賴 勇,賈建磊,王晉民,任 龍,呂仲昱,朱惠琴,馬 輝,楊莉娜,李宗仁
(1.青海大學(xué)農(nóng)牧學(xué)院,青海西寧 810016; 2.三江源生態(tài)與高原農(nóng)牧業(yè)國家重點(diǎn)實(shí)驗(yàn)室,青海西寧 810016;3.青海大學(xué)現(xiàn)代教育技術(shù)中心,青海西寧 810016; 4.甘肅隆源農(nóng)業(yè)科學(xué)研究所,甘肅蘭州 730070)
外引大麥SSR標(biāo)記遺傳多樣性及其與農(nóng)藝性狀的關(guān)聯(lián)分析
賴 勇1,2,賈建磊1,2,王晉民1,任 龍3,呂仲昱4,朱惠琴1,馬 輝1,楊莉娜1,李宗仁1
(1.青海大學(xué)農(nóng)牧學(xué)院,青海西寧 810016; 2.三江源生態(tài)與高原農(nóng)牧業(yè)國家重點(diǎn)實(shí)驗(yàn)室,青海西寧 810016;3.青海大學(xué)現(xiàn)代教育技術(shù)中心,青海西寧 810016; 4.甘肅隆源農(nóng)業(yè)科學(xué)研究所,甘肅蘭州 730070)
為了掌握引進(jìn)種質(zhì)資源遺傳狀況,以55份國外大麥品種為材料,利用SSR分子標(biāo)記分析了其遺傳多樣性及性狀與標(biāo)記的關(guān)聯(lián)關(guān)系。結(jié)果表明,54對(duì)SSR標(biāo)記從55份材料中共檢測出154個(gè)等位基因、167種基因型。基因多樣性變化范圍為0.103~0.708,平均值為0.448。PIC變化范圍為0.098~0.651,平均值為0.382。不同材料間的遺傳相似系數(shù)(GS)變化范圍為0.533~0.940,平均值為0.722。在GS值約為0.682處可將55份材料分為3類,分別包含49、2、4份材料。群體遺傳結(jié)構(gòu)分析將供試材料分成3大亞群,各包含9、24、22份材料?;贕LM模型的關(guān)聯(lián)分析,在P<0.01水平下共檢測到16對(duì)與株高、穗長、穗下莖長、千粒重和全生育期等5個(gè)農(nóng)藝性狀相關(guān)聯(lián)的標(biāo)記,對(duì)性狀的解釋率的變化范圍為6.3%~33.1%。其中,5對(duì)標(biāo)記同時(shí)與多個(gè)農(nóng)藝性狀相關(guān)聯(lián)。
大麥;SSR標(biāo)記;遺傳多樣性;關(guān)聯(lián)分析
大麥?zhǔn)蔷哂惺秤?、飼用及釀造等多種用途的重要谷類作物,在我國主要種植于青藏高原地區(qū)。隨著人工選擇的加劇,親本遺傳基礎(chǔ)狹窄成為制約育種進(jìn)程的主要問題之一[1]。通過對(duì)引進(jìn)種質(zhì)資源的遺傳多樣性分析,可以有效地指導(dǎo)親本組合配制,提高大麥育種效率。在遺傳多樣性分析的基礎(chǔ)上,發(fā)掘其中的有利基因,對(duì)于后期的分子標(biāo)記輔助選擇具有重要意義?;谶B鎖不平衡的關(guān)聯(lián)分析目前已成為基因發(fā)掘研究的主要方法之一,具有不需構(gòu)建分離群體、能夠有效分析等位基因?qū)π誀畹呢暙I(xiàn)率等優(yōu)點(diǎn)[2-4]。分子標(biāo)記技術(shù)在種質(zhì)資源的遺傳多樣性研究及有利基因發(fā)掘中已被廣泛應(yīng)用。其中,SSR因其多態(tài)性高、數(shù)量豐富、重復(fù)性好、呈共顯性、操作簡單等優(yōu)點(diǎn)[5-7],被廣泛應(yīng)用于各類作物的遺傳多樣性和有利基因發(fā)掘研究中[8-11]。國內(nèi)外關(guān)于大麥遺傳多樣性的報(bào)道較多[12-14]。同時(shí)在基因發(fā)掘研究方面,Kraakman等[15]利用AFLP和SSR標(biāo)記進(jìn)行關(guān)聯(lián)分析,找到部分與抽穗期、株高、葉銹抗性等性狀相關(guān)聯(lián)的主效QTL。