·綜述與講座·
HIF-1α與自噬在糖尿病視網(wǎng)膜病變中的相關(guān)性研究現(xiàn)狀
張梅李春霞
糖尿病視網(wǎng)膜病變(DR)是糖尿病的嚴(yán)重并發(fā)癥之一,也是目前致盲的主要原因之一,其發(fā)病率在全球呈逐漸增長(zhǎng)的趨勢(shì)。因此,研究DR的發(fā)病機(jī)制及其有效的治療方法已成為該領(lǐng)域的重要方向。缺氧誘導(dǎo)因子1α(HIF-1α)是在缺氧環(huán)境下被激活且能穩(wěn)定存在的一種轉(zhuǎn)錄因子,能誘導(dǎo)血管內(nèi)皮生長(zhǎng)因子(VEGF)的激活,對(duì)DR中新生血管的形成至關(guān)重要。自噬是人體分解代謝的重要途徑之一,在DR中有助于維持細(xì)胞內(nèi)環(huán)境的穩(wěn)態(tài)和細(xì)胞的完整性。HIF-1α與自噬都可以通過(guò)哺乳類動(dòng)物雷帕霉素靶蛋白(mTOR)在DR中發(fā)揮作用,那么研究二者之間有無(wú)聯(lián)系及其具體的信號(hào)通路就很有必要,這很有可能為未來(lái)治療DR及糖尿病引起的其它器官的損害,提供更多新的思路和方法。
糖尿病視網(wǎng)膜病變;缺氧誘導(dǎo)因子1α;自噬
在過(guò)去的30年里,經(jīng)過(guò)7次全國(guó)性調(diào)查發(fā)現(xiàn),中國(guó)大陸的糖尿病發(fā)患者群增長(zhǎng)了17倍,并且糖尿病和糖調(diào)節(jié)異常在中國(guó)已經(jīng)逐漸成為了流行病[1]。糖尿病的主要危害是糖尿病的慢性并發(fā)癥,包括糖尿病心血管疾病、糖尿病腎病、糖尿病周圍神經(jīng)病變和糖尿病視網(wǎng)膜病變(diabetic retinopathy,DR)等病變,其中,DR占糖尿病患者約1/3,已成為處于工作年齡的成人視力下降和失明的主要原因[2]。DR是最常見(jiàn)的視網(wǎng)膜血管病,微血管細(xì)胞損害導(dǎo)致視網(wǎng)膜缺血缺氧,從而產(chǎn)生新生血管,而缺氧誘導(dǎo)因子1α(hypoxia-inducible factor-1α,HIF-1α)是新生血管形成過(guò)程中的關(guān)鍵因子[3]。自噬也與DR發(fā)病有重要關(guān)系,它不僅可以分解受損細(xì)胞,保護(hù)正常組織,而且當(dāng)應(yīng)激過(guò)度時(shí),還會(huì)損傷正常組織。研究DR中缺氧和自噬的相關(guān)聯(lián)系,有助于加深我們對(duì)DR發(fā)病機(jī)制的了解,本文就HIF-1α與自噬的關(guān)系綜述如下。
視網(wǎng)膜缺氧與DR的發(fā)病有關(guān),在其中發(fā)揮重要作用的是HIF-α基因,包括HIF-1α、HIF-2α和HIF-3α,其中HIF-1α在DR的發(fā)病機(jī)制中發(fā)揮著重要作用[3,4]。在正常氧含量條件下,HIF-1α經(jīng)泛素化和降解過(guò)程而減少,但是在缺氧條件下,HIF-1α?xí)e累并穩(wěn)定存在,從而參與細(xì)胞內(nèi)各種反應(yīng)過(guò)程[5]。HIF-1α與HIF-1β結(jié)合為二聚體,轉(zhuǎn)入核中,并誘導(dǎo)包括血管內(nèi)皮生長(zhǎng)因子(VEGF)在內(nèi)的一系列基因轉(zhuǎn)錄[4]。
1.氧化應(yīng)激與HIF-1α:在細(xì)胞中,活性氧(reactive oxygen species ,ROS)是持續(xù)不斷地產(chǎn)生,用以維持正常的細(xì)胞功能,然而,由于各種內(nèi)在或外在的因素導(dǎo)致ROS過(guò)度生成,從而形成病理狀態(tài)[6]。視網(wǎng)膜色素上皮細(xì)胞是參與DR發(fā)病的重要細(xì)胞,糖尿病患者視網(wǎng)膜血管和神經(jīng)元持續(xù)受到炎癥、ROS和內(nèi)質(zhì)網(wǎng)應(yīng)激的損害。隨著疾病的進(jìn)展,血管損害誘導(dǎo)視網(wǎng)膜缺血缺氧,可能伴隨著靜脈串珠樣改變和視網(wǎng)膜內(nèi)的微血管異常,這些改變會(huì)導(dǎo)致視網(wǎng)膜內(nèi)新生血管形成、纖維化和視網(wǎng)膜脫離等病變[7]。
