李玉龍, 鄒立科, 李瑤, 吳宇, 趙培華, 謝斌
ADT類[鐵鐵]氫化酶全羰基模型物的合成研究進(jìn)展
李玉龍1,2, 鄒立科1,2, 李瑤1,2, 吳宇1,2, 趙培華1, 謝斌1,2
(1.四川理工學(xué)院化學(xué)與環(huán)境工程學(xué)院, 四川自貢643000;2.綠色催化四川省高校重點(diǎn)實(shí)驗室, 四川自貢643000)
自然界中的[鐵鐵]氫化酶高效催化質(zhì)子還原產(chǎn)氫的能力為發(fā)展生物制氫技術(shù)解決能源危機(jī)帶來了希望。合成[鐵鐵]氫化酶模型物并研究其催化性質(zhì),不僅有助于深入了解[鐵鐵]氫化酶的催化制氫機(jī)理,找到影響制氫效率的關(guān)鍵因素,還能夠為設(shè)計合成高效、穩(wěn)定的制氫催化劑提供有效途徑,從而推動仿生制氫技術(shù)的發(fā)展,幫助人類解決所面臨的能源緊缺和環(huán)境污染等問題。文章系統(tǒng)總結(jié)了ADT類[鐵鐵]氫化酶全羰基模型物的各種制備方法,描述了各種制備方法的優(yōu)缺點(diǎn)和其應(yīng)用范圍。期望能夠加深對ADT類[鐵鐵]氫化酶模型物這一研究領(lǐng)域的了解,為今后該類模型物的合成研究提供指導(dǎo)。
[鐵鐵]氫化酶;模型物;合成
氫化酶是一類廣泛存在于甲烷菌、醋酸菌、光合細(xì)菌和固氮菌等微生物體內(nèi)的可以可逆地催化氫氣氧化與生成的金屬蛋白質(zhì)。根據(jù)其所含過渡金屬元素組成及結(jié)構(gòu)不同,通常被分為三大類:[鐵鐵]氫化酶、[鐵]氫化酶和[鎳鐵]氫化酶[1]。由于氫化酶具有高催化質(zhì)子還原生成氫氣的能力,引起科研工作者極大的研究興趣,從而成為當(dāng)今的研究熱點(diǎn)之一[2]。例如,每摩爾從脫硫脫硫弧菌(Desulfovibrio desulfuricans)中分離得到的[鐵鐵]氫化酶以每秒9000 mol的速率催化質(zhì)子還原生成氫氣。
Fontecilla-Camps研究小組報道了從脫硫脫硫弧菌(Desulfovibrio desulfuricans ATCC 7757)中分離得到的DdH[鐵鐵]氫化酶單晶結(jié)構(gòu)[3-4]。通過晶體結(jié)構(gòu)解析發(fā)現(xiàn)[鐵鐵]氫化酶活性中心是由一個無機(jī)的[4Fe4S]立方烷子簇和一個[2Fe2S]蝶狀子簇兩部分構(gòu)成,兩者通過一個半胱氨酸殘基的S原子連接起來(圖1 )。通過紅外光譜等研究發(fā)現(xiàn)[鐵鐵]氫化酶活性中心[2Fe2S]蝶狀子簇的兩個Fe原子周圍含有CO和CN-配體。通過研究[鐵鐵]氫化酶活性中心的催化過程,科研工作者普遍認(rèn)為[4Fe4S]立方烷子簇主要起傳遞電子的作用,而[2Fe2S]蝶狀子簇是催化的活性中心。另外值得一提的是[2Fe2S]蝶狀子簇中的兩個Fe原子通過一個氮雜丙撐二硫橋(ADT,SCH2NHCH2S)結(jié)構(gòu)相連。
圖1 [鐵鐵]氫化酶活性中心結(jié)構(gòu)圖
國外Rauchfuss、Darensbourg、孫立成和國內(nèi)宋禮成、吳驪珠、劉小明等多個研究小組長期致力于對[鐵鐵]氫化酶模型物的合成研究[5-14],取得了顯著的成果,建立起了一系列制備[鐵鐵]氫化酶模型物的新方法,合成了大量[鐵鐵]氫化酶模型物。這些模型物根據(jù)二硫橋結(jié)構(gòu)不同主要分為兩大類:ADT和PDT類(丙撐二硫橋SCH2CH2CH2S)。
本文系統(tǒng)總結(jié)了ADT類[鐵鐵]氫化酶全羰基模型物的各種制備方法,描述了各種制備方法的優(yōu)缺點(diǎn)和其應(yīng)用范圍。本文的討論將加深人們對ADT類[鐵鐵]氫化酶模型物這一研究領(lǐng)域的了解,為今后該類模型物的合成研究提供指導(dǎo),從而促進(jìn)未來高效、穩(wěn)定制氫催化劑的設(shè)計合成,推動仿生制氫技術(shù)的發(fā)展,進(jìn)一步促進(jìn)生物無機(jī)化學(xué)、金屬有機(jī)化學(xué)和鐵硫簇合物化學(xué)的發(fā)展和學(xué)科之間的交叉。
