趙文瑞 劉 鑫 張金池 王 玲 謝德晉 袁穎丹 王金平 王鷹翔
(南京林業(yè)大學(xué) 江蘇省水土保持與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室 南方現(xiàn)代林業(yè)協(xié)同創(chuàng)新中心 南京 210037)
?
添加酸雨酸度和硫氮比對(duì)麻櫟林細(xì)根生長(zhǎng)的影響*
趙文瑞 劉 鑫 張金池 王 玲 謝德晉 袁穎丹 王金平 王鷹翔
(南京林業(yè)大學(xué) 江蘇省水土保持與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室 南方現(xiàn)代林業(yè)協(xié)同創(chuàng)新中心 南京 210037)
【目的】 探究野外林地環(huán)境下不同類(lèi)型酸雨對(duì)麻櫟細(xì)根的影響,為研究酸雨污染類(lèi)型轉(zhuǎn)變對(duì)林業(yè)生態(tài)系統(tǒng)的影響和林業(yè)經(jīng)營(yíng)管理及可持續(xù)發(fā)展提供理論依據(jù)。 【方法】 隨機(jī)在麻櫟林中距樹(shù)干1.0 m處選取120個(gè)長(zhǎng)2 m、寬0.6 m的樣方,其0~20 cm表層土壤的pH為4.25,交換性Al3+和H+含量為4.90和0.30 cmol·kg-1。按照摩爾物質(zhì)量比配置5∶1、1∶1和1∶5共3種硫氮比酸溶液,均于野外用山間溪水稀釋成pH為4.5、3.5和2.5共3種梯度的酸溶液,用來(lái)模擬不同類(lèi)型酸雨。將南京地區(qū)2002—2013年月均降雨量的2/3設(shè)定為年總添加酸雨量,根據(jù)月均降雨量比例得出每月噴施量。2015年3月—2016年2月,將酸溶液每月分2次噴施于相應(yīng)樣方中(每次噴施一半,不遮擋自然降雨)。每3個(gè)月取1次樣,每次共選取30個(gè)樣方(每個(gè)樣方在1次取樣后將被廢棄)。用土鉆鉆取0~20 cm土柱,挑出直徑<2 mm的麻櫟根,測(cè)定各項(xiàng)指標(biāo)。 【結(jié)果】 在添加酸雨pH為4.5時(shí),細(xì)根生物量增加、活根比例上升、長(zhǎng)度密度增加、根尖數(shù)量增加、平均根徑減小、周轉(zhuǎn)速率加快;在添加酸雨pH小于4.5時(shí),細(xì)根總生物量降低、活根比例下降、長(zhǎng)度密度減小、根尖數(shù)量降低、平均根徑增大、周轉(zhuǎn)速率降低;酸雨pH和硫氮比對(duì)細(xì)根的影響存在顯著交互效應(yīng),隨著pH降低,不同硫氮比處理間差異逐漸減小;同酸度不同硫氮比酸處理下細(xì)根生物量、活根比例、根長(zhǎng)密度、根尖密度、周轉(zhuǎn)速率均表現(xiàn)為5∶1>1∶1>1∶5,平均根徑表現(xiàn)為5∶1<1∶1<1∶5;細(xì)根總生物量、根長(zhǎng)密度、根尖密度對(duì)酸雨響應(yīng)強(qiáng)度表現(xiàn)為夏季>春季>秋季>冬季,細(xì)根平均根徑對(duì)酸雨響應(yīng)強(qiáng)度表現(xiàn)為冬季、春季>秋季、夏季,細(xì)根活根比例季節(jié)差異不明顯?!窘Y(jié)論】 細(xì)根對(duì)酸雨的響應(yīng)強(qiáng)度隨季節(jié)的變化而變化,隨著酸雨pH降低,酸雨對(duì)細(xì)根生長(zhǎng)的影響表現(xiàn)為先促進(jìn)后抑制,酸雨對(duì)細(xì)根生長(zhǎng)的影響主要作用于小徑級(jí)根(一、二級(jí)根)。酸雨pH和硫氮比對(duì)細(xì)根的影響存在交互作用,隨著pH降低,酸雨硫氮比的影響逐漸減弱。氮的酸化脅迫效應(yīng)強(qiáng)于硫,酸雨硫氮比降低,即氮增加不利于細(xì)根的生長(zhǎng)。
麻櫟林; 酸雨; 硫氮比; pH; 細(xì)根生長(zhǎng)
隨著人口和經(jīng)濟(jì)的快速增長(zhǎng),酸雨已經(jīng)成為一個(gè)全球性環(huán)境問(wèn)題(張治軍, 2006; Vanetal., 1988)。我國(guó)是繼歐洲、美國(guó)之后世界上第三大酸雨區(qū),大約40%的國(guó)土遭受酸雨危害。20世紀(jì)80~90年代,我國(guó)酸雨類(lèi)型基本上以硫氮比大于3的硫酸型酸雨為主,由于控制和減輕SO2排放和能源結(jié)構(gòu)政策調(diào)整,酸雨中硫含量逐漸降低,但隨著機(jī)動(dòng)車(chē)數(shù)量快速增長(zhǎng),酸雨中氮含量逐漸增加,致使酸雨中的硫酸根與硝酸根摩爾物質(zhì)量比值SO42-/NO3-逐漸降低。未來(lái),我國(guó)的酸雨污染將會(huì)向低硫氮比、低pH類(lèi)型酸雨轉(zhuǎn)變(向仁軍, 2012; 張新民等, 2010),這種變化將嚴(yán)重影響目前脆弱的生態(tài)系統(tǒng),增加生態(tài)系統(tǒng)風(fēng)險(xiǎn)。