Sun等[16]以42對(duì)SSR進(jìn)行標(biāo)記與性狀的關(guān)聯(lián)分析,發(fā)掘出與株高、穗長、千粒重等重要農(nóng)藝性狀相關(guān)聯(lián)的標(biāo)記位點(diǎn)。Ivandic等[17]通過SSR標(biāo)記與性狀的關(guān)聯(lián)分析,發(fā)掘出與大麥抗白粉病相關(guān)聯(lián)的位點(diǎn)。這些研究表明,關(guān)聯(lián)分析是農(nóng)藝性狀、抗病、抗脅迫等相關(guān)基因發(fā)掘的有效手段。本研究以引進(jìn)的55份國外大麥品種為材料,以SSR標(biāo)記技術(shù)分析其遺傳多樣性以及性狀與標(biāo)記的關(guān)聯(lián)關(guān)系,為后期大麥新品種選育過程中的親本組合配制和分子標(biāo)記輔助選擇提供一定的理論依據(jù)。
1.1 供試材料及其農(nóng)藝性狀的測定
供試材料為55份國外引進(jìn)大麥品種,包括19份丹麥品種、12份匈牙利品種、12份德國品種以及少量其他國家栽培品種(表1)。所有材料于2014年3-7月和2015年3-7月連續(xù)兩個(gè)生長季種植于青海大學(xué)農(nóng)牧學(xué)院實(shí)驗(yàn)地,每份材料種2行,行長1 m,行間距20 cm,管理同一般大田。于分蘗期采幼嫩葉片,-80 ℃保存?zhèn)溆?。于成熟期,每個(gè)品種隨機(jī)抽取10個(gè)單株,測定株高、穗長、穗下莖長、千粒重和全生育期等農(nóng)藝性狀,然后取平均值。
1.2 SSR標(biāo)記分析
總基因組DNA的提取采用CTAB法[18]。選用54對(duì)均勻分布于大麥1H-7H染色體上的SSR標(biāo)記(表2)進(jìn)行多態(tài)性掃描。PCR擴(kuò)增體系:2×MasterMix( BIOTEKE,PR1701) 5 μL,上下游引物( 10 μmol·L-1) 各1 μL,模板DNA(60 ng·μL-1) 1 μL,加ddH2O至10 μL。PCR擴(kuò)增程序:94 ℃預(yù)變性5 min;94 ℃變性50 s,64~55 ℃(每個(gè)循環(huán)降低1 ℃)退火50 s,72 ℃延伸50 s,10個(gè)循環(huán);94 ℃變性50 s,55 ℃退火50 s,72 ℃延伸50 s,30個(gè)循環(huán);72 ℃延伸5 min。PCR產(chǎn)物用8.0%非變性聚丙烯酰胺凝膠電泳分離,銀染顯色。
1.3 數(shù)據(jù)統(tǒng)計(jì)分析
以二進(jìn)制和基因型記錄SSR分析結(jié)果:同一位點(diǎn)上具有相同遷移率的條帶記為1,無帶記為0,構(gòu)建二元矩陣;以字母A、B、C等代表不同的等位基因,記錄基因型。用NTSYS-pc軟件計(jì)算遺傳相似系數(shù)(genetic similarity coefficient,GS),并按非加權(quán)配對(duì)法(UPGMA)和SHAN程序聚類分析。用Powermarker 3.25軟件分析等位基因數(shù)、基因型數(shù)、基因多樣性以及多態(tài)性信息量(polymorphism information content,PIC)。用Structure 2.3.1軟件分析群體遺傳結(jié)構(gòu),估計(jì)最佳群體組群數(shù),參數(shù)設(shè)置參考賴 勇等[19]。當(dāng)K值持續(xù)增大時(shí),通過計(jì)算ΔK的方法確定K值[20]。采用Tassel 2.1軟件中一般線性模型(general linear model,GLM)進(jìn)行關(guān)聯(lián)分析,GLM分析中以Q值作為協(xié)變量進(jìn)行回歸分析。
2.1 供試材料的農(nóng)藝性狀