1.1 模型物Fe2[(SCH2NH](CO)6的合成
圖2 Fe2[(SCH2NH](CO)6的合成路線一
模型物Fe2[(SCH2NH](CO)6還可以通過Fe2(SH)2(CO)6與烏洛托品(六亞甲基四胺)室溫攪拌反應(yīng)制備得到(圖3 )[15]。與第一種合成路線相比較,雖然收率稍低(35%),但這種合成方法操作相對簡單。
圖3 Fe2[(SCH2NH](CO)6的合成路線二
Rauchfuss研究小組還通過將Fe3S2(CO)9、(NH4)2CO3和(CH2O)n等原料進(jìn)行縮合反應(yīng)制備得到ADT母體化合物(圖4 )[15]。與前面兩種合成路線相比較,這種合成方法收率相對較低,僅有28%。
圖4 Fe2[(SCH2NH](CO)6的合成路線三
孫立成研究小組設(shè)計了一個更多步驟的合成路線,首先合成ADT類[鐵鐵]氫化酶全羰基模型物Fe
2
[(SCH
2
NSiR
3
](CO)
6
(R
3
=Et
3
,Me
2
(
t
-Bu),(
i
-Pr)
3
),然后通過三氟醋酸脫掉SiR
3
基團(tuán)分別以10%,32%和36%的收率制備得到模型物Fe
2
[(SCH
2
NH](CO)
6
(圖5 )
[17]
。
圖5 Fe2[(SCH2NH](CO)6的合成路線四
1.2 模型物Fe2[(SCH2NR](CO)6的合成
與模型物Fe2[(SCH2NH](CO)6的合成策略一致,模型物Fe2[(SCH2NR](CO)6可以通過Fe2(SH)2(CO)6與RN(CH2OH)2或(RNCH3反應(yīng)合成得到(圖6 ),這是目前應(yīng)用最廣泛的合成路線之一,部分模型物的收率大于80%[15]。雖然利用Fe2S2(CO)9合成模型物Fe2[(SCH2NH](CO)6的收率較低,但是以Fe2S2(CO)9、t-BuNH2和(CH2O)n為原料合成模型物Fe2[(SCH2N-t-Bu](CO)6時可以得到相對較高的收率(60%)。
圖6 Fe2[(SCH2NR](CO)6的合成路線一
模型物Fe2[(SCH2NR](CO)6還可以通過Fe2(SCH2OH)2(CO)6與RNH2縮合反應(yīng)制備,這種方法與前面合成方法相比較具有操作更加簡單、成本更低、原料易得等優(yōu)點(diǎn)[18]。當(dāng)R為烷基時,利用該合成路線通常能夠得到滿意的收率,比如通過Fe2(SCH2OH)2(CO)6與HOCH2CH2NH2制備模型物Fe2[(SCH2NCH2CH2OH](CO)6的收率高達(dá)80%。但是當(dāng)R為芳基時,利用該方法合成ADT類[鐵鐵]氫化酶全羰基模型物的收率通常較低。
圖7 Fe2[(SCH2NR](CO)6的合成路線二
對于R為芳基的ADT類[鐵鐵]氫化酶全羰基模型物Fe2[(SCH2NR](CO)6經(jīng)常通過雙負(fù)離子鋰鹽Fe2(SLi)2(CO)6與雙鹵代烴RN(CH2Cl)2縮合反應(yīng)制備得到(圖8 )[11,18-37]。該合成路線相對較長,但是通常能夠得到較高的收率。
圖8 Fe2[(SCH2NR](CO)6的合成路線三
此外,模型物Fe2[(SCH2NR](CO)6還可以通過(MeC5H4)2Ti(SCH2NR與Fe(bda)(CO)3(bda=芐叉丙酮)進(jìn)行金屬轉(zhuǎn)移反應(yīng)合成得到(圖9 )[38]。需要指出的是,這條合成路線相對步驟較多,合成成本也比較高,實(shí)際應(yīng)用范圍受到很大限制。
圖9 Fe2[(SCH2NR](CO)6的合成路線四
1.3 復(fù)雜ADT模型物Fe2[(SCH2NR](CO)6的合成
圖10 Fe2[(SCH2NCH2CH2OH](CO)6的官能團(tuán)轉(zhuǎn)化反應(yīng)