細(xì)根生長(zhǎng)是森林生態(tài)系統(tǒng)地下生態(tài)過(guò)程的關(guān)鍵環(huán)節(jié),對(duì)碳和養(yǎng)分循環(huán)發(fā)揮著重要作用。目前,國(guó)內(nèi)外研究主要集中在硫氮比大于3的硫酸型酸雨上,酸雨類(lèi)型較為單一,雖然關(guān)于酸雨對(duì)細(xì)根生長(zhǎng)的研究已有不少,但是酸雨處理對(duì)象主要以農(nóng)作物、幼苗和室內(nèi)棚栽苗為主(童貫和等, 2005; 張艷荷, 2009; 姚芳芳, 2016; Dahlgrenetal., 1991),缺乏對(duì)環(huán)境復(fù)雜的森林生態(tài)系統(tǒng)中林木細(xì)根生長(zhǎng)的研究,對(duì)不同硫氮比酸雨條件下林木細(xì)根生長(zhǎng)的研究更是鮮有報(bào)道。麻櫟(Quercusacutissima)樹(shù)形高大,實(shí)用價(jià)值高,在我國(guó)分布廣泛,資源相當(dāng)豐富。本研究以長(zhǎng)三角地區(qū)成熟麻櫟人工純林為對(duì)象,通過(guò)野外人為添加不同硫氮比、不同pH酸雨,探究不同類(lèi)型酸雨條件下林木細(xì)根生長(zhǎng)變化特征規(guī)律,以期為研究酸雨污染類(lèi)型轉(zhuǎn)變對(duì)森林生態(tài)系統(tǒng)的影響和林業(yè)經(jīng)營(yíng)管理提供理論依據(jù)。
研究區(qū)位于南京市城郊的國(guó)營(yíng)東善橋林場(chǎng)銅山分場(chǎng)(118°50′—118°52′E,31°35′—31°39′N(xiāo)),屬北亞熱帶季風(fēng)區(qū),年均氣溫15.1 ℃,全年無(wú)霜期229天,年均日照時(shí)數(shù)2 199 h,年均降水量1 117.29 mm(2002—2013年)。土壤類(lèi)型為黃棕壤,地形以丘陵為主,海拔38~388 m。林分類(lèi)型以杉木(Cunninghamialanceolata)、麻櫟、馬尾松(Pinusmassoniana)和毛竹(Phyllostachysedulis)人工林為主。
以48年生的麻櫟人工純林為研究對(duì)象,該林分海拔311 m,坡度18°,坡向東北,上坡坡位,排水良好,無(wú)水澇, 2015-03—2016-02試驗(yàn)期間該區(qū)域大氣降水化學(xué)特征為: pH6.22、SO42-含量0.050 7 mol·L-1、NO3-含量0.011 0 mol·L-1、硫氮比4.61。試驗(yàn)期間降水量累計(jì)為1 779.6 mm,穿透雨量累計(jì)為1 538.8 mm。林分無(wú)任何施肥和撫育措施,生長(zhǎng)整齊,密度425株·hm-2,平均樹(shù)高13.8 m,平均胸徑25.8 cm,平均冠幅5.7 m,郁閉度0.81。林冠層下混生少量毛竹,林下草本層以蕨類(lèi)為主。該林分腐殖質(zhì)層厚度為1 cm,0~20 cm土層土壤pH為4.25,交換性Al3+含量為4.90 cmol·kg-1,交換性H+含量為0.30 cmol·kg-1(均值)。
2.1 樣點(diǎn)設(shè)置與取樣 2015年3月,隨機(jī)在麻櫟林中距樹(shù)干1.0 m處選取120個(gè)2 m長(zhǎng)、0.6 m寬的樣方,每個(gè)處理3個(gè)隨機(jī)重復(fù)樣方。為避免徑流干擾,各樣方水平間隔至少2 m以上,上下間隔至少5 m以上,且在每個(gè)樣方樹(shù)木上方1 m位置用PVC板進(jìn)行隔擋,PVC板插入地表20 cm,地上部分高出地表5 cm。2015年3月—2016年2月,每月于7日和21日左右時(shí)間,將酸溶液分2次噴施于相應(yīng)樣方中(每次噴施一半,不遮擋自然降雨)。于每個(gè)季節(jié)末(5月、8月、11月和2月)取樣,取樣時(shí)間為當(dāng)季最后1次噴施酸溶液后1周,每個(gè)季度共選取30個(gè)樣方,每個(gè)樣方在1次取樣后將被廢棄。取樣時(shí)采用直徑5 cm土鉆在樣方鉆取9個(gè)0~20 cm的土柱,用鑷子挑出直徑<2 mm的麻櫟細(xì)根,帶回實(shí)驗(yàn)室快速?zèng)_洗干凈,用根系分析儀WinRhizo測(cè)定其長(zhǎng)度、根尖數(shù)量、平均根徑。用TTC染色法結(jié)合肉眼觀測(cè)區(qū)分出活根和死根,70 ℃下烘干至恒質(zhì)量,用精密天平稱(chēng)其干質(zhì)量,測(cè)定生物量。根據(jù)取樣面積體積計(jì)算細(xì)根各項(xiàng)指標(biāo): 根長(zhǎng)密度(m·m-2)、根尖密度(個(gè)·m-2)、平均根徑(mm)、活根比例(%)。
