楊 瑩,王薇薇,劉建學(xué),韓 飛,路子顯,李?lèi)?ài)科
(1.國(guó)家糧食局科學(xué)研究院,北京 100037;2.河南科技大學(xué) 食品與生物工程學(xué)院,河南 洛陽(yáng) 471023)
隨著全球經(jīng)濟(jì)發(fā)展和生活水平的不斷提高,人們膳食攝入的脂肪、碳水化合比例也在變化,中國(guó)膳食營(yíng)養(yǎng)素參考攝入量(Dietary Reference Intakes,DRIs)推薦居民膳食營(yíng)養(yǎng)素參考攝入量:脂肪占總能量20%~30%,總碳水化合物占總能50%~65%。熱量攝入過(guò)高,機(jī)體生命活動(dòng)平衡被破壞,會(huì)導(dǎo)致疾病發(fā)生。
膳食中脂肪和碳水化合物是重要的產(chǎn)熱營(yíng)養(yǎng)素,是生命活動(dòng)所需能量的主要來(lái)源,但是近年來(lái)人們攝入脂肪、碳水化合物增多導(dǎo)致一系列疾病發(fā)生,肥胖、糖尿病、高血脂、高血壓等慢性病的發(fā)生與膳食模式密切相關(guān),這些疾病的發(fā)生不僅周期長(zhǎng),而且容易引發(fā)一系列并發(fā)癥,因此研究飲食中碳水化合物與油脂的比例對(duì)機(jī)體代謝和健康的影響非常有意義。本文對(duì)目前的相關(guān)研究進(jìn)行了綜合分析,使人們?cè)诹私獾教妓衔锱c油脂過(guò)高的危害的同時(shí),能夠認(rèn)識(shí)到合理膳食的重要性。
不同比例脂肪、碳水化合物飲食與健康關(guān)系密切,國(guó)內(nèi)外學(xué)者對(duì)膳食不同供能比例脂肪和碳水化合物進(jìn)行了大量研究,Mazzucco[1]等利用高脂飲食(45%脂肪,54%碳水化合物)研究發(fā)現(xiàn),孕期高脂飲食會(huì)引起后代肝臟脂肪積累。Inoue[2]等研究發(fā)現(xiàn),高碳水化合物飲食(71%碳水化合物,7%脂肪)誘導(dǎo)大鼠蔗糖酶—異麥芽糖酶和鈉依賴性葡萄糖轉(zhuǎn)運(yùn)蛋白表達(dá),促進(jìn)糖代謝。有研究發(fā)現(xiàn),糖脂代謝紊亂[3]、炎癥[4]、器官損傷[5]等的發(fā)生,與飲食中碳水化合物和油脂的比例有關(guān)?,F(xiàn)就近年來(lái)不同比例碳水化合物脂肪飲食對(duì)動(dòng)物影響的研究成果進(jìn)行綜述。
脂質(zhì)包括油脂(甘油三酯)和類(lèi)脂,人體膳食中最重要的脂質(zhì)是油脂,油脂是產(chǎn)熱最高的營(yíng)養(yǎng)素。脂質(zhì)代謝主要是脂類(lèi)在小腸消化吸收,經(jīng)脂蛋白轉(zhuǎn)運(yùn)進(jìn)入血液循環(huán),由肝臟作用后儲(chǔ)存在脂肪組織。脂質(zhì)在維持能量平衡、參與信號(hào)識(shí)別、免疫調(diào)節(jié)等多個(gè)方面發(fā)揮重要作用,脂肪代謝主要受遺傳因素、激素、酶等調(diào)節(jié)。當(dāng)這些因素出現(xiàn)異常時(shí),會(huì)造成脂肪代謝紊亂、脂肪肝、肥胖等的發(fā)生。長(zhǎng)期不合理膳食結(jié)構(gòu)是導(dǎo)致脂肪異常代謝的主要原因之一。
長(zhǎng)期不合理飲食會(huì)引發(fā)脂肪肝及脂肪堆積,對(duì)身體造成不良影響。Ronis[6]等利用乙醇與不同脂肪和碳水化合物配比飲食(79%碳水化合物,5%脂肪;39%碳水化合物,45%脂肪),研究對(duì)大鼠脂肪肝的影響。結(jié)果表明:高碳水化合物飲食或高脂飲食和乙醇之間的相互作用會(huì)引發(fā)損傷性脂肪肝。Ferreira[7]等研究發(fā)現(xiàn)不同碳水化合物和油脂比例飲食(64%碳水化合物,11%脂肪;45%碳水化合物,38%脂肪)會(huì)對(duì)小鼠脂肪堆積造成影響。高碳水化合物飲食誘導(dǎo)脂肪合成轉(zhuǎn)錄因子表達(dá),高脂飲食降低脂解酶活性。2個(gè)途徑均增加脂肪儲(chǔ)存。Caton[8]等研究發(fā)現(xiàn)低碳水化合物高脂飲食(94%脂肪,1.3%碳水化合物)結(jié)合日常鍛煉會(huì)導(dǎo)致大鼠脂肪增加。