將含有硝基官能團(tuán)的ADT類模型物Fe2[(SCH2NC6H4-4-NO2](CO)6在Pd/C存在的條件下催化加氫可合成含氨基官能團(tuán)的ADT類模型物Fe2[(SCH2NC6H4-4-NH2](CO)6(圖11 )[19]。
圖11 Fe2[(SCH2NC6H4-4-NO2](CO)6的還原反應(yīng)
孫立成研究小組通過將ADT類[鐵鐵]氫化酶全羰基模型物Fe2[(SCH2NC6H4-4-I](CO)6先與4-ethynyl-2,2′:6′,2″-terpyridine進(jìn)行Sonogashira偶聯(lián)反應(yīng),再與Ru(terpy)(DMSO)Cl2反應(yīng)合成出含有吡啶釕骨架的ADT類[鐵鐵]氫化酶全羰基模型物(圖12 )[20-21]。
圖12 含吡啶釕結(jié)構(gòu)的[鐵鐵]氫化酶全羰基模型物
為了合成出具有光催化放氫能力的[鐵鐵]氫化酶模型物,宋禮成研究小組利用ADT類[鐵鐵]氫化酶全羰基模型物Fe2[(SCH2NC6H4-4-CHO](CO)6設(shè)計合成出含有光敏劑卟啉結(jié)構(gòu)的ADT類[鐵鐵]氫化酶全羰基模型物(圖13 )[11]。
圖13 含卟啉結(jié)構(gòu)的[鐵鐵]氫化酶全羰基模型物
宋禮成研究小組利用吡啶氮原子的配位能力,將ADT母體化合物Fe2[(SCH2NH](CO)6與吡啶酰氯進(jìn)行縮合反應(yīng),再將制備得到的中間體化合物Fe2[(SCH2NC(O)-4-Py](CO)6與金屬卟啉ZnTPP進(jìn)行反應(yīng),合成出了含有ZnTPP結(jié)構(gòu)的ADT類[鐵鐵]氫化酶全羰基模型物(圖14)[40]。
圖14含有ZnTPP結(jié)構(gòu)的[鐵鐵]氫化酶全羰基模型物
本文總結(jié)了ADT類[鐵鐵]氫化酶全羰基模型物的各種制備方法,概述了各種制備方法的優(yōu)缺點(diǎn)和其應(yīng)用范圍。主要方法包括:
(1)以Fe2(SH)2(CO)6、(NH4)2(CO)3和(CH2O)n等為原料,根據(jù)Sharpless等基于Mannich反應(yīng)原理制備。
(2)通過雙負(fù)離子鋰鹽Fe2(SLi)2(CO)6與雙鹵代烴RN(CH2Cl)2縮合反應(yīng)制備。
本文還介紹了通過簡單ADT類[鐵鐵]氫化酶全羰基模型物制備復(fù)雜結(jié)構(gòu)ADT類[鐵鐵]氫化酶全羰基模型物的方法。希望通過本文的介紹能夠加深人們對ADT類[鐵鐵]氫化酶模型物這一研究領(lǐng)域的了解,為今后該類模型物的合成研究提供指導(dǎo)。
眾所周知,近年來圍繞[鐵鐵]氫化酶活性中心結(jié)構(gòu)和功能模擬而展開的仿生化學(xué)研究取得了一定的成果,促進(jìn)了與之相關(guān)的生物無機(jī)化學(xué)、無機(jī)配位化學(xué)和金屬有機(jī)化學(xué)等學(xué)科的迅速發(fā)展。未來對于[鐵鐵]氫化酶仿生化學(xué)研究將進(jìn)一步圍繞如何提高[鐵鐵]氫化酶模型物的催化制氫效率,如何利用[鐵鐵]氫化酶模型物實(shí)現(xiàn)光催化高效制氫,如何為設(shè)計制氫效率高、成本低的制氫催化劑提供理論與實(shí)踐基礎(chǔ)等方面的問題展開??梢灶A(yù)見,對于[鐵鐵]氫化酶的仿生化學(xué)研究將會得到更加振奮人心的結(jié)果,為新型高效、穩(wěn)定的制氫催化劑的設(shè)計合成提供新的思路和途徑,推動仿生制氫技術(shù)的發(fā)展,幫助人類解決所面臨的能源危機(jī)和環(huán)境污染等問題。
[1]LUBITZ W,OGATA H,RUDIGER O,et al.Hydrogenases.Chemical Reviews,2014,114:4081-4148.
[2]TARD C,PICKETT C.Structural and functional analogues of the active sites of the,and -hydrogenases.Chemical Reviews,2009,109:2245-2274.
