-PCR

2 結 果

2.1 肝胰腺細胞形態(tài)及活力

剛分離的肝胰腺細胞呈現(xiàn)單個圓形狀態(tài),2~ 3 d后開始貼壁生長,并緩慢增殖,出現(xiàn)成串狀況,生長狀況良好,細胞形態(tài)見圖1。細胞培養(yǎng)5 d時,細胞存活力達到60%左右。原代培養(yǎng)肝胰腺細胞能存活15 d左右。

圖1 日本沼蝦肝胰腺細胞形態(tài)Fig.1 Morphology of cultured hepatopancreas cells(100×)

不同濃度ARA下肝胰腺細胞的活力見圖2。由圖可見,不同濃度的ARA孵育肝胰腺細胞24 h時,ARA5組細胞活力顯著低于ARA1和ARA2組(P<0.05),ARA1、ARA2、ARA3、ARA4組間細胞活力無顯著差異(P>0.05)。

2.2 花生四烯酸對肝胰腺細胞脂質代謝基因表達的影響

ARA處理肝胰腺細胞12 h時,各組Δ4FAD、Δ6FAD、Elovl6、SR-BⅠ、FABP10、ACBP和ACC基因表達變化見圖3。由圖可見,各脂質代謝基因的表達水平隨著ARA濃度的增加都呈現(xiàn)先增加后降低趨勢。其中,ARA2、ARA3和ARA4組Δ4FAD基因的表達水平顯著高于ARA1和ARA5組(P<0.05);ARA1、ARA2和ARA3組Δ6FAD基因的表達水平無顯著差異(P>0.05),ARA2組Δ6FAD基因的表達水平顯著高于ARA4和ARA5組(P<0.05);ARA4組Elovl6基因表達水平最高,顯著高于ARA5組(P<0.05);ARA2組SR-BⅠ基因表達水平最高,顯著高于其余各組(P<0.05);ARA2和ARA3組FABP10基因表達水平較高,顯著高于ARA1和ARA5組(P<0.05);ARA3組ACBP基因表達水平顯著高于其余各組(P<0.05)。

圖2 不同濃度ARA下肝胰腺細胞的活力Fig.2 Viability of hepatopancreas cells incubated with different levels of ARA

圖3 不同濃度ARA下肝胰腺細胞后脂質代謝相關基因表達(12 h)Fig.3 Lipid metabolism-related gene expressions in hepatopancreas cells incubated with different levels of ARA(12 h)

ARA處理肝胰腺細胞24 h時,各組Δ4FAD、Δ6FAD、Elovl6、SR-BⅠ、FABP10、ACBP和ACC基因表達變化見圖4。由圖可知,各基因的表達變化趨勢與ARA處理肝胰腺細胞12 h基本相似。Δ4FAD和Δ6FAD基因表達水平都在ARA2和ARA3組較高;Elovl6基因表達水平在ARA3組達到最大,顯著高于其余各組(P<0.05);SR-BⅠ、FABP10和ACBP基因表達水平均在ARA2組達到最大,顯著高于其余各組(P<0.05)。

3 討 論

甲殼動物的細胞培養(yǎng)已經摸索了較長的一段時間,遺憾的是,目前還沒有甲殼動物細胞系的培養(yǎng)研究報道,阻礙了對其各種代謝機制和功能的研究。研究人員對蝦類各組織的細胞培養(yǎng)研究發(fā)現(xiàn),血細胞培養(yǎng)較為簡單,相比而言,肝胰腺細胞的培養(yǎng)難度較大[40-42]。本試驗中,肝胰腺細胞培養(yǎng)結果與王宏偉等[38]研究報道類似,肝胰腺原代培養(yǎng)細胞生長狀態(tài)良好,有利于進行下一步試驗。

在研究ARA對日本沼蝦肝胰腺細胞影響時,使用不含血清的BSA代替胎牛血清,避免了胎牛血清中含有各種營養(yǎng)物質包括脂肪酸對后續(xù)試驗可能產生的影響。MTT法測定各試驗組細胞活力發(fā)現(xiàn),高濃度的ARA(1 000 μmol/L)降低了肝胰腺細胞的活力,這與 Li等[19]使用不同濃度的ARA對頭腎巨噬細胞培養(yǎng)研究結果相似,即高濃度ARA降低了細胞活力。外部脂肪酸可以進入細胞膜,改變細胞脂肪酸和細胞膜的生理特性[43-44],尤其是高水平的脂肪酸可以引起細胞DNA不可逆損傷,胞膜完整性丟失,膜的滲透性混亂,最終導致細胞死亡[45-46]。