現(xiàn)代人不科學(xué)的飲食習(xí)慣導(dǎo)致肥胖癥發(fā)病率日益提高。研究表明,新陳代謝紊亂會(huì)造成體重增加,從而引發(fā)肥胖癥。Montgomery[9]等采用高脂飲食(45%脂肪,35%碳水化合物)喂養(yǎng)不同品種小鼠,發(fā)現(xiàn)高脂飲食導(dǎo)致脂肪組織出現(xiàn)炎癥及脂肪積累,并出現(xiàn)代謝缺陷。Akoum[10]等研究利用植物油和動(dòng)物油研究高脂飲食(34.9%脂肪,26.3%碳水化合物)對(duì)雄性和雌性小鼠脂肪組織活性、代謝的影響,結(jié)果表明:膳食脂肪含量過(guò)高會(huì)引起一系列代謝綜合癥。Hall等[11]通過(guò)人體實(shí)驗(yàn)研究發(fā)現(xiàn),膳食中限制脂肪的攝入更有利于減肥??傊?,高脂飲食不僅引起肥胖導(dǎo)致炎癥反應(yīng),也會(huì)影響脂肪和碳水化合物代謝[12]。
隨著分子生物學(xué)的不斷深入,人們對(duì)肥胖相關(guān)基因缺陷鼠研究也越來(lái)越多。通過(guò)大量實(shí)驗(yàn)得到控制基因調(diào)控的方法,對(duì)于人類(lèi)健康有積極意義。血小板激活因子(Platelet-activating Factor,PAF)能夠控制脂肪合成及代謝。Oliveira[13]等利用高碳水化合物飲食(74.2%碳水化合物,5.8%脂肪)喂養(yǎng)血小板激活因子受體缺陷(PAF Receptor-deficient,PAFR-/-)鼠,發(fā)現(xiàn):相比正常鼠,PAFR-/-鼠脂肪變性、肝臟損傷更加嚴(yán)重。Wall[14]等利用高脂飲食(60%脂肪)研究線粒體DNA缺陷鼠,發(fā)現(xiàn)高脂喂養(yǎng)下,缺陷鼠線粒體功能及代謝均有所改善。Wall等提出成纖維原母細(xì)胞生長(zhǎng)因子21(Fibroblast Growth Factor 21,F(xiàn)GF21)作為肝臟細(xì)胞內(nèi)分泌因子,具有促進(jìn)脂肪細(xì)胞攝取葡萄糖的功能,它與膳食脂肪相互作用在治療肥胖及線粒體疾病上有積極影響。
綜上所述,飲食中無(wú)論碳水化合物還是油脂過(guò)高,都會(huì)造成脂肪代謝紊亂,肝臟作為脂肪代謝的重要器官,尤為受影響。因此,飲食中要注意避免攝入過(guò)高的油脂和碳水化合物。
糖類(lèi)作為重要的供能物質(zhì),也可形成糖蛋白。它不僅是營(yíng)養(yǎng)物質(zhì),而且有些還具有特殊的生理活性,調(diào)節(jié)細(xì)胞活動(dòng)。糖代謝紊亂首先影響供能,也會(huì)對(duì)機(jī)體產(chǎn)生一系列影響,糖代謝紊亂容易引發(fā)疲乏、血糖下降或升高、頭暈等,導(dǎo)致糖尿病、胰島素敏感性增加。膳食中不同比例碳水化合物和油脂會(huì)對(duì)動(dòng)物糖代謝產(chǎn)生影響。