代謝異常導(dǎo)致血糖水平升高,并受到氧化應(yīng)激的影響,而ROS的累積會(huì)產(chǎn)生氧化應(yīng)激反應(yīng),進(jìn)而損害視網(wǎng)膜血管,最終發(fā)展為DR。據(jù)研究,高糖血癥損害血管主要通過(guò)4條經(jīng)典途徑:①多元醇代謝途徑;②晚期糖基化終末產(chǎn)物途徑;③蛋白激酶C(proteinkinase C ,PKC)的激活途徑;④氨基己糖的激活途徑。這些途徑都與ROS的過(guò)度產(chǎn)生有關(guān),而DR會(huì)誘導(dǎo)ROS生成。氧化應(yīng)激能激活相關(guān)細(xì)胞信號(hào)分子,從而增加基因表達(dá)和改變酶的功能,導(dǎo)致視網(wǎng)膜功能受損,如內(nèi)皮細(xì)胞功能異常、周細(xì)胞凋亡、血視網(wǎng)膜屏障功能受損、滲透性過(guò)高、黃斑水腫、異常的新生血管等表現(xiàn)[8,9]。
氧化應(yīng)激在DR的新生血管形成中發(fā)揮著重要作用,通過(guò)ROS-HIF-1α- VEGF-VEGFR2信號(hào)通路或直接通過(guò)ROS-VEGFR2通路,均可導(dǎo)致新生血管生成[10]。另一方面,有實(shí)驗(yàn)證明,使用黃岑素削弱氧化應(yīng)激中ROS的產(chǎn)生,能減少HIF-1α/VEGF通路激活,從而抑制新生血管生成。這一過(guò)程是通過(guò)使HIF-1α泛素化和降解增加,從而減少VEGF表達(dá)[5]。
2.HIF-1α和VEGF:缺血缺氧環(huán)境誘導(dǎo)HIF-1α表達(dá),進(jìn)而誘導(dǎo)VEGF表達(dá),而促炎細(xì)胞因子如:腫瘤壞死因子(tumor necrosis factor-alpha,TNF -α)和轉(zhuǎn)化生長(zhǎng)因子β2(transforming growth factor-beta 2 ,TGF-β2),二者的協(xié)調(diào)作用也能誘導(dǎo)VEGF表達(dá)[11]。在高糖血癥或缺氧條件下,HIF-1α、VEGF和VEGF受體(VEGF Receptor,VEGFR-1/2)表達(dá)上調(diào),其相互作用還能激活p38 MAPK信號(hào)通路[4]。VEGF作為HIF-1α的下游通路,在調(diào)節(jié)新生血管的形成中是一種重要的信號(hào)分子[10]。此外,有研究表明,鈣水平增加是誘導(dǎo)高糖血癥的原因之一,通過(guò)激活CaMKII-CREB信號(hào)級(jí)聯(lián)放大反應(yīng),鈣促進(jìn)高糖誘導(dǎo)的主要新生血管生成因子HIF-1α和VEGF表達(dá),能激活DR患者的視網(wǎng)膜Müller細(xì)胞和新生血管生成[7]。
在DR中,HIF-1α和VEGF的表達(dá)是相互依賴的,且HIF-1α和VEGF表達(dá)水平明顯升高[12,13]。通過(guò)RNA干擾使HIF-1α或VEGF沉默,可以減少VEGF的表達(dá),這種RNA干擾對(duì)抑制新生血管生成是有效的[14]。而且,封鎖或使HIF-1α調(diào)節(jié)的VEGF通路沉默已經(jīng)被報(bào)道可能對(duì)DR的治療有效[12]。VEGF會(huì)破壞視網(wǎng)膜屏障,導(dǎo)致早期視網(wǎng)膜水腫,之后產(chǎn)生新生血管,同時(shí)還有神經(jīng)退行性病變。將用STZ處理過(guò)的小鼠的HIF-1α基因敲除會(huì)降低VEGF和細(xì)胞間黏附分子的表達(dá),并能減少視網(wǎng)膜血管滲漏[15]。
3.mTOR誘導(dǎo)HIF-1α產(chǎn)生:mTOR是一種絲氨酸/蘇氨酸蛋白激酶,主要通過(guò)使S6激酶1(S6 kinase 1 ,S6K1)磷酸化和抑制真核生物的轉(zhuǎn)錄起始因子4E結(jié)合蛋白1(eukaryotic translation initiation factor 4E binding protein 1 ,4E-BP1)調(diào)節(jié)蛋白質(zhì)的合成。另一方面,研究表明PI3K是它的上游通路,誘導(dǎo)mTOR激活,而PI3K的下游Akt是調(diào)節(jié)mTOR的重要因子,Akt直接使TSC 2磷酸化并失活,從而部分激活mTOR[16]。此外,研究發(fā)現(xiàn)在結(jié)腸癌的發(fā)生過(guò)程中,胰島素樣生長(zhǎng)因子1(insulinlike growth factor 1,IGF-1)與其受體IGF-1R結(jié)合,激活PI3K-Akt-mTOR-P70S6K通路,促進(jìn)HIF-1α的蛋白質(zhì)合成,增強(qiáng)HIF-1α轉(zhuǎn)錄活性,從而增加VEGF表達(dá)[17]。