由表1可知,55份材料在株高、穗長、穗下莖長、千粒重和全生育期等性狀上均有一定的差異。株高變化范圍為62.5~124.0 cm,變異系數(shù)為0.177,以德國品種NFC Tripple的株高最低,丹麥品種H.dist. V. trif的株高最高;穗長變化范圍為5.8~10.7 cm,變異系數(shù)為0.120,以丹麥品種Svakof. Mari的穗長最長,日本品種Kantougohere的穗長最短;穗下莖長的變化范圍為15.3~44.5 cm,變異系數(shù)為0.278,以丹麥品種H.dist. V. trif的穗下莖最長,匈牙利品種M-01/40的穗下莖最短;千粒重變化范圍為31.7~60.3 g,變異系數(shù)為0.098,以阿富汗品種Loeal的千粒重最大;全生育期變化范圍為90~109 d,變異系數(shù)為0.048,以波蘭品種Pocnodzenie Dania、阿富汗品種Loeal和敘利亞品種Briggs-Research Ⅰ的生育期最短,德國品種PASADENA的生育期最長。
表1 國外引進(jìn)大麥品種名稱、來源及農(nóng)藝性狀調(diào)查結(jié)果Table 1 Name,origin and agronomic traits of barley accessions from abroad
2.2 SSR標(biāo)記分析
通過多態(tài)性掃描分析,54對(duì)SSR標(biāo)記從55份引進(jìn)材料中共檢測出等位基因154個(gè)、基因型167種,平均每對(duì)標(biāo)記可檢測到2.9個(gè)等位基因、3.1種基因型,所有標(biāo)記均表現(xiàn)出一定的多態(tài)性(表2)。等位基因變化范圍為2~6,基因型變化范圍為2~7,其中標(biāo)記Bmag223檢測到的等位變異最多,為6個(gè);標(biāo)記MGB402檢測到基因型最多,有7種。基因多樣性指數(shù)變化范圍為0.103~0.708,平均值為0.448。PIC值變化范圍為0.098~0.651,平均值為0.382?;蚨鄻有灾笖?shù)與PIC值是遺傳多樣性的重要指標(biāo),二者結(jié)果存在一致性。
2.3 遺傳相似性系數(shù)及聚類分析
55份引進(jìn)大麥材料間的GS值變化范圍為0.533~0.940,平均值為0.722。丹麥品種嘉士伯3號(hào)與嘉士伯4號(hào)間的GS值最大,為0.940,說明它們之間的親緣關(guān)系較近,不適合作為雜交組合。丹麥品種Parviham與阿富汗品種Loeal間的GS值最小,為0.533,說明它們之間的親緣關(guān)系較遠(yuǎn),可以考慮作為雜交組合進(jìn)行配置??偟膩砜?,來源地相同的材料間GS值較大,來源地不同的材料間GS值較小,遺傳差異分析結(jié)果與來源地差異基本相符合。
按UPGMA法進(jìn)行聚類分析(圖 1)表明,55份大麥材料在GS值為0.682水平被聚成3類。第一大類群來源最豐富,包括大部分丹麥品種、匈牙利品種和德國品種,同時(shí)還包括少量其他國家品種;波蘭品種Pocnodzenie Dania與加拿大品種加72大麥被聚到第二類;Parviham等4個(gè)丹麥品種被聚為第三類。
表2 54對(duì)SSR標(biāo)記的遺傳多樣性分析Table 2 Genetic diversity analysis of 54 SSR markers
(續(xù)表2 Continued table 2)
標(biāo)記Marker染色體Chromosome遺傳位置Position/cM等位基因數(shù)AlleleNo.基因型數(shù)量GenotypeNo.