[3]PETERS J W,LANZILOTTA W N,LEMON B J,et al.X-Ray crystal structure of the Fe-only hydrogenase(Cpl)from clostridium pasteurianum to 1.8 angstrom resolution.Science,1998,282:1853-1858.
[4]NICOLET Y,PIRAS C,LEGRAND P,et al.Desulfovibrio desulfuricans iron hydrogenase:The structure shows unusual coordination to an active site Fe binuclear center.Structure,1999,7:13-23.
[5]LI Y L,RAUCHFUSS T B.Synthesis of diiron(I)dithiolato carbonyl complexes.Chemical Reviews,2016,116:7043-7077.
[6]WANG W,NILGES M J,RAUCHFUSS T B,et al.Isolation of a mixed valence diiron hydride:evidence for a spectator hydride in hydrogen evolution catalysis.Journal of the American Chemical Society,2013,135:3633-3639.
[7]WANG W,RAUCHFUSS T B,ZHU L,et al.New reactions of terminal hydrides on a diiron dithiolate.Journal of the American Chemical Society,2014,136:5773-5782.
[8]BETHEL R D,DARENSBOURG M Y.Bioinorganic chemistry:Enzymes activated by synthetic components.Nature,2013,499:40-41.
[9]EKSTROM J,ABRAHAMSSON M,OLSON C,et al.Bio-inspired,side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model.Dalton Transactions,2006,4599-4606.
[10]ZHENG D H,WANG N,WANG M,et al.Intramolecular iron-mediated C-H bond heterolysis with an assist of pendant base in a -Hydrogenase model.Journal of the American Chemical Society,2014,136:16817-16823.
[11]SONG L C,TANG M Y,SU F H,et al.A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer.Angewandte Chemie International Edition,2006,45:1130-1133.
[12]WANG F,LIANG W J,JIAN J X,et al.Exceptional poly(acrylic acid)-based artificial -hydrogenases for photocatalytic H2production in water.Angewandte Chemie International Edition,2013,52:8134-8138.