圖4 不同濃度ARA下肝胰腺細胞后脂質代謝相關基因表達(24 h)Fig.4 Lipid metabolism-related gene expressions in hepatopancreas cells incubated with different levels of ARA(24 h)

脂肪酸脫飽和酶和碳鏈延長酶是HUFA合成的關鍵酶,對高等脊椎動物的研究表明,ARA可以通過碳鏈延長酶、Δ6 FAD 和 β-氧化生成C22∶5n-6,也可以直接通過Δ4 FAD生成C22∶5n-6;ARA還可以通過Δ17去飽和酶(Δ17 FAD)生成C20∶5n-3(EPA),EPA依次經碳鏈延長、Δ6去飽和和β-氧化合成C22∶6n-3(DHA),或者EPA轉化為22∶5n-3后,在Δ4 FAD作用下直接轉化為DHA[47]。本研究發(fā)現(xiàn),不同濃度的ARA處理日本沼蝦肝胰腺細胞不同時間后,HUFA合成通路關鍵酶基因表達都發(fā)生改變,高濃度的ARA會降低Δ4FAD、Δ6FAD和Elovl6基因的表達水平,說明ARA是日本沼蝦HUFA合成途徑中的一個重要調節(jié)因子。對乳豬的研究表明,飼料中ARA與DHA比例能調節(jié)肝臟脫飽和酶基因的轉錄水平[48]。在魚類的攝食營養(yǎng)試驗中,研究也發(fā)現(xiàn)塞內加爾鰨(Solea Senegalensis)雄魚在攝食0.7%、2.3%和6.0%ARA時,肝臟Elovl5和Δ4FAD基因表達水平增加[17]。然而,對草魚(Ctenopharyngodon idellus)的研究表明,脂肪酸脫飽和酶和延長酶基因受到飼料中ARA水平的顯著抑制[10]。出現(xiàn)這些差異,可能與不同物種HUFA合成能力不同有關,同時也說明ARA水平能顯著影響HUFA合成相關酶基因的表達水平。盡管相關的利用體外培養(yǎng)系統(tǒng)研究脂肪酸濃度對HUFA合成影響的資料有限,但本試驗結果表明,體外適宜濃度的脂肪酸能促進日本沼蝦HUFA合成途徑中關鍵酶基因表達水平。

有關ARA對脂肪酸轉運相關基因表達的影響,報道較少。僅見 Holen等[18]將不同組合的EPA、DHA和ARA添加進大西洋鮭(Salmo salar)頭腎細胞,研究發(fā)現(xiàn)ARA+EPA能上調脂肪酸轉位酶CD36基因的表達。SR-BⅠ屬于CD36超家族成員,能維持細胞內膽固醇代謝穩(wěn)態(tài),在細胞膜脂表達和細胞凋亡等方面具有重要作用[49-50]。本研究發(fā)現(xiàn),肝胰腺細胞中添加不同濃度ARA 12和24 h后,SR-BⅠ基因表達水平均在ARA2組達到最大,說明50 μmol/L的ARA濃度有利于維持細胞的脂質代謝平衡。研究表明,脂肪酸或?;o酶A是PPAR的天然配體,能激活PPAR[51],SR-BⅠ的活性可由 PPARα和 PPARγ誘導[52-53]。因此,肝胰腺細胞培養(yǎng)液中一定濃度的脂肪酸可能通過激活PPAR來調節(jié)SR-BⅠ基因的表達。對高等動物倉鼠的研究也表明,攝食多不飽和脂肪酸可以增加SR-BⅠ基因和蛋白水平[54]。對奶牛乳腺上皮細胞的體外培養(yǎng)試驗表明,脂質代謝相關基因的表達與脂肪酸濃度密切相關[55-56]。FABP10和ACBP都屬于胞內脂質結合蛋白,ARA處理肝胰腺細胞 12 h時,ARA2和 ARA3組FABP10以及ARA3組ACBP轉錄水平達到最高,說明此時50~100 μmol/L的ARA濃度促進了胞內脂肪酸轉運。ARA處理肝胰腺細胞24 h時,ARA2組FABP10和ACBP都顯著高于其余各組,說明日本沼蝦肝胰腺細胞中添加50 μmol/L的ARA可能更有利于促進脂質代謝。大量與脂質合成、分解與代謝的基因都受到 PPAR的調節(jié)[57]。體外細胞培養(yǎng)試驗結果顯示,PPARα與肝型-FABP(L-FABP)具有高度親和性,說明L-FABP能與PPARα結合調節(jié)長鏈脂肪酸的代謝[58]。同樣,PPAR也可激活ACBP基因的表達[59]。因此,適宜濃度的ARA促進了FABP10和ACBP基因的表達機理可能類似于上述SR-BⅠ基因。事實上,F(xiàn)ABP10和ACBP屬于多功能蛋白,它們在機體的免疫性能方面具有重要的作用[60-61],而研究表明適宜的ARA濃度可以調節(jié)調節(jié)機體免疫性能[6]。因此,我 們 不 能 排 除 細 胞 培 養(yǎng) 液 中 50~100 μmol/L ARA有利于提高細胞的免疫性能,從而提高了FABP10和ACBP基因的表達。