基因多樣性指數(shù)Indexofgenediversity多態(tài)性信息含量PICMGB3964H95220.4630.356TACMD4H125220.1650.152EBmac7884H150340.4730.414HVJASIP4H180220.1030.098MGB3845H0230.3880.313Bmac01635H24220.4130.327Bmag3375H43440.6200.546Bmag2235H69660.6180.564MGB3385H85220.3610.296HvLOXC5H114220.2740.236AF04394A5H137220.4870.368MGB3575H165220.3610.296Bmac3166H6340.4850.384Bmag05006H24440.6920.635GBM12156H37220.4960.373HVM316H73220.1030.098GMS066H96220.1350.126Bmag6136H112340.5310.456GBM10876H128220.4630.356Bmac406H155440.6430.591Bmag77H27550.5930.558EBmac6037H50550.5890.551HVA22S7H75220.4400.343Bmag117H93440.2290.216Bmag1207H152220.3410.283HVM497H178340.5880.505
圖1 基于54對(duì)SSR標(biāo)記數(shù)據(jù)的55份大麥材料聚類圖
2.4 群體遺傳結(jié)構(gòu)分析
通過54對(duì)標(biāo)記獲得的基因型數(shù)據(jù),對(duì)55份材料進(jìn)行群體遺傳結(jié)構(gòu)分析。由圖2可知,當(dāng)K=3時(shí),ΔK值最大,因此將55份材料分成3個(gè)亞群。第一亞群(P1)材料數(shù)最少,包括Parviham在內(nèi)的9份丹麥品種;第二亞群(P2)含有24份材料,包括部分丹麥品種、匈牙利品種和所有德國品種;第三亞群(P3)含有22份材料,也包括了部分丹麥品種、匈牙利品種以及少量其他國家的品種。
2.5 關(guān)聯(lián)分析
從表3可知,在P<0.01水平下,有16對(duì)標(biāo)記與各性狀相關(guān)聯(lián),對(duì)表型變異的解釋率范圍為6.3%~33.1%,其中,與株高關(guān)聯(lián)的標(biāo)記有4對(duì),與穗長相關(guān)聯(lián)的標(biāo)記有6對(duì),與穗下莖長相關(guān)聯(lián)的標(biāo)記有4對(duì),與千粒重相關(guān)聯(lián)的標(biāo)記有6對(duì),與全生育期相關(guān)聯(lián)的標(biāo)記有2對(duì),即有5對(duì)標(biāo)記同時(shí)與多個(gè)性狀相關(guān)聯(lián);而在P<0.001水平下,僅有其中6對(duì)標(biāo)記與各性狀相關(guān)聯(lián)。
圖2 55份外引大麥材料的群體遺傳結(jié)構(gòu)
標(biāo)記Marker染色體Chromosome圖距Position/cM表型解釋率Explainedphenotypicvariation/%株高Plantheight穗長Spikelength穗下莖長Lengthofearstem千粒重1000-kernelweight全生育期DaystomaturityHVGLUEND1HL8514.56.3GBMS22HS5017.619.225.2EBmac6842HL8014.115.0Bmag1252HL12222.3HVM333HL9416.228.6HVM603HL11033.1HV13GEIII3HL15521.3Bmac293HL1904.8EBmac7754HL8019.222.4EBmac7884HL1509.3Bmac3166HS629.1Bmag05006HS2421.5GBM12156HS3714.2GMS066HL9612.3Bmac406HL15520.4Bmag77HS2710.9
下劃線標(biāo)注的數(shù)字表示在P<0.001水平下關(guān)聯(lián)標(biāo)記對(duì)表型的解釋率。
The underlined number indicates the explained phenotypic variation of SSR markers related to agronomic traits at 0.001 level.