[13]SONG L C,WANG L X,YIN B S,et al.The N-acylated derivatives of parent complex as active site models of Fe-only Hydrogenases:synthesis,characterization,and related properties.European Journal of Inorganic Chemistry,2008,2:291-297.
[14]XIAO Z Y,WEI Z H,LI L,et al.Diiron carbonyl complexes possessing a {Fe(II)Fe(II)} core:synthesis,characterisation,and electrochemical investigation.Dalton Transactions,2011,40:4291-4299.
[15]LI H X,RAUCHFUSS T B.Iron carbonyl sulfides,formaldehyde,and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases.Journal of the American Chemical Society,2002,124:726-727.
[16]GILBERT-WILSON R,SIEBEL J F,ADAMSKA-VENKATESH A,et al.Spectroscopic investigations of hydrogenase maturated with 57Fe2(adt)(CN)2(CO)2-.Journal of the American Chemical Society,2015,137:8998-9005.
[17]WANG Z,LIU J H,HE C J,et al.Azadithiolates cofactor of the iron-only hydrogenase and its PR3-monosubstituted derivatives:synthesis,structure,electrochemistry and protonation.Journal of Organometallic Chemistry,2007,692:5501-5507.
[18]STANLEY J L,RAUCHFUSS T B,WILSON S R.Studies on the condensation pathway to and properties of diiron azadithiolate carbonyls.Organometallics,2007,26:1907-1911.
[19]LIU T B,WANG M,SHI Z,et al.Synthesis,structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases.Chemistry-A European Journal,2004,10:4474-4479.
[20]OTT S,KRITIKOS M,AKERMARK B,et al.Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer.Angewandte Chemie International Edition,2003,42:3285-3288.
[21]OTT S,BORGSTROM M,KRITIKOS M,et al.Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer:synthesis and photophysical properties.Inorganic Chemistry,2004,43:4683-4692.
[22]SI G,WU L Z,WANG W G,et al.Synthesis,structure and electrochemical property of diphenylacetypene-substituted diiron azadithiolates as active site of Fe-only hydrogenases.Tetrahedron Letters,2007,48:4775-4779.
[23]GAO W M,LIU J H,MA C B,et al.Synthesis,structures and electrochemical properties of amino-derivatives of diiron azadithiolates as active site models of Fe-only hydrogenase.Inorganica Chimica Acta,2006,359:1071-1080.
[24]DONG W B,WANG M,LIU X Y,et al.An insight into the protonation property of a diiron azadithiolate complex pertinent to the active site of Fe-only hydrogenases.Chemical Communications,2006,305-307.
[27]SONG L C,GE J H,LIU X F,et al.Synthesis,Structure and Electrochemical Properties of N-Substituted Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases.J Organomet Chem,2006,691,5701-5709.[28]SONG L C,GE J H,ZHANG X G,et al.Methoxyphenyl-functionalized diiron azadithiolates as models for the active site of Fe-only hydrogenases:synthesis,structures,and biomimetic H2evolution.European Journal of Inorganic Chemistry,2006,3204-3210.
[29]STANLEY J L,HEIDEN Z M,RAUCHFUSS T B,et al.Desymmetrized diiron azadithiolato carbonyls:a step toward modeling the iron-only hydrogenases.Organometallics,2008,27:119-125.
[30]HOU J,PENG X J,LIU J F,et al.A binuclear isocyanide azadithiolatoiron complex relevant to the active site of Fe-only hydrogenases:synthesis,structure and electrochemical properties.European Journal of Inorganic Chemistry,2006,4679-4686.
[31]WANG W G,WANG H Y,SI G,et al.Fluorophenyl-substituted Fe-only hydrogenases active site ADT models:different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O.Dalton Transactions,2009,2712-2720.
[32]VIJAIKANTH V,CAPON J F,GLOAGUEN F,et al.Carboxy-functionalized dithiolate di-iron complexes related to the active site of Fe-only hydrogenase.Journal of Organometallic Chemistry,2007,692:4177-4181.