B=M/(πr2)。
式中:B為細(xì)根生物量(g·m-2);M為細(xì)根干質(zhì)量(g);r為土鉆半徑。
活根比例(%)為活根干質(zhì)量/細(xì)根總干質(zhì)量。
采用積分法計(jì)算細(xì)根周轉(zhuǎn)速率:
T=BNPP/M,BNPP=∑ΔM。
式中:T為細(xì)根周轉(zhuǎn)速率(a-1)(張小全等, 2000);Δ為相鄰2次采樣得到的細(xì)根生物量之差的絕對(duì)值; 將每次計(jì)算得的地下凈初級(jí)生產(chǎn)力相加得到該年的BNPP(kg·hm-2·a-1)。
2.2 添加酸雨設(shè)置 按照摩爾物質(zhì)量比配置5∶1、1∶1和1∶5共3種硫氮比酸溶液,于野外用流動(dòng)的山間防火池水(pH6.6,一些元素含量為:鎘0.001 mg·L-1、鉻0.027 mg·L-1、銅0.005 mg·L-1、鐵0.483 mg·L-1、汞0.020 mg·L-1、鋅0.082 mg·L-1)稀釋成pH為4.5、3.5和2.5共3種梯度的酸溶液,作為添加酸雨溶液,共9個(gè)處理: 硫氮比為5∶1,pH為4.5(H1); 硫氮比為5∶1,pH為3.5(H2); 硫氮比為5∶1,pH為2.5(H3); 硫氮比為1∶1,pH為4.5(M1); 硫氮比為1∶1,pH為3.5(M2); 硫氮比為1∶1,pH為2.5(M3); 硫氮比為1∶5,pH為4.5(L1); 硫氮比為1∶5,pH為3.5(L2); 硫氮比為1∶5,pH為2.5(L3)。對(duì)照處理為添加對(duì)應(yīng)量的防火池水。將南京地區(qū)2002—2013年月均降雨量的2/3設(shè)定為年總添加酸雨量,約占全年降水量的5.56%(表1)(張勇等, 2011; Chenetal., 2015),然后根據(jù)月均降雨量比折算出每個(gè)月噴施量。
表1 南京市月均降雨量及添加酸雨量Tab.1 The mean monthly rainfall of Nanjing and added acid rain
2.3 數(shù)據(jù)處理 應(yīng)用Excel軟件對(duì)數(shù)據(jù)進(jìn)行基本處理,SPSS22.0軟件進(jìn)行方差分析,求得差異顯著程度和因子交互作用顯著性,并建立回歸模型,采用Oringin9.0軟件完成作圖。
3.1 酸雨對(duì)細(xì)根生物量的影響 由圖1可知,添加酸雨pH從6.6(CK)到2.5,四季細(xì)根生物量均隨pH減小呈先增加后減少的變化趨勢(shì)。pH=4.5時(shí),所有處理大于對(duì)照; pH<4.5時(shí),所有處理均小于對(duì)照。各季節(jié)不同pH酸雨下細(xì)根生物量表現(xiàn)為4.5>CK(6.6)>3.5>2.5,同季節(jié)同酸度不同硫氮比酸處理間細(xì)根生物量存在明顯差異,且其差異隨酸雨pH降低逐漸減小。春、夏、秋、冬四季H1相比對(duì)照分別增加了28.351、45.922、22.961和15.618 g·m-2,L3相比對(duì)照生物量分別降低了53.476、97.954、36.500和32.001 g·m-2。不同季節(jié)細(xì)根生物量對(duì)酸雨的響應(yīng)強(qiáng)度不同,夏季酸處理后的細(xì)根生物量變化幅度以及3種硫氮比酸處理間差異均為1年中最大,冬季相反,為最小,細(xì)根生物量對(duì)酸雨的響應(yīng)強(qiáng)度表現(xiàn)為夏季>春季>秋季>冬季。由此可知,隨著pH降低,降雨對(duì)細(xì)根生物量的影響表現(xiàn)為先促進(jìn)后抑制; 促進(jìn)效應(yīng)時(shí),硫氮比越高,促進(jìn)作用越強(qiáng); 抑制效應(yīng)時(shí),硫氮比越低,抑制作用越強(qiáng)。
圖1 添加酸雨對(duì)細(xì)根生物量的影響Fig.1 The influence of added acid rain on the fine root biomass不同小寫(xiě)字母表示在相同pH條件下不同硫氮比酸雨處理間的差異性顯著(P<0.05)。*和**分別表示各處理與對(duì)照差異顯著(P<0.05)和極顯著(P<0.01)。下同。Different lowercase letters said in the same pH-value conditions of sulfur and nitrogen than differences between acid rain treatment significantly(P<0.05). * and **, respectively, which indicated that the treatments and the control significant differences(P<0.05)and highly significant(P<0.01).The same below.