張赤紅等[21-22]研究表明,我國大麥存在遺傳基礎(chǔ)狹窄的問題。引進(jìn)種質(zhì)資源是豐富遺傳基礎(chǔ)的有效手段。本研究引進(jìn)大麥品種均來源于其他國家,與國內(nèi)尤其是青海省的大麥品種存在較大遺傳差異,從一定程度上豐富了育種基礎(chǔ)。但是由于引進(jìn)大麥均為栽培品種,經(jīng)過大量人工選擇而來,這些品種之間的遺傳差異較小。通過54對(duì)SSR標(biāo)記的分析,55份引進(jìn)大麥品種間的GS值變化范圍為0.533~0.940,平均值為0.722,整體仍然較高,親緣關(guān)系不夠遠(yuǎn)。引進(jìn)的55大麥品種中,二者間GS值較大的,例如嘉士伯3號(hào)與嘉士伯4號(hào)(GS=0.940),不作為雜交組合考慮,主要與青海本地材料進(jìn)行雜交。結(jié)合表型數(shù)據(jù),德國品種NFC Tripple株高僅有62.5 cm,可以作物降低大麥株高、增強(qiáng)抗倒伏能力的親本材料;同時(shí)丹麥品種H.dist. V. trif的株高為124.0 cm,比NFC Tripple高61.5 cm,因此二者可以配置組合構(gòu)建分離群體進(jìn)行株高遺傳分析。千粒重是重要的產(chǎn)量相關(guān)性狀,阿富汗品種Loeal的千粒重達(dá)到60.3 g,可以作為后期改良大麥千粒重的親本材料。
遺傳多樣性分析是后期進(jìn)行關(guān)聯(lián)分析發(fā)掘種質(zhì)有利基因的基礎(chǔ)[23-25]。本研究以54對(duì)SSR標(biāo)記對(duì)引進(jìn)的55份大麥材料進(jìn)行遺傳多樣性分析,確定各材料在不同位點(diǎn)上所含有的等位變異及基因型,比較了它們的遺傳背景差異,為后期進(jìn)行關(guān)聯(lián)分析發(fā)掘引進(jìn)種質(zhì)當(dāng)中的有利等位基因奠定了基礎(chǔ)?;诠?溫伯格平衡數(shù)學(xué)模型的遺傳結(jié)構(gòu)分析,將55份大麥材料分成了3個(gè)亞群,不存在人為因素。因此,在后期關(guān)聯(lián)分析中,群體遺傳結(jié)構(gòu)分析的結(jié)果可以避免人為劃分亞群的干擾,提高關(guān)聯(lián)的準(zhǔn)確性[11,26-27],計(jì)算得到的Q值作為協(xié)變量用于關(guān)聯(lián)分析。通過GLM模型關(guān)聯(lián)分析,在P<0.01水平下,共有16對(duì)與株高、穗長、穗下莖長、千粒重和全生育期相關(guān)聯(lián)的標(biāo)記。關(guān)于大麥穗長QTL定位的報(bào)道較少,主要位于2H、3H、4H、5H和7H這5條染色體上[28-31]。本研究中檢測到的穗長相關(guān)聯(lián)標(biāo)記Bmac40位于6H染色體的長臂上,可能是新的穗長QTL位點(diǎn),但需要進(jìn)一步驗(yàn)證其真實(shí)性。穗下莖長的相關(guān)QTL還未見報(bào)道,本研究共檢測到4對(duì)相關(guān)聯(lián)標(biāo)記,對(duì)于這些結(jié)果的準(zhǔn)確性,仍需要后期進(jìn)一步試驗(yàn)的驗(yàn)證。株高是育種過程中的重要農(nóng)藝性狀,與作物的抗倒伏能力顯著相關(guān)[32-33]。大麥株高的QTL大量被定位到1H-7H染色體長、短臂上[34-36],說明大麥株高的相關(guān)QTL沒有集中于某一條染色體或某條染色體的某一端。本研究同時(shí)通過關(guān)聯(lián)分析,檢測出HVGLUEND、GBMS2、EBmac684和EBmac775等4對(duì)標(biāo)記與株高相關(guān)聯(lián),分別位于大麥1H、2H和4H染色體上,并且HVGLUEND和GBMS2在P<0.001水平下與株高相關(guān)聯(lián)。由于這4對(duì)標(biāo)記未見與株高相關(guān)聯(lián)的報(bào)道,需要進(jìn)一步驗(yàn)證才能作為后期輔助選擇的候選標(biāo)記。Lacaze等[37]將大麥千粒重QTL定位于大麥1H-7H染色體,其中在2H染色體的52~62.3 cM和6H染色體的102~125.4 cM區(qū)間內(nèi)均有一個(gè)顯著QTL,本研究中的千粒重相關(guān)聯(lián)標(biāo)記GBMS2和GMS06分別位于這兩個(gè)區(qū)間附近,說明這一結(jié)果較可靠,GBMS2和GMS06可以作為千粒重分子標(biāo)記輔助選擇的候選標(biāo)記。關(guān)于生育期的QTL被定位于1H、3H、4H、5H和6H[38-39]。本研究檢測到的生育期相關(guān)聯(lián)標(biāo)記HV13GEIII和GBM1215分別位于3H和6H染色體,但是與Korff等[38]、Tinker等[39]的結(jié)果不在同一區(qū)間,是否為新的QTL位點(diǎn)有待進(jìn)一步研究驗(yàn)證。
[1] TANKSLEY S D,MCCOUCH S R.Seed banks and molecular maps:unlocking genetic potential from the wild [J].Science,1997,277(5329):1063.