4 結 論

細胞培養(yǎng)液中ARA濃度會影響日本沼蝦肝胰腺細胞活力及脂質代謝相關基因的表達,過高的ARA濃度(1 000 μmol/L)會降低細胞的活力,適宜的ARA濃度(50~100 μmol/L)可促進脂肪酸脫飽和酶、碳鏈延長酶及脂肪酸轉運相關基因的表達。

[1]HIGGS D A,DONG F M.Lipids and fatty acids[M]//STICKNEY R R.Encyclopedia of Aquaculture.New York:John Wiley and Sons,2000:476-496.

[2]TRICHET V V.Nutrition and immunity:an update[J].Aquaculture Research,2010,41(3):356-372.

[3]BELL J G,SARGENT J R.Arachidonic acid in aquaculture feeds:current status and future opportunities[J].Aquaculture,2003,218(1/2/3/4):491-499.

[4]VAN ANHOLT R D,KOVEN W M,LUTZKY S E,et al.Dietary supplementation with arachidonic acid alters the stress response of gilthead seabream (Sparus aurata)larvae[J].Aquaculture,2004,238(1/2/3/4):369-383.

[5]CARRIERⅢJ K,WATANABE W O,HAREL M,et al.Effects of dietary arachidonic acid on larval performance,fatty acid profiles,stress resistance,and expression of Na+/K+ATPase mRNA in black sea bassCentropristis striata[J].Aquaculture,2011,319(1/2):111-121.

[6]FURNE M,HOLEN E,ARAUJO P,et al.Cytokine gene expression and prostaglandin production in head kidney leukocytes isolated from Atlantic cod(Gadus morhua) added different levels of arachidonic acid and eicosapentaenoic acid[J].Fish&Shellfish Immunology,2013,34(3):770-777.

[7]QI C,ZHU Y J,REDDY J K.Peroxisome proliferatoractivated receptors,coactivators,and downstream targets[J].Cell Biochemistry and Biophysics,2000,32(1/2/3):187-204.

[8]BRASH A R.Arachidonic acid as a bioactive molecule[J].The Journal of Clinical Investigation,2001,107(11):1339-1345.

[9]MARTINS D A,ROCHA F, MARTíNEZRODRíGUEZ G,et al.Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genes[J].British Journal of Nutrition,2012,108(5):864-874.

[10]TIAN J J,JI H,OKU H,et al.Effects of dietary arachidonic acid(ARA) on lipid metabolism and health status of juvenile grass carp,Ctenopharyngodon idellus[J].Aquaculture,2014,430:57-65.

[11]CASTELL J D,BELL J G,TOCHER D R,et al.Effects of purified diets containing different combina-tions of arachidonic and docosahexaenoic acid on survival,growth and fatty acid composition of juvenile turbot(Scophthalmus maximus)[J].Aquaculture,1994,128(3/4):315-333.