雷帕霉素是mTOR的抑制劑,能對(duì)抗糖尿病誘導(dǎo)的氧化應(yīng)激損傷,并減少調(diào)節(jié)血管生成的細(xì)胞因子[18]。研究表明,在用STZ誘導(dǎo)的高糖血癥中,HIF-1α,VGFR2,pmTOR及其下游通路pS6K1 和p4E-BP1 的表達(dá)水平明顯升高,但用雷帕霉素處理后,它們的表達(dá)就會(huì)下降,說(shuō)明mTOR可以誘導(dǎo)HIF-1α表達(dá),但是雷帕霉素可以抑制HIF-1α-VEGFR2參與的信號(hào)通路的表達(dá)。然而,mTOR如何通過(guò)HIF-1α和VEGF參與到DR的病理生理過(guò)程中,仍然不清楚[13]。
自噬是一種分解代謝活動(dòng),能降解受損的細(xì)胞器和回收利用部分能源物質(zhì),維持細(xì)胞穩(wěn)態(tài),高糖能誘導(dǎo)自噬發(fā)生,因此,自噬在DR中發(fā)揮著重要作用[19]。自噬分為巨自噬、微自噬和分子伴侶介導(dǎo)的自噬,這里主要講巨自噬[20]。
1.DR中的自噬:高血糖水平誘導(dǎo)氧化應(yīng)激,隨后引發(fā)自噬清除受損的蛋白質(zhì),從而減少高血糖對(duì)視網(wǎng)膜色素上皮的損傷。經(jīng)實(shí)驗(yàn)發(fā)現(xiàn),在視網(wǎng)膜色素上皮細(xì)胞中,自噬可能主要是通過(guò)ROS參與內(nèi)質(zhì)網(wǎng)應(yīng)激調(diào)節(jié)的,而不是通過(guò)mTOR調(diào)節(jié)自噬[21]。此外,在DR發(fā)展中,自噬標(biāo)志物ATG-5、Beclin-1和LC3-B表達(dá)有所增加[19]。受損傷的血視網(wǎng)膜屏障會(huì)釋放血漿脂蛋白,而且經(jīng)過(guò)修飾的血漿LDL隨后會(huì)引起氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激和線粒體功能障礙,最后通過(guò)凋亡和自噬途徑加重對(duì)視網(wǎng)膜色素上皮層的損害。在人視網(wǎng)膜毛細(xì)血管周細(xì)胞中,HOG-LDL能通過(guò)激活JNK誘導(dǎo)自噬維持穩(wěn)態(tài),但是在應(yīng)激過(guò)度的情形下,自噬對(duì)DR的治療是有害的[19,22],這就表明自噬可能成為一個(gè)治療DR的潛在靶點(diǎn)。
最新的研究發(fā)現(xiàn),在DR中,高血糖誘導(dǎo)組蛋白HIST1H1C在視網(wǎng)膜膠質(zhì)細(xì)胞層和內(nèi)核層中增多,而組蛋白HIST1H1C的過(guò)度表達(dá)會(huì)促進(jìn)自噬、炎癥和神經(jīng)元損失,說(shuō)明了組蛋白HIST1H1C可以作為一種新的自噬激活劑[23]。
2.mTOR參與調(diào)節(jié)自噬:研究表明,mTOR是一種關(guān)鍵的抑制自噬的信號(hào)調(diào)節(jié)通路,也是一種重要的自噬調(diào)節(jié)器,通過(guò)上游的一級(jí)PI3K/Akt信號(hào)通路可以激活mTOR,從而抑制自噬[24]。另一方面,在饑餓狀態(tài)下,腺苷酸活化蛋白激酶( AMP activated protein kinase ,AMPK)通過(guò)催化Ser317和Ser777磷酸化激活自噬啟動(dòng)激酶Ulk1而促進(jìn)自噬,但是在營(yíng)養(yǎng)充足的條件下,mTOR通過(guò)使Ulk1 Ser757磷酸化而阻止Ulk1的激活,并抑制Ulk1和AMPK的相互作用,從而抑制自噬[25]。已有研究表明,視網(wǎng)膜Müller細(xì)胞在高糖環(huán)境中,溶酶體調(diào)節(jié)的自噬功能紊亂,導(dǎo)致凋亡增加,以及大量的VEGF釋放。但是,使用雷帕霉素,會(huì)阻止這些改變,能誘導(dǎo)自噬體的形成,改善自噬流并保護(hù)細(xì)胞免于死亡,可以減少VEGF的產(chǎn)生[26]。mTOR抑制劑可以通過(guò)控制HIF-1α調(diào)節(jié)的下游通路VEGF的激活,從而抑制早期惡化的進(jìn)展,避免血視網(wǎng)膜屏障破壞[7]。