[2] FLINT-GARCIA S A,THOMSBERRY J M,BUCKLER I V.Structure of linkage disequilibrium in plants [J].AnnualReviewofPlantBiology,2003,54(4):357.
[3] ZONDERVAN K T,CARDON L R.The complex interplay among factors that influence allelic association [J].NatureReviewsGenetics,2004,5(2):89.
[4] GUPTA P K,RUSTGI S,KULWAL P L.Linkage disequilibrium and association studies in higher plants:present status and future prospects [J].PlantMolecularBiology,2005,57(4):461.
[5] SAGHAI-MAROOF M A,BIYASHEV R M,YANG G P,etal.Extraordinarily polymorphic microsatellite DNA in barley:species diversity,chromosomal locations,and population dynamics [J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,1994,91(12):5466.
[6] WEBER J L.Informativeness of human(dC-dA)n.(dG-dT)npolymorphism [J].Genomics,1990,7(4):524.
[7] WANG Z,WEBER J L,ZHONG G,etal.Survey of plant short tandem DNA repeats [J].TheoreticalandAppliedGenetics,1994,88(1):1.
[8] 段艷鳳,劉 杰,卞春松,等.中國88個(gè)馬鈴薯審定品種SSR指紋圖譜構(gòu)建與遺傳多樣性分析[J].作物學(xué)報(bào),2009,35(8):1451.
DUAN Y F,LIU J,BIAN C S,etal.Construction of fingerprinting and analysis of genetic diversity with SSR markers for eighty-eight approved potato cultivars(SolanumtuberosumL.) in China [J].ActaAgronomicaSinica,2009,35(8):1451.
[9] 匡 猛,楊偉華,許紅霞,等.中國棉花主栽品種DNA指紋圖譜構(gòu)建及SSR標(biāo)記遺傳多樣性分析[J].中國農(nóng)業(yè)科學(xué),2011,44(1):20.
KUANG M,YANG W H,XU H X,etal.Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in China [J].ScientiaAgriculturaSinica,2011,44(1):20.
[10] MACCAFERRI M,SANGUINETI M C,ENRICO N,etal.Population structure and long-range linkage disequilibrium in a durum wheat elite collection[J].MolecularBreeding,2005,15(3):271.
[11] FLINT-GARCIA S A,THUILLET A C,YU J M,etal.Maize association population:a high-resolution platform for quantitative trait locus dissection [J].PlantJournal,2005,44(6):1054.
[12] HAMZA S,HAMIDA W B,REBAI A,etal.SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits [J].Euphytica,2004,135(1):107.
[13] WANG A,YU Z,DING Y.Genetic diversity analysis of wild close relatives of barley from Tibet and the middle east by ISSR and SSR markers [J].ComptesRendusBiologies,2009,332(4):393.
[14] MALYSHEVA-OTTO L,GANAL M W,LAW J R,etal.Temporal trends of genetic diversity in European barley cultivars(HordeumvulgareL.) [J].MolecularBreeding,2007,20(4):309.