[12]BELL J G,CASTELL J D,TOCHER D R,et al.Effects of different dietary arachidonic acid:docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot(Scophthalmus maximus)[J].Fish Physiology and Biochemistry,1995,14(2):139-151.

[13]KOVEN W,BARR Y,LUTZKY S,et al.The effect of dietary arachidonic acid(20∶4n-6)on growth,survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae[J].Aquaculture,2001,193(1/2):107-122.

[14]FOUNTOULAKI E,ALEXIS M N,NENGAS I,et al.Effects of dietary arachidonic acid(20∶4n-6),on growth,body composition,and tissue fatty acid profile of gilthead bream fingerlings(Sparus aurataL.)[J].Aquaculture,2003,225(1/2/3/4):309-323.

[15]XU H G,AI Q H,MAI K S,et al.Effects of dietary arachidonic acid on growth performance,survival,immune response and tissue fatty acid composition of juvenile Japanese seabass,Lateolabrax japonicus[J].Aquaculture,2010,307(1/2):75-82.

[16]VAN ANHOLT R D,SPANINGS F A T,KOVEN W M,et al.Dietary supplementation with arachidonic acid in tilapia(Oreochromis mossambicus)reveals physiological effects not mediated by prostaglandins[J].General and Comparative Endocrinology,2004,139(3):215-226.

[17]NORAMBUENA F,MORAIS S,ESTéVEZ A,et al.Dietary modulation of arachidonic acid metabolism in senegalese sole (SoleaSenegalensis) broodstock reared in captivity[J].Aquaculture,2013,372-375:80-88.

[18]HOLEN E,HE J Y,ESPE M,et al.Combining eicosapentaenoic acid,decosahexaenoic acid and arachidonic acid,using a fully crossed design,affect gene expression and eicosanoid secretion in salmon head kidney cellsin vitro[J].Fish&Shellfish Immunology,2015,45(2):695-703.

[19]LI Q F,AI Q H,MAI K S,et al.In vitro effects of arachidonic acid on immune functions of head kidney macrophages isolated from large yellow croaker(Larmichthys crocea)[J].Aquaculture,2012,330-333:47-53.

[20]XU X L,JI W J,CASTELL J D,et al.Essential fatty acid requirement of theChineseprawn,Penaeus chinensis[J].Aquaculture,1994,127(1):29-40.

[21]GLENCROSS B D,SMITH D M.A study of the arachidonic acid requirements of the giant tiger prawn,Penaues monodon[J].Aquaculture Nutrition,2001,7(1):59-69.

[22]趙利斌,王鑫磊,黃旭雄,等.飼料中花生四烯酸水平對凡納濱對蝦免疫相關基因表達及抗菌能力的影響[J].水產學報,2016,40(5):763-775.

[23]HOLEN E,WINTERTHUN S,DU Z Y,et al.Inhibition of p38 MAPK during cellular activation modulate gene expression of head kidney leukocytes isolated from Atlantic salmon(Salmo salar)fed soy bean oil or fish oil based diets[J].Fish&Shellfish Immunology,2011,30(1):397-405.

[24]ABUMRAD N,COBURN C,IBRAHIMI A.Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells:CD36,F(xiàn)ATP and FABPm[J].Biochimica et Biophysica Acta(BBA):Molecular and Cell Biology of Lipids,1999,1441(1):4-13.

[25]BONEN A,CHABOWSKI A,LUIKEN J J,et al.Is membrane transport of FFA mediated by lipid,protein,or both?Mechanisms and regulation of proteinmediated cellular fatty acid uptake:molecular,biochemical,and physiological evidence[J].Physiology,2007,22:15-29.

[26]ACTON S L,SCHERER P E,LODISH H F,et al.Expression cloning of SR-BⅠ,a CD36-related class B scavenger receptor[J].The Journal of Biological Chemistry,1994,269(33):21003-21009.

[27]ACTON S,RIGOTTI A,LANDSCHULZ K T,et al.I-dentification of scavenger receptor SR-BⅠ as a high density lipoprotein receptor[J].Science,1996,271(5248):518-520.