3.2 酸雨對(duì)細(xì)根活根比例的影響 與細(xì)根生物量相似,四季細(xì)根活根比例均隨酸雨pH降低而呈先升后降的變化趨勢(shì)(圖2)。酸雨pH=4.5時(shí),所有處理活根比例均大于對(duì)照(pH=6.6);pH<4.5時(shí),所有處理活根均小于對(duì)照。同酸度下3種硫氮比酸處理間細(xì)根活根比例表現(xiàn)為5∶1>1∶1>1∶5,3種硫氮比酸處理間差異隨pH減小而逐漸減小,與生物量不同的是細(xì)根活根比例對(duì)酸雨的響應(yīng)的季節(jié)差異不明顯。由此可知,酸雨會(huì)改變細(xì)根活根比例,促進(jìn)效應(yīng)時(shí),硫氮比越高活根比例上升越多; 抑制效應(yīng)時(shí),硫氮比越低活根比例下降越多。
3.3 細(xì)根生物量與酸雨酸度、硫氮比的關(guān)系 以細(xì)根生物量為因變量,以酸雨pH、硫氮比為自變量,進(jìn)行多元回歸分析,建立麻櫟林各季節(jié)0~20 cm土層細(xì)根生物量與酸雨pH和硫氮比之間的回歸模型(表2)。由表2可知,各模型的決定系數(shù)均大于0.9,F(xiàn)顯著性統(tǒng)計(jì)量均小于0.05,說(shuō)明模型擬合情況非常好,擬合度很高。交互項(xiàng)(X1X2)的系數(shù)均達(dá)到顯著水平(P<0.05),說(shuō)明酸雨pH和硫氮比存在顯著交互效應(yīng); 四季X1系數(shù)顯著性均大于X2,說(shuō)明pH對(duì)細(xì)根生物量的影響大于硫氮比對(duì)細(xì)根生物量的影響。通過(guò)該模型可對(duì)不同酸雨條件下麻櫟林木細(xì)根生物量進(jìn)行初步預(yù)測(cè),為研究不同酸雨條件下細(xì)根生長(zhǎng)動(dòng)態(tài)提供理論依據(jù)。
3.4 酸雨對(duì)細(xì)根根長(zhǎng)密度的影響 由圖3可知,細(xì)根根長(zhǎng)密度隨著酸雨pH降低先增加后減小。pH=4.5時(shí),所有處理均大于對(duì)照(pH=6.6); pH<4.5時(shí),夏季L2大于對(duì)照,但差異性不顯著(P>0.05),其他處理均小于對(duì)照; 同季節(jié)不同酸度酸雨下細(xì)根根長(zhǎng)密度表現(xiàn)為4.5>CK(6.6)>3.5>2.5。同季節(jié)同酸度下,3種硫氮比酸處理的根長(zhǎng)密度表現(xiàn)為5∶1>1∶1>1∶5。根長(zhǎng)密度變化量比較大,春、夏、秋、冬H1根長(zhǎng)密度相比對(duì)照分別增加了 282.65、987.59、 206.44和155.41 m·m-2,L3相比對(duì)照分別降低了454.56、952.47、327.74和237.39 m·m-2,說(shuō)明根長(zhǎng)密度對(duì)酸雨的響應(yīng)比較大。根長(zhǎng)密度對(duì)酸雨的響應(yīng)強(qiáng)度表現(xiàn)為夏季>春季>秋季>冬季。
圖2 添加酸雨對(duì)細(xì)根活根比例的影響Fig.2 The influence of added acid rain on fine root living root ratio
表2 不同季節(jié)細(xì)根生物量與酸雨酸度和硫氮比多元線性回歸模型①Tab.2 Total fine root biomass of the acidity of acid rain and sulfur nitrogen than multiple linear regression model
①Y為細(xì)根生物量(g·m-2),X1為添加酸雨pH值,X2為添加酸雨硫氮比,樣品數(shù)為9。Yis fine root biomass (g·m-2),X1is the pH-value of added acid rain,X2for sulfur nitrogen ratioof add acid rain,the sample number is 9.