mTOR復(fù)合體1(mTOR complx 1,mTORC 1)在蛋白質(zhì)的合成和增長(zhǎng)中發(fā)揮重要作用,有證據(jù)表明,mTORC1支持mTOR在DR發(fā)展中的異常調(diào)節(jié)作用[27]。mTORC1能通過(guò)使Ulk1 Ser757磷酸化而抑制Ulk1-AMPK的相互作用,抑制自噬[25]?;罨膍TORC1使4E-BP1和S6K1磷酸化,能連續(xù)誘導(dǎo)蛋白質(zhì)合成。而且,通過(guò)使其它的效應(yīng)器磷酸化,mTORC1能誘導(dǎo)脂類物質(zhì)的代謝和生物合成,以及抑制自噬作用。此外,mTORC1的活性對(duì)雷帕霉素很敏感。雷帕霉素與12 kDa FK506結(jié)合蛋白(FK506-binding protein,FKBP12)結(jié)合,能與mTORC1激酶相互作用,抑制mTORC1的活性,中斷基因轉(zhuǎn)錄和蛋白合成[7]。
3.自噬的雙重作用:自噬在DR中的作用復(fù)雜,自噬可促進(jìn)周細(xì)胞在DR早期得以生存,然而,過(guò)度的自噬會(huì)導(dǎo)致應(yīng)激過(guò)度,使細(xì)胞壞死[22]。在一項(xiàng)實(shí)驗(yàn)中,將AREP19細(xì)胞置于高糖中,結(jié)果顯示細(xì)胞自噬增加。用自噬抑制劑3—甲基腺嘌呤(3-methyladenine,3-MA)抑制自噬的發(fā)生,從而導(dǎo)致線粒體受損產(chǎn)物ROS增加,NLRP3依賴的炎癥反應(yīng)被激活,隨后使IL-1β分泌增加。此外,與單純高糖組對(duì)比,用3-MA處理過(guò)的高糖組細(xì)胞活性降低,說(shuō)明自噬具有重要的細(xì)胞保護(hù)作用[28]。因此,自噬對(duì)細(xì)胞有雙重作用,在中等應(yīng)激條件下,自噬可保護(hù)細(xì)胞,但在過(guò)度應(yīng)激條件下,自噬導(dǎo)致細(xì)胞死亡[19]。
糖尿病腎病的相關(guān)研究表明,缺氧可誘導(dǎo)細(xì)胞自噬的發(fā)生,該過(guò)程主要是由激活的HIF-1α完成。HIF-1α誘導(dǎo)轉(zhuǎn)錄因子Bnip3及Bnip3L的過(guò)表達(dá),繼而將Beclin-l從與Bcl-2蛋白的結(jié)合中釋放出來(lái),激活的Beclin-l即可參與形成自噬。此外,又發(fā)現(xiàn)Sirt1在缺氧環(huán)境下能夠通過(guò)Sirt1-Foxo3-Bnip3通路調(diào)節(jié)自噬。缺氧導(dǎo)致線粒體受損和細(xì)胞內(nèi)ROS積累,因此,在缺氧條件下,由Bnip3調(diào)節(jié)的自噬活動(dòng)在清除受損線粒體,維持細(xì)胞正常功能中發(fā)揮重要作用[29,30]。那么,在缺氧環(huán)境下,在DR中是否也存在類似的自噬過(guò)程呢?這還有待研究。
糖尿病已經(jīng)成為了主要流行病之一,DR作為糖尿病的嚴(yán)重并發(fā)癥之一,值得我們?cè)谔岢窠】档臅r(shí)代更加關(guān)注其發(fā)展和治療。而研究HIF-1α與自噬在DR中的聯(lián)系,有助于我們進(jìn)一步了解DR的發(fā)病機(jī)制,同時(shí)還可與糖尿病腎病等糖尿病的并發(fā)癥相聯(lián)系,觀察DR與其它疾病之間的聯(lián)系,研究出更好的治療糖尿病的方案,幫助患者減輕疾病痛苦,減少致盲幾率。
[1] Shen X, Vaidya A, Wu S, et al. The Diabetes Epidemic in China: An Integrated Review of National Surveys. Endocr Pract, 2016,22: 1119-1129.