[28]ZIMMERMAN A W,VEERKAMP J H.New insights into the structure and function of fatty acid-binding proteins[J].Cellular and Molecular Life Sciences,2002,59(7):1096-1116.

[29]MANDRUP S,HUMMEL R,RAVN S,et al.Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes:a typical housekeeping gene family[J].Journal of Molecular Biology,1992,228(3):1011-1022.

[30]JAKOBSSON A,WESTERBERG R,JACOBSSON A.Fatty acid elongases in mammals:their regulation and roles in metabolism[J].Progress in Lipid Re-search,2006,45(3):237-249.

[31]KUAH M K,JAYA-RAM A,SHU-CHIEN A C.The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate:functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead(Channa striata)[J].Biochimica et Biophysica Acta(BBA):Molecular and Cell Biology of Lipids,2015,1851(3):248-260.

[32]XIE D Z,CHEN F,LIN S Y,et al.Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleostScatophagusargus:functional characterization,tissue expression and nutritional regulation of two fatty acyl elongases[J].Comparative Biochemistry and Physiology Part B:Biochemistry&Molecular Biology,2016,198:37-45.

[33]YANG Y,XIE S Q,LEI W,et al.Effect of replacement of fish meal by meat and bone meal and poultry by-product meal in diets on the growth and immune response ofMacrobrachium nipponense[J].Fish&Shellfish Immunology,2004,17(2):105-114.

[34]HARRISON K E.The role of nutrition in maturation,reproduction and embryonic development of decapod crustaceans:a review[J].Journal of Shellfish Research,1990,9(1):1-28.

[35]VOGT G,STORCH V,QUINITIO E T,et al.Midgut gland as monitor organ for the nutritional value of diets inPenaeus monodon(Decapoda)[J].Aquaculture,1985,48(1):1-12.

[36]ROSAS C, BOLONGARO-CREVENNA A,SáNCHEZ A,et al.Role of digestive gland in the energetic metabolism ofPenaeus setiferus[J].The Biological Bulletin,1995,189(2):168-174.

[37]梁虹.日本沼蝦細胞培養(yǎng)[D].碩士學位論文.保定:河北大學,2001.

[38]王宏偉,劉瑞蘭,郭明申,等.亞油酸對培養(yǎng)日本沼蝦肝胰腺細胞的影響[J].河北大學學報:自然科學版,2005,25(1):79-83.

[39]LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod[J].Methods,2001,25(4):402-408.

[40]MULFORD A L,AUSTIN B.Development of primary cell cultures from Nephrops norvegicus[J].Methods in Cell Science,1998,19(4):269-275.

[41]GEORGE S K,DHAR A K.An improved method of cell culture system from eye stalk,hepatopancreas, muscle,ovary,and hemocytes ofPenaeus vannamei[J].In VitroCellular&Developmental Biology:Animal,2010,46(9):801-810.

[42]JAYESH P,JOSE S,PHILIP R,et al.A novel medium for the development ofin vitrocell culture system fromPenaeus monodon[J].Cytotechnology,2013,65(3):307-322.

[43]CALDER P C.The relationship between the fatty acid composition of immune cells and their function[J].Prostaglandins Leukotrienes and Essential Fatty Acids,2008,79(3/4/5):101-108.

[44]TOCHER D R,DICK J R.Polyunsaturated fatty acid metabolism in cultured fish cells:incorporation and metabolism of(n-3)and(n-6)series acids by Atlantic salmon(Salmo salar)cells[J].Fish Physiology and Biochemistry,1990,8(4):311-319.

[45]GORJ?O R,AZEVEDO-MARTINSA K,RODRIGUES H G,et al.Comparative effects of DHA and EPA on cell function[J].Pharmacology&Therapeutics,2009,122(1):56-64.

[46]JI J,ZHANG L,WANG P,et al.Saturated free fatty acid,palmitic acid,induces apoptosis in fetal hepatocytes in culture[J].Experimental and Toxicologic Pathology,2005,56(6):369-376.

[47]TOCHER D R,ZHENG X Z,SCHLECHTRIEM C,et al.Highly unsaturated fatty acid synthesis in marine fish:cloning,functional characterization,and nutritional regulation of fatty acyl Δ6 desaturase of Atlantic cod(Gadus morhuaL.)[J].Lipids,2006,41(11):1003-1016.