圖3 添加酸雨對(duì)細(xì)根根長(zhǎng)密度的影響Fig.3 The influence of added acid rain on the fine root length density
3.5 酸雨對(duì)細(xì)根根尖密度的影響 由圖4可知,各季節(jié)細(xì)根根尖密度隨著酸雨pH的降低先增加后減小。pH=4.5時(shí),各硫氮比處理根尖密度均高于對(duì)照(pH=6.6);pH<4.5時(shí),各硫氮比處理根尖密度均小于對(duì)照。同季節(jié)同酸度下3種硫氮比處理間差異明顯,表現(xiàn)為5∶1>1∶1>1∶5,同酸度不同硫氮比酸處理間差異隨pH降低而逐漸減小。根尖密度變化量同樣非常大,春、夏、秋、冬H1相比對(duì)照根尖密度分別增加了37 943、295 731、51 694和23 428 個(gè)·m-2, L3相比對(duì)照根尖密度分別降低了63 747、237 136、66 548和38 027 個(gè)·m-2,說(shuō)明根尖對(duì)酸雨的響應(yīng)非常大。細(xì)根根尖密度對(duì)酸雨的響應(yīng)強(qiáng)度表現(xiàn)為夏季>春季>秋季>冬季。由此可知,酸雨會(huì)改變細(xì)根根尖密度,促進(jìn)效應(yīng)時(shí),硫氮比越高根尖密度增加越多,抑制效應(yīng)時(shí),硫氮比越低根尖密度下降越多。
圖4 添加酸雨對(duì)細(xì)根根尖密度的影響Fig.4 The influence of added acid rain on fine root tip density
3.6 酸雨對(duì)細(xì)根平均根徑的影響 由圖5可知,酸雨處理下細(xì)根平均根徑表現(xiàn)出與生物量相反的變化規(guī)律。隨著酸雨pH降低,細(xì)根平均根徑表現(xiàn)為先減小后增大。秋季pH=4.5時(shí),L1大于對(duì)照(pH=6.6),其他處理均小于對(duì)照;pH<4.5時(shí),所有處理均大于對(duì)照。同季節(jié)細(xì)根平均根徑表現(xiàn)為4.5
圖5 添加酸雨對(duì)細(xì)根平均根徑的影響Fig.5 The influence of added acid rain on fine root average diameter
3.7 酸雨對(duì)細(xì)根周轉(zhuǎn)速率的影響 細(xì)根周轉(zhuǎn)在森林生態(tài)系統(tǒng)碳平衡和養(yǎng)分循環(huán)過(guò)程中起著非常重要的作用。pH=4.5時(shí),3種硫氮比酸處理細(xì)根周轉(zhuǎn)速率均大于對(duì)照(pH=6.6); pH<4.5時(shí),3種硫氮比酸處理細(xì)根周轉(zhuǎn)速率均小于對(duì)照。在pH為3.5時(shí)周轉(zhuǎn)速率降低幅度比較小,在pH為2.5時(shí)周轉(zhuǎn)速率降低幅度比較大,降低幅度接近50%。同酸度不同硫氮比酸雨處理間表現(xiàn)為5∶1>1∶1>1∶5。由此可知,酸雨可以改變細(xì)根周轉(zhuǎn)速率;促進(jìn)效應(yīng)時(shí),加快細(xì)根周轉(zhuǎn)速率,抑制效應(yīng)時(shí),降低細(xì)根周轉(zhuǎn)速率。
圖6 添加酸雨對(duì)細(xì)根周轉(zhuǎn)速率的影響Fig.6 The influence of added acid rain on fine root turnover rate
研究中,高pH酸雨促進(jìn)細(xì)根生長(zhǎng),這是由于弱酸環(huán)境造成被土壤固定的養(yǎng)分離子部分釋放,以及酸雨提供的S、N養(yǎng)分增加,而細(xì)根對(duì)養(yǎng)分又具有覓食反應(yīng)(王強(qiáng), 2009; 王政權(quán)等, 2008),同時(shí)酸雨刺激部分酶、微生物活性,從而表現(xiàn)出促進(jìn)效應(yīng)。通過(guò)對(duì)土壤酸性磷酸酶活性測(cè)定發(fā)現(xiàn),當(dāng)添加酸雨pH為4.5時(shí),土壤酸性磷酸酶活性達(dá)到最大值,此后隨著添加酸雨pH降低而持續(xù)降低。在添加酸雨pH較低時(shí)抑制細(xì)根生長(zhǎng),這應(yīng)該是由于pH過(guò)低時(shí)土壤環(huán)境惡化并超出根系所承受的毒害離子濃度變異范圍,再加上養(yǎng)分的大量流失和失衡,從而對(duì)細(xì)根生長(zhǎng)產(chǎn)生脅迫效應(yīng)(Huangetal., 1992)。根系處于不斷的自身調(diào)節(jié)當(dāng)中,促進(jìn)細(xì)根生長(zhǎng)的生態(tài)學(xué)意義在于吸收更多的養(yǎng)分,抑制細(xì)根生長(zhǎng)的生態(tài)學(xué)意義在于減少對(duì)養(yǎng)分的吸收,從而減小酸雨對(duì)自身的脅迫。因此細(xì)根對(duì)酸雨出現(xiàn)不同的響應(yīng),也可能是植物自身的一種反應(yīng)機(jī)制。