[15] KRAAKMAN A T W,MARTNEZ F,MUSSIRALIEV B,etal.Linkage disequilibrium mapping of morphological,resistance,and other agronomically relevant traits in modern spring barley cultivars [J].MolecularBreeding,2006,17(17):41.
[16] SUN D F,REN W B,SUN G L,etal.Molecular diversity and association mapping of quantitative traits in tibetan wild and worldwide originated barley(HordeumvulgareL.) germplasm [J].Euphytica,2011,178(1):31.
[17] IVANDIC V,HACKETT C A,NEVO E,etal.Analysis of simple sequence repeats(SSRs) in wild barley from the fertile crescent:associations with ecology,geography and fowering time [J].PlantMolecularBiology,2002,48(5-6):511.
[18] PATERSONA H,BRUBAKER C L,WENDEL J F.A rapid method for extraction of cotton(Gossypiumspp.)genomic DNA suitable for RFLP or PCR analysis [J].PlantMolecularBiologyReporter,1993,11(2):122.
[19] 賴 勇,孟亞雄,王 晉,等.大麥遺傳多樣性及連鎖不平衡分析[J].作物學(xué)報(bào),2013,39(12):2154.
LAI Y,MENG Y X,WANG J,etal.Genetic diversity and linkage disequilibrium analysis in barley [J].ActaAgronomicaSinica,2013,39(12):2154.
[20] EVANNO G,REGNAUT S,GOUDET J.Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J].MolecularEcology,2005,14(8):2611.
[21] 張赤紅,張 京.大麥品種資源遺傳多樣性的SSR標(biāo)記評(píng)價(jià)[J].麥類作物學(xué)報(bào),2008,28(2):214.
ZHANG C H,ZHANG J.Genetic diversity assessment of barley germplasm resources using SSR markers [J].JournalofTriticeaeCrops,2008,28(2):214.
[22] 劉志敏,金 能,呂 超,等.大麥種質(zhì)資源的SSR遺傳多樣性分析[J].麥類作物學(xué)報(bào),2011,31(5):839.
LIU Z M,JIN N,Lü C,etal.Genetic diversity analysis of barley varieties by SSR[J].JournalofTriticeaeCrops,2011,31(5):839.
[23] HARRIS B P,STOKESBRY K D E.The spatial structure of local surficial sediment characteristics on Georges Bank,USA[J].ContinentalShelfResearch,2010,30(17):1840.
[24] WANG M L,ZHU C S,BARKLEY N A,etal.Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection[J].TheoreticalandAppliedGenetics,2009,120(1):13.
[25] KLINE J B,MOORE D J,CLEVENGER C V.Activation and association of the Tec tyrosine kinase with the human prolactin receptor:Mapping of a Tec/Vav-receptor binding site [J].MolecularEndocrinology,2001,15(5):832.
[26] ZHANG Z W,ERSOZ E,LAI C Q,etal.Mixed linear model approach adapted for genome-wide association studies[J].NatureGenetics,2010,42(4):355.
[27] PRICEA L,ZAITLEN N A,REICH D,etal.New approaches to population stratification in genome-wide association studies [J].NatureReviewsGenetics,2010,11(7):459.
[28] BAGHIZADEH A,TALEEI A R,NAGHAVI M R.QTL analysis for some agronomic traits in barley(HordumvulgareL.) [J].InternationalJournalofAgricultrueandBiology,2007,9(2):372.
[29] HORI K,KOBAYASHI T,SHIMIZU A,etal.Effcient construction of a high-density linkage map and its application to QTL analysis in barley [J].TheoreticalandAppliedGenetics,2003,107(107):806.
[30] SAMERI M,TAKEDA K,KOMATSUDA T.Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross between oriental- and occidental-type barley cultivars [J].BreedingScience,2006,56(3):243.
[31] WANG J,YANG J,MCNEIL D L,etal.Identifcation and molecular mapping of a dwarfing gene in barley(HordeumvulgareL.) [J].Euphytica,2010,175(3):331.
[32] 章忠貴,劉斌美,許 學(xué),等.水稻株高突變系的農(nóng)藝性狀與抗倒伏研究[J].核農(nóng)學(xué)報(bào),2010,24(3):430.