[2] Yau JW,Rogers SL,Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care,2012,35:556-564.
[3] D’Amico AG,Maugeri G, Reitano R, et al. PACAP Modulates Expression of Hypoxia-Inducible Factors in Streptozotocin-Induced Diabetic Rat Retina. J Mol Neurosci ,2015,57:501-509 .
[4] Maugeri G, D’Amico AG, Saccone S, et al. PACAP and VIP inhibit HIF-1α-mediated VEGF expression in a model of diabetic macular edema. J Cell Physiol ,2017,232:1209-1215.
[5] Wang D ,Wang L ,Gu J, et al. Scutellarin Inhibits High Glucose-induced and Hypoxia-mimetic Agent-induced Angiogenic Effects in Human Retinal Endothelial Cells Through Reactive Oxygen Species/Hypoxia-inducible Factor-1a/Vascular Endothelial Growth Factor Pathway . J Cardiovasc Pharmacol,2014,64:218-227.
[6] Kowluru RA,Chan PS . Oxidative stress and diabetic retinopathy. Exp Diabetes Res, 2007,2007:43603.
[7] Rosa MD, Distefano G, Gagliano C, et al. Autophagy in Diabetic Retinopathy. Curr Neuropharmacol, 2016, 14: 810-825.
[8] Li C ,Miao X ,Li F , et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy. Oxid Med Cell Longev,2017:970:2820.
[9] Cai X and McGinnis JF. Diabetic Retinopathy: Animal Models, Therapies,and Perspectives.J Diabetes Res, 2016,2016:3789217.
[10] Kim YW and Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood ,2014,123:625-631.
[11] Bian ZM, Elner SG and Elner VM. Regulation of VEGF mRNA expression and protein secretion by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res,2007,84:812-822.
[12] Ling S, Birnbaum Y, Nanhwan MK, et al. MicroRNA-dependent cross-talk between VEGF and HIF1αin the diabetic retina. Cell Signal, 2013,25:2840-2847.
[13] Wei J, Jiang H, Gao H, et al. Blocking mammalian target of rapamycin (mTOR) attenuates HIF-1α pathways engaged-Vascular endothelial growth factor (VEGF) in diabetic retinopathy.Cell Physiol Biochem, 2016,40:1570-1577.