相同處理下,根尖密度和根長(zhǎng)密度變化數(shù)量值非常大,而生物量變化數(shù)量值卻相對(duì)很小,同時(shí)平均根徑表現(xiàn)出與其他指標(biāo)相反的變化規(guī)律,可推斷: 酸雨對(duì)細(xì)根的影響效應(yīng)主要在小徑級(jí)(一、二級(jí)根)細(xì)根上,對(duì)高徑級(jí)根(三、四、五級(jí)根)影響不顯著。高pH時(shí),刺激小徑級(jí)細(xì)根大量生長(zhǎng),造成平均根徑表觀上減小,低pH時(shí),極小徑級(jí)細(xì)根生長(zhǎng)受到抑制,留下較大徑級(jí)細(xì)根,造成平均根徑表觀上增大。這與Eissenstant(1992)和Yanai等(1995)的理論分析結(jié)果是一致的,其通過(guò)理論分析認(rèn)為最高效的用于維持的根是最細(xì)的一級(jí)根,于立忠等(2007)在對(duì)日本落葉松(Larixkaempferi)細(xì)根形態(tài)特征研究中也發(fā)現(xiàn)類(lèi)似的規(guī)律。這主要是由于位于根系統(tǒng)遠(yuǎn)端的小直徑細(xì)根的主要功能則是從異質(zhì)性的土壤中獲取必要的資源,其對(duì)水分、養(yǎng)分的有效性變化而做出形態(tài)和生理的反應(yīng)最敏感,而高徑級(jí)根則主要是養(yǎng)分和水分的運(yùn)輸功能,其對(duì)資源環(huán)境變化的敏感程度相對(duì)較弱。不同季節(jié)細(xì)根對(duì)酸雨的響應(yīng)強(qiáng)度不同,應(yīng)該與其氣溫、酶活性、降水量以及響應(yīng)酸含量有關(guān)。
不同硫氮比酸雨對(duì)細(xì)根的影響存在明顯的差異。促進(jìn)效應(yīng)時(shí),酸雨硫氮比越高,促進(jìn)效應(yīng)越強(qiáng); 抑制效應(yīng)時(shí),硫氮比越低,抑制效應(yīng)越強(qiáng)。在酸雨pH較高時(shí),不同硫氮比處理間差異比較大,隨著pH降低,不同硫氮比處理間差異逐漸減小,說(shuō)明隨著pH降低,酸雨硫氮比對(duì)細(xì)根的影響力逐漸減弱。
細(xì)根對(duì)酸雨的響應(yīng)強(qiáng)度隨季節(jié)的變化而變化,隨著酸雨pH降低,酸雨對(duì)細(xì)根生長(zhǎng)的影響表現(xiàn)為先促進(jìn)后抑制。促進(jìn)生長(zhǎng)表現(xiàn)為細(xì)根總生物量增加、活根比例上升、根長(zhǎng)、根尖密度上升、平均根徑減小、細(xì)根周轉(zhuǎn)加快,抑制生長(zhǎng)表現(xiàn)為細(xì)根總生物量降低、活根比例下降、根長(zhǎng)密度減小、根尖密度下降、平均根徑增加、細(xì)根周轉(zhuǎn)降低。氮的酸化脅迫效應(yīng)強(qiáng)于硫,酸雨中硫氮比的降低,即氮的增加不利于細(xì)根的生長(zhǎng)。酸雨對(duì)細(xì)根生長(zhǎng)的影響主要作用于低級(jí)根(一、二級(jí)根)。酸雨pH和硫氮比對(duì)細(xì)根的影響存在顯著交互效應(yīng),隨著pH的降低,酸雨硫氮比對(duì)細(xì)根的影響逐漸減弱。
總之,酸雨pH和硫氮比的降低均會(huì)對(duì)細(xì)根產(chǎn)生不利影響,導(dǎo)致植物退化甚至大面積死亡。隨著植物地下部分生物量減少,地上部分也會(huì)隨之減少,造成植物碳儲(chǔ)存降低,將對(duì)全球土壤碳儲(chǔ)存產(chǎn)生重大影響。因此應(yīng)加大對(duì)氮排放的控制,控制酸雨硫氮比的降低,削弱酸雨污染的危害。
童貫和,程 濱,胡云虎. 2005. 模擬酸雨及其酸化土壤對(duì)小麥幼苗生物量和某些生理活動(dòng)的影響. 作物學(xué)報(bào),31(9): 1207-1214.