[48]WIJENDRAN V,DOWNS L,SRIGLEY C T,et al.Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase(FADS)alternative transcript expression in suckling piglets[J].Prostaglandins,Leukotrienes and EssentialFatty Acids(PLEFA),2013,89(5):345-350.

[49]NECULAI D,SCHWAKE M,RAVICHANDRAN M,et al.Structure of LIMP-2 provides functional insights with implications for SR-BⅠ and CD36[J].Nature,2013,504(7478):172-176.

[50]SHEN W J,HU J,HU Z G,et al.Scavenger receptor class B typeⅠ (SR-BⅠ):a versatile receptor with multiple function and actions[J].Metabolism,2014,63(7):875-886.

[51]SCHOONJANS K,STAELS B,AUWERX J.Role of the peroxisome proliferator-activated receptor(PPAR)in mediating the effects of fibrates and fattyacids on gene expression[J].Journal of Lipid Research,1996,37(5):907-925.

[52]LOPEZ D,MCLEAN M P.Activation of the rat scavenger receptor class B typeⅠ gene by PPARα[J].Molecular and Cellular Endocrinology,2006,251(1/2):67-77.

[53]CHINETTI G,GBAGUIDI F G,GRIGLIO S,et al.CLA-1/SR-BⅠ is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors[J].Circulation,2000,101(20):2411-2417.

[54]SPADY D K,KEARNEY D M,HOBBS H H.Polyunsaturated fatty acids up-regulate hepatic scavenger receptor B1(SR-BⅠ)expression and HDL cholesteryl ester uptake in the hamster[J].Journal of Lipid Research,1999,40(8):1384-1394.

[55]胡菡,王加啟,李發(fā)弟,等.游離亞麻酸對奶牛乳腺上皮細胞脂肪酸代謝相關基因mRNA轉錄的影響[J].動物營養(yǎng)學報,2010,22(5):1342-1349.

[56]YONEZAWA T,YONEKURA S,KOBAYASHI Y,et al.Effects of long-chain fatty acids on cytosolic triacylglycerol accumulation and lipid droplet formation in primary cultured bovine mammary epithelial cells[J].Journal of Dairy Science,2004,87(8):2527-2534.

[57]DESVERGNE B,WAHLI W.Peroxisome proliferatoractivated receptors:nuclear control of metabolism[J].Endocrine Reviews,1999,20(5):649-688.

[58]HOSTETLER H A,MCLNTOSH A L,ATSHAVES B P,et al.L-FABP directly interacts with PPARα in cultured primary hepatocytes[J].Journal of Lipid Research,2009,50(8):1663-1675.

[59]SANDBERG M B,BLOKSGAARD M,DURANSANDOVAL D,et al.The gene encoding acyl-CoA-binding protein is subject to metabolic regulation by both sterol regulatory element-binding protein and peroxisome proliferator-activated receptor α in hepatocytes[J].The Journal of Biological Chemistry,2005,280(7):5258-5266.

[60]REN Q,DU Z Q,ZHAO X F,et al.An acyl-CoA-binding protein(FcACBP)and a fatty acid binding protein(FcFABP)respond to microbial infection in Chinese white shrimp,F(xiàn)enneropenaeus chinensis[J].Fish&Shellfish Immunology,2009,27(6):739-747.

[61]ZHAO Z Y,YIN Z X,WENG S P,et al.Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp(Litopenaeus vannamei)by suppression subtractive hybridisation[J].Fish&Shellfish Immunology,2007,22(5):520-534.

Effects of Arachidonic Acid on Lipid Metabolism-Related Gene Expressions of Hepatopancreas Cells Isolated from Juvenile Oriental River Prawn,Macrobrachium nipponense

DING Zhili1CAO Fang1LUO Na2KONG Youqin1ZHANG Yixiang1LI Jingfen1YE Jinyun1?
(1.Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development,Key Laboratory of
Aquatic Animal Genetic Breeding and Nutrition,Chinese Academy of Fishery Sciences,College of Life Sciences,Huzhou University,Huzhou313000,China;2.College of Fisheries and Life Science,Dalian Ocean University,Dalian116000,China)