ZHANG Z G,LIU B M,XU X,etal.Agronomic characters and lodging resistance of plant height mutants of rice [J].ActaAgriculturaeSinica,2010,24(3):430.
[33] 肖應(yīng)輝,羅麗華,閆曉燕,等.水稻品種倒伏指數(shù)QTL分析[J].作物學(xué)報(bào),2005,31(3):348.
XIAO Y H,LUO L H,YAN X Y,etal.Quantitative trait locus analysis of lodging index in rice(OryzasativaL.) [J].ActaAgronomicaSinica,2005,31(3):348.
[34] MARQUEZ-CEDILLO L A,HAYES P M,KLEINHOFS A,etal.QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups [J].TheoreticalandAppliedGenetics,2001,103(4):625.
[35] TEULAT B,BORRIES C,THIS D.New QTLs identified for plant water status,water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes [J].TheoreticalandAppliedGenetics,2001,103(1):161.
[36] KORFF M,WANG H,LEON J,etal.AB-QTL analysis in spring barley:II.Detection of favourable exotic alleles for agronomic traits introgressed from wild barley(H.vulgaressp.spontaneum) [J].TheoreticalandAppliedGenetics,2006,112(7):1221.
[37] LACAZE X,HAYES P M,KOROL A.Genetics of phenotypic plasticity:QTL analysis in barley,Hordeumvulgare[J].Heredity,2009,102(2):168.
[38] KORFF M,GRANDO S,DEL G A,etal.Quantitative trait loci associated with adaptation to mediterranean dryland conditions in barley[J].TheoreticalandAppliedGenetics,2008,117(5):653.
[39] TINKER N A,MATHER D E,ROSSNAGEL B G,etal.Regions of the genome that affect agronomic performance in two-row barley [J].CropScience,1996,36(4):1053.
Analysis of Genetic Diversity and Association with Agronomic Traits in Barley (HordeumvulgareL.)Introduced from Abroad Using SSR Markers
LAI Yong1,JIA Jianlei1,WANG Jinming1,REN Long2,Lü Zhongyu4,ZHU Huiqin1,MA Hui1,YANG Lina1,LI Zongren1
(1.Agriculture and Animal Husbandry Colleague of Qinghai University,Xining,Qinghai 810016,China; 2.State Key Laboratory of Plateau Ecology and Agriculture,College of Agriculture and Animal Husbandry,Qinghai University,Xining,Qinghai 810016,China; 3.Modern Education Technology Centre of Qinghai University,Xining,Qinghai 810016,China; 4.Gansu Longyuan Research Institute of Agricultural Science,Lanzhou,Gansu 730070,China)
In order to understand the genetic information of introduced germplasm resources,55 barley accessions from abroad were introduced and genetic diversity and association with agronomic trait was analyzed by SSR markers. A total of 154 alleles were detected from these accessions. There were 164 genotypes among these accessions based on 54 SSR markers. The gene diversity ranged from 0.103 to 0.708,and the PIC ranged from 0.098 to 0.651.The genetic similarity(GS) among these accessions was from 0.533 to 0.940,with the average of 0.722. The accessions were divided into three subgroups at the GS level of 0.682,in which there were 49,2 and 4 materials,respectively. Based on the analysis of population structure,55 accessions were composed of three subpopulations,in which there were 9,24 and 22 materials,respectively. There were 16 markers associated with plant height,spike length,length of ear stem,thousand kernel weight,and days to maturity,based on the general line model(GLM). The rate of explanation on the phenotype with marker ranged from 0.063 to 0.331. And five markers were associated with more than one trait.
Barley; SSR markers; Genetic diversity; Association analysis
時(shí)間:2017-01-16
2016-06-23
2016-01-05
國家自然科學(xué)基金地區(qū)基金項(xiàng)目(31660429)
E-mail:xlaiyong@163.com
李宗仁(E-mail:lizongrenqd@126.com)
S512.3;S330
A
1009-1041(2017)02-0197-08
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20170116.1833.014.html