(Tonng G H,Cheng B,Hu Y H. 2005. Effects of simulated acid rain and soil acidification on the biomass and physiological activities of wheat seedlings. Acta Agronomica Sinica,31(9): 1207-1214. [in Chinese])
王 強(qiáng). 2009. 模擬大氣氮沉降及短期氮沉降恢復(fù)對(duì)森林土壤酸化及養(yǎng)分的影響. 萍鄉(xiāng)高等專(zhuān)科學(xué)校學(xué)報(bào),11(6):61-69.
(Wang Q. 2009. Effects of stimulated atmospheric nitrogen deposition and its recovery on soil acidification and nutrient. Journal of Pingxiang College,11(6):61-69. [in Chinese])
王政權(quán),郭大立. 2008. 根系生態(tài)學(xué).植物生態(tài)學(xué)報(bào),32(6): 1213-1216.
(Wang Z Q,Guo D L. 2008. The root of ecology. Journal of Plant Ecology,32(6): 1213-1216. [in Chinese])
向仁軍. 2012. 中國(guó)南方典型酸雨區(qū)酸沉降特性及其環(huán)境效應(yīng)研究.長(zhǎng)沙: 中南大學(xué)碩士學(xué)位論文.
(Xiang R J. 2012. Study on the characteristics and environmental effects of acid deposition in typical acid rain areas Chinese. Changsha: MS thesis of Zhongnan University. [in Chinese])
姚芳芳. 2016. 酸沉降類(lèi)型和噴施方式對(duì)木荷和濕地松幼苗生理生態(tài)及生長(zhǎng)的影響. 上海: 華東師范大學(xué)碩士學(xué)位論文.
(Yao F F. 2016. Efforts of acid deposition types and spraying methods on the ecophysiology amd growth ofSchimasuperbaandPinuselliottiiseedlings. Shanghai: MS thesis of East China Normal University. [in Chinese])
于立忠,丁國(guó)泉,朱教君,等. 2007. 施肥對(duì)日本落葉松人工林細(xì)根生物量的影響. 應(yīng)用生態(tài)學(xué)報(bào),18(4): 713-720.
(Yu L Z,Ding G Q,Zhu J J,etal. 2007. Effects of fertilization on fine root biomass ofLarixkaempferiplantation. Chinese Journal of Applied Ecology,18(4): 713-720. [in Chinese])
張小全,吳可紅,Dieter M. 2000. 樹(shù)木細(xì)根生產(chǎn)與周轉(zhuǎn)研究方法評(píng)述. 生態(tài)學(xué)報(bào),5(2): 875-883.
(Zhang X Q,Wu K H,Dieter M. 2000. Review of research methods of fine root production and turnover of trees. Acta Ecologica Sinica,5(2): 875-883. [in Chinese])
張新民,柴發(fā)合,王淑蘭,等. 2010.中國(guó)酸雨研究現(xiàn)狀. 環(huán)境科學(xué)研究,23(5): 527-532.
(Zhang X M,Chai F H,Wang S L,etal. 2010.The status quo China acid rain research. Research of Environmental Sciences,23(5): 527-532. [in Chinese])
張 勇,王連喜,陳書(shū)濤,等. 2011. 模擬酸雨對(duì)北亞熱帶天然次生林土壤呼吸的影響. 中國(guó)環(huán)境科學(xué),31(9):1541-1547.
(Zhang Y,Wang L X,Chen S T,etal. 2011. Effects of simulated acid rain on soil respiration in subtropical natural forest. China Environmental Science,31(9):1541-1547. [in Chinese])
張艷荷. 2009. 杉木幼齡林對(duì)模擬氮硫復(fù)合沉降的響應(yīng). 福州: 福建農(nóng)林大學(xué)碩士學(xué)位論文.
(Zhang Y H. 2009. Response for the settlement of sulfur nitrogen compound simulationCunninghamialanceolatasapling forest. Fuzhou: MS thesis of Fujian Agriculture And Forestry University. [in Chinese])
張治軍. 2006. 重慶酸雨區(qū)馬尾松生物量和根系空間分布特征研究. 保定: 河北農(nóng)業(yè)大學(xué)碩士學(xué)位論文.
(Zhang Z J. 2006. Study on the spatial characteristics ofPinusmassonianabiomass and root distribution in acid rain area Chongqing. Baoding: MS thesis of Agricultural University of Hebei. [in Chinese])Chen S,Zhang X,Liu Y,etal. 2015. Simulated acid rain changed the proportion of heterotrophic respiration in soil respiration in a subtropical secondary forest.Applied Soil Ecology,86(3): 148-157.