[33]GAO S,DUAN Q,JIANG D Y.{μ-2-(1,3-Benzothiazol-2-yl)phenyl〗-2-azapropane-1,3-dithiolato-k4S,S':S,S'}bisicarbonyliron(I)〗.Acta Crystallorgraphica Section E,2012,68:m248.
[34]GAO S,DUAN Q,JIANG D Y.{μ-2-(Benzothiazol-2-yl)benzyl〗-2-azapropane-1,3-dithiolato-1:2k4S,S':S,S'}bisicarbonyliron(I)〗.Acta Crystallorgraphica Section E,2012,68:m315.
[35]GAO S,PENG X J.2-(9-Anthrylmethyl)-2-azapropane-1,3-dithiolato-k4S:S'〗bisicarbonyliron(I)〗.Acta Crystallorgraphica Section E,2007,63:m1997.
[36]CAPON J F,EZZAHER S,GLOAGUEN F,et al.Electrochemical and theoretical investigations of the reduction of2(CO)5L{μ-SCH2XCH2S}〗 complexes related to hydrogenase.New Journal of Chemistry,2007,31:2052-2064.
[37]DEY S,RANA A,DEY S G,et al.Electrochemical hydrogen production in acidic water by an azadithiolate bridged synthetic hydrogenese mimic:role of aqueous solvation in lowering overpotential.ACS Catalysis,2013,3:429-436.
[38]ANGAMUTHU R,CARROLL M E,RAMESH M,et al.A new route to azadithiolato complexes.European Journal of Inorganic Chemistry,2011,1029-1032.
[39]SONG L C,YIN B S,LI Y L,et al.Synthesis,structural characterization,and some properties of new N-functionally substituted diiron azadithiolate complexes as biomimetic models of iron-only hydrogenases.Organometallics,2007,26:4921-4929.
[40]SONG L C,TANG M Y,MEI S Z,et al.The active site model for iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer.Organometallics,2007,26:1575-1577.
Progress in the Synthesis of Diiron Azadithiolato Hexcarbonyls as Models for the [FeFe]-Hydrogenase
LIYulong1,2,ZOULike1,2,LIYao1,2,WUYu1,2,ZHAOPeihua1,XIEBin1,2
(1.School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000,China;2.Key Laboratory of Green Catalysis of Sichuan Institute of High Education, Zigong 643000, China)
[FeFe]-Hydrogenase brings the hope to develop biological hydrogen production technology and solve the problem of energy crisis because of its catalytic ability and high efficiency of reduction of proton. Studies on the syntheses and catalytic properties of [FeFe]-hydrogenase models will not only enrich a systematic understanding of the mechanism of enzyme-catalyzed reaction of producing hydrogen and find the key factors of affecting catalytic efficiency, but also provide an effective route to design and synthesize high efficient and stable catalysts for hydrogen production. Furthermore, it will promote the development of biological hydrogen production technology and help us to solve the problems of energy crisis and environmental pollution. This paper systematically summarizes the syntheses of diiron azadithiolato hexcarbonyls as active site models for the [FeFe]-hydrogenase, and the various advantages as well as disadvantages of those methods. This review is anticipated to deepen the understanding of the research field where diiron azadithiolato hexcarbonyls as active site models for the [FeFe]-hydrogenase and hence provide guidance for the syntheses of those models.
[FeFe]-hydrogenase; models; synthesis
2016-09-06
國家自然科學(xué)基金項目(21501124);四川省科技廳項目(16JC0099);自貢市科技局項目(2014HX02);材料腐蝕與防護(hù)四川省重點(diǎn)實(shí)驗室項目(2014CL14);四川理工學(xué)院引進(jìn)人才項目(2014RC05)
李玉龍(1983-),男,四川遂寧人,副教授,博士,主要從事仿生物酶制氫催化劑方面的研究,(E-mail)yu_longli@aliyun.cn
1673-1549(2017)01-0001-07
10.11863/j.suse.2017.01.01
O614.121;O625.621
A