This experiment was conducted to determine the effects of arachidonic acid(ARA)concentration in culture medium on cell viability and lipid metabolism-related gene expressions of hepatopancreas cells isolated from juvenile oriental river prawn,Macrobrachium nipponense.The hepatopancreas cells were dissected from prawns and were cultured with complete culture medium for 5 days.After that,cultured cells were incubated in medium supplemented with graded levels[0(ARA1),50(ARA2),100(ARA3),200(ARA4)and 1 000 μmol/L(ARA5)of ARA.Cell viability at 24 h and gene expressions of lipid metabolism-related genes at 12 and 24 h were examined.The results showed as follows:the hepatopancreas cells showed well growth in complete culture medium,and could survive for 15 days;cell viability was significantly decreased by incubation with higher level(1 000 μmol/L)of ARA(ARA5 group)compared with ARA1 and ARA2 groups(P<0.05)after 24 h;higher level(1 000 μmol/L)of ARA(ARA5 group)caused significant decreases of gene expressions of delta-4 fatty acyl desaturase(Δ4FAD),delta-6 fatty acyl desaturase(Δ6FAD),very-longchain fatty acids-6(Elovl6),scavenger receptor class B typeⅠ (SR-BⅠ),fatty acid-binding protein 10(FABP10)and acyl-CoA binding protein(ACBP)of hepatopancreas cells incubation for both 12 and 24 h;after incubation with ARA for 12 h,the gene expression ofSR-BⅠ of ARA2 group was significantly higher than that of other groups(P<0.05),F(xiàn)ABP10 gene expression of ARA2 and ARA3 groups was significantly higher than that of ARA1 and ARA5 groups(P<0.05),and ACBP gene expression of ARA3 group was significantly higher than that of other groups(P<0.05);after incubation with ARA for 24 h,the highest expressions ofSR-BⅠ,F(xiàn)ABP10 andACBPwere observed in ARA2 group,which was significantly higher than those of other groups(P<0.05).These findings suggest that ARA can influence cell viability and lipid metabolism-related gene expressions of hepatopancreas cell isolated fromMacrobrachium nipponense.Cell viability can be decreased by incubation with higher level of ARA(1 000 μmol/L).Appropriate levels of ARA(50 to 100 μmol/L)can promote the expressions of genes related to fatty acyl desaturase,elongases of very-longchain fatty acids and fatty acid transport.[Chinese Journal of Animal Nutrition,2017,29(2):536-546]

Macrobrachium nipponense;arachidonic acid;cell culture;gene expression

S968.22

A

1006-267X(2017)02-0536-11

10.3969/j.issn.1006-267x.2017.02.021

(責任編輯 王智航)

2016-08-06

國家自然科學基金(31402308);浙江省自然科學基金(LQ14C190004);浙江省重大科技專項計劃項目(2014C02011);浙江省重點研發(fā)計劃項目(2015C03018)

丁志麗(1979—),女,江蘇如皋人,副教授,博士,主要從事水產動物營養(yǎng)與飼料研究。E-mail:dingzhili@zjhu.edu.cn

?通信作者:葉金云,研究員,博士生導師,E-mail:yjy@zjhu.edu.cn

?Corresponding author,professor,E-mail:yjy@zjhu.edu.cn

猜你喜歡
沼蝦細胞培養(yǎng)培養(yǎng)液
羅氏沼蝦越冬養(yǎng)殖試驗
成功率超70%!一張冬棚賺40萬~50萬元,羅氏沼蝦今年將有多火?
羅氏沼蝦高效生態(tài)養(yǎng)殖技術
從一道試題再說血細胞計數(shù)板的使用
作者更正啟事
調整蔗糖、硼酸和pH值可優(yōu)化甜櫻桃花粉萌發(fā)培養(yǎng)液
酶解大豆蛋白的制備工藝研究及其在細胞培養(yǎng)中的應用研究
不同培養(yǎng)液對大草履蟲生長與形態(tài)的影響研究
“茜草+溫棚”高要羅氏沼蝦養(yǎng)殖新模式 中國羅氏沼蝦之鄉(xiāng)養(yǎng)殖面積3.6萬畝
3種陰離子交換色譜固定相捕獲細胞培養(yǎng)上清液中紅細胞生成素的效果比較