[14] Forooghian F and Das B. Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1. Am J Ophthalmol, 2007 ,144:761-768.
[15] Lin M, Chen Y, Jin J, et al. Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Müller cells. Diabetologia,2011,54:1554-1566.
[16] Hay N and Sonenberg N. Upstream and downstream of mTOR. Genes Dev, 2004,18:1926-1945.
[17] Fukuda R, Hirota K, Fan F, et al. Insulin-like growth factor 1 induces hypoxia-inducible factor1-mediated vascular endothelial growth factor expression,which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem,2002,277:38205-38211.
[18] Ozdemir G, K l n M, Ergün Y, et al. Rapamycin inhibits oxidative and angiogenic mediators in diabetic retinopathy. Can J Ophthalmol , 2014,49:443-449 .
[19] Fu D ,Yu JY ,Yang S. Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia,2016,59:2251-2261.
[20] Levine B and Kroemer G. Autophagy in the pathogenesis of disease. Cell,2008,132: 27-42.
[21] Yao J, Tao ZF, Li CP, et al. Regulation of autophagy by high glucose in human retinal pigment epithelium. Cell Physiol Biochem, 2014, 33: 107-116.
[22] Fu D, Wu M, Zhang J, et al. Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia , 2012, 55: 3128-3140.
[23] Wang W ,Wang Q ,Wan D, et al. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy. Autophagy, 2017,13: 941-954.
[24] Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 2011,12: 21-35.
[25] Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol,2011,13: 132-141.
[26] Lopes de Faria JM , Duarte DA , Montemurro C, et al. Defective Autophagy in Diabetic Retinopathy. Invest Ophthalmol Vis Sci,2016,57:4356-4366.
[27] Yagasaki R, Nakahara T, Ushikubo H, et al. Anti-angiogenic effects of mammalian target of rapamycin inhibitors in a mouse model of oxygen-induced retinopathy. Biol Pharm Bull ,2014,37:1838-1842.
[28] Shi H, Zhang Z, Wang X, et al. Inhibition of autophagy induces IL-1b release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress. Biochem Biophys Res Commun, 2015,463:1071-1076.
[29] Tanaka Y,Kume S,Kitada M,et al.Autophagy as a therapeutic target in diabetic nephropathy.Exp Diabetes Res,2012,62:8978.
[30] Ma L, Fu R, Duan Z, et al. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol Res Pract,2016,212:310-318.
TheresearchstatusoftherelationshipbetweenHIF-1αandautophagyindiabeticretinopathy
ZhangMei,LiChunxia.
DepartmentofOphthalmology,ShanghaiTCM-integratedHospital,ShanghaiUniversityofTCM,Shanghai200082,China
Diabetic retinopathy ( DR ) is one of the serious complications of diabetes mellitus , as well as one of the major causes of blindness nowadays , and its morbidity has a growing trend worldwide . Therefore , to figure out the mechanism of DR and to identify an effective therapeutic method for DR have become the important target in this field . Inducing the activation of Vascular endothelial growth factor ( VEGF ) depends on the hypoxia-inducible factor -1α( HIF-1α) , which is a transcription factor thay is activated and stabilized under hypoxic conditions , and it’s important for the formation of neovascularization in DR . Autophagy is one of the important ways for human body to involve in the catabolism , and is beneficial to maintain intracellular homeostasis and cell integrity in DR . HIF-1α and autophagy are both connected with Mammalian target of rapamycin ( mTOR ) in DR . Thus , it’s necessary to research whether HIF-1αis associated with autophagy or not , and its specific singal pathway . It’s possible to provide more new ideas and methods to treat DR and diabetes mellitus-induced other organic damages in the future .
Diabetic retinopathy;HIF-1α;Autophagy
[JClinOphthalmol,2017,25:471]
10.3969/j.issn.1006-8422.2017.05.029
上海市衛(wèi)生和計(jì)劃生育委員會(huì)科研課題(課題編號(hào):201640245);蚌埠醫(yī)學(xué)院研究生科研創(chuàng)新計(jì)劃項(xiàng)目(Byycx1748)
200082 上海中醫(yī)藥大學(xué)附屬上海市中西醫(yī)結(jié)合醫(yī)院眼科
李春霞(Email:cxli_66@163.com)
[臨床眼科雜志,2017,25:471]
(收稿:2017-02-25)