Dahlgren R A,Vogt K A,Ugolini F C. 1991. The influence of soil chemistry on fine root aluminum concentrations and root dynamics in a subalpine Spodosol.Washington State,USA. Plant and Soil,133(1): 117-129.Eissenstant D M. 1992. Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition,15(6/7): 763-782.
Huang J W,Shaff J E,Grunes D L,etal. 1992. Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars.Plant Physiology,98(1): 230-239.
Van Breemen N,Van Dijk H F G. 1988. Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands.Environmental Pollution,54(3/4): 249-274.Yanai R D,F(xiàn)ahey T J. 1995. Efficiency of nutrient acquisition by fine root and mycorrhizae resource physiology of conifers: acquisition,allocation,and utilization. New York:Academic Press,34(16): 75-103.
(責(zé)任編輯 于靜嫻)
Effects of Different Acidities and Sulfur to Nitrogen Ratios of Added Acid Rain on the Growth of Fine Roots ofQuercusacutissima
Zhao Wenrui Liu Xin Zhang Jinchi Wang Ling Xie Dejin Yuan Yingdan Wang Jinping Wang Yingxiang
(NanjingForestryUniversityKeyLaboratoryofSoilandWaterConservationandEcologicalRestorationinJiangsuProvinceCollaborativeInnovationCenterofSustainableForestryinSouthernChinaofJiangsuProvinceNanjing210037)
【Objective】The effects of different types of acid rain on the fine roots ofQuercusacutissimawere studied to provide a theoretical basis for studying the impacts of the pollution by acid rain on forest ecosystem and forest management and sustainable development.【Method】A total of 120 sample plots in a size of 2 m by 0.6 m were selected randomly 1.0 m away from the trunks ofQ.acutissimatrees, the pH of the 0-20 cm surface soil was 4.25, exchangeable Al3+and H+contents were 4.90 and 0.30 cmol·kg-1. Three types of acid solutions at 5∶1, 1∶1 ,and 1∶5 of sulfur to nitrogen ratios were prepared according to the molar mass ratio, and diluted into a gradient of three pH of 4.5, 3.5 and 2.5 in the field with the water from mountain stream, which will be used to simulate different types of acid rain. 2/3 of the monthly average rainfall in the 2002—2003 period in Nanjing was set as the total annual addition of acid rain, and then the monthly spraying amount of the acid solution was obtained according to the monthly rainfall ratio. From March 2015 to February 2016, the acid solutions were sprayed twice a month in the corresponding sample plots (half of the total each spray, not block the natural rainfall). Soil samples were collected every three months, 30 sample plots were sampled each time (sample plots were discarded after sample collection). Samples of 0-20 cm soil column were taken with soil drill, and roots ofQ.acutissimawith diameters < 2 mm were picked out and measured for all traits.【Result】When the pH of added acid rain was 4.5, the biomass of fine roots increased, the proportion of living roots increased, the length density increased, the number of root tips increased, the average root diameter decreased and the turnover rate accelerated. When the pH of acid rain was less than 4.5, the total biomass of fine root decreased, the proportion of living roots decreased, the length density decreased, the number of root tips decreased, the average root diameter increased, and the turnover rate decreased. There was a significant interaction between the pH and sulfur to nitrogen ratio on the effect of acid rain on fine roots. With the decrease of pH, the difference of different sulfur to nitrogen ratio treatments decreased gradually. The root biomass, root length, root density, root tip density and turnover rate were 5∶1 > 1∶1 > 1∶5 and the average root diameter were 5∶1 < 1∶1 < 1∶5 with the same acidity and different sulfur to nitrogen ratio treatments. The extents of responses of total root biomass, root length density, root tip density to acid rain were in the order: summer > spring > autumn > winter. The extents of responses of the average root diameter of the fine roots to acid rain were in the order: winter, spring > autumn, summer, there were no significant differences among seasons in the proportion of fine roots to living roots ratio. 【Conclusion】The response of fine roots to acid rain varied among the seasons, with the decrease of pH of acid rain, the effect of acid rain on the growth of fine roots showed promotion first followed by suppression. The effect of acid rain on the growth of fine roots was mainly limited to the very small diameter roots (first and second order roots). Interaction was found between the impacts of pH of the acid rain and the sulfur to nitrogen ratio on fine roots, with the decrease of pH, the effect of sulfur to nitrogen ratio of acid rain gradually decreased. The acidification stress of N was stronger than S, with the decrease of sulfur to nitrogen ratio of acid rain, i.e. the increase of nitrogen, was not favorable to the growth of fine roots.
Quercusacutissimastand; acid rain; sulfur and nitrogen ratio; pH-value; fine root growth
10.11707/j.1001-7488.20170418
2016-03-14;
2017-02-22。
國(guó)家自然科學(xué)基金項(xiàng)目(31470709); 國(guó)家科技計(jì)劃項(xiàng)目(2015BAD07B0405); 江蘇省優(yōu)勢(shì)學(xué)科(PAPD)。
S719
A
1001-7488(2017)04-0158-08
* 張金池為通訊作者。