碳水化合物和脂肪不僅可提供能量,還可作用于mRNA水平上的二糖酶。乳糖酶—根皮苷水解酶基因(Lactase-phlorizin Hydrolase,LPH)和蔗糖酶—麥芽糖酶基因(Sucraseisomaltase,SI)特異性存在于腸上皮細(xì)胞,能夠消化淀粉和蔗糖。Mochizuk[15]等分別喂養(yǎng)大鼠高脂飲食(5%碳水化合物,73%脂肪)和高碳水化合物飲食(70%碳水化合物,7%脂肪),研究空腸蔗糖酶/麥芽糖酶活性(S/I)和SI復(fù)合體糖基化鏈上未酸化的半乳糖,結(jié)果表明:高脂飲食使大鼠空腸S/I酶活性比減少,SI復(fù)合體糖基化鏈上未酸化的半乳糖減少。Tanaka[16]等通過(guò)分組喂食大鼠高碳水化合物飲食(70%碳水化合物,7%脂肪)和高脂飲食(5%碳水化合物,73%脂肪)研究對(duì)轉(zhuǎn)錄水平上LPH和SI的影響,結(jié)果發(fā)現(xiàn):喂食大鼠高碳水化合物飲食比喂食高脂飲食,LPH和SI基因表達(dá)量更高。
動(dòng)物處于饑餓狀態(tài),主要是通過(guò)降低胰島素,升高胰高血糖素,激活肝臟糖異生導(dǎo)致肝臟自我吞噬,同時(shí)生長(zhǎng)激素刺激胃饑餓素分泌及脂肪分解,以此維持生存。近年來(lái),對(duì)于基因缺陷鼠與糖代謝的相關(guān)研究也越來(lái)越多。Zhang[17]等利用限制能量(60%能量限制)喂養(yǎng)正常鼠和胃饑餓素-O-乙酰基轉(zhuǎn)移酶缺陷(Ghrelin O-acyltransferase deficient,Goat-/-)鼠,結(jié)果發(fā)現(xiàn):正常鼠生長(zhǎng)激素水平升高,并且肝臟出現(xiàn)自我吞噬,以此維持存活血糖水平,而Goat-/-鼠出現(xiàn)生長(zhǎng)激素增加遲鈍并且肝臟自我吞噬標(biāo)志性減少,出現(xiàn)致死性低血糖癥。Choi[18]等利用常規(guī)飲食與高脂飲食(55%脂肪)對(duì)比,研究發(fā)現(xiàn)高脂喂養(yǎng)乙酰輔酶A羧化酶缺陷(Acetyl-CoA carboxylase 2 knockout,Acc2-/-)鼠與正常鼠相比,體重、能耗均有所下降,肝臟和肌肉中胰島素敏感性隨著蛋白激酶B的激活而增加。
飲食中脂肪和碳水化合物過(guò)高是糖尿病發(fā)病的重要影響因素。Wang[19]等利用高脂飲食(10%碳水化合物,65%脂肪)飼喂發(fā)現(xiàn)大鼠出現(xiàn)葡萄糖不耐癥,進(jìn)一步研究發(fā)現(xiàn)長(zhǎng)期高脂飲食會(huì)增加大鼠糖尿病發(fā)病率[20]。胰島素參與調(diào)節(jié)糖代謝,控制血糖平衡,Noakes[21]等利用等熱量低碳高脂飲食(50%碳水化合物,30%脂肪)和高碳低脂飲食(70%碳水化合物,10%脂肪)研究人,結(jié)果發(fā)現(xiàn):等熱量低碳高脂飲食能更有效地提高甘油三酯、高密度脂蛋白、膽固醇、空腹和餐后血糖以及胰島素濃度。Yang[22]等利用高脂飲食(42%脂肪)研究小鼠相關(guān)的代謝綜合征,結(jié)果發(fā)現(xiàn):高蔗糖和高脂肪攝入導(dǎo)致高胰島素血癥。Silva[23]等研究發(fā)現(xiàn)高脂飲食(碳水化合物<5%,脂肪>70%)引發(fā)成年人胰島素敏感性增加,總膽固醇增加。
飲食中脂肪和碳水化合物過(guò)高,不僅會(huì)對(duì)脂肪代謝產(chǎn)生影響,也會(huì)影響與糖代謝相關(guān)的酶的活性,而且還會(huì)引發(fā)糖尿病等問(wèn)題,無(wú)論對(duì)動(dòng)物還是對(duì)人都會(huì)產(chǎn)生不利影響,因此合理膳食非常有必要。
如今,人們對(duì)孕婦營(yíng)養(yǎng)漸漸有了新的認(rèn)識(shí),孕期營(yíng)養(yǎng)不僅影響孕婦和后代的健康,而且影響后代大腦發(fā)育。孕期需要充足的能量供給,但懷孕期間膳食不合理不僅會(huì)對(duì)動(dòng)物本身產(chǎn)生不利影響,而且會(huì)對(duì)胎兒發(fā)育產(chǎn)生不利影響,還對(duì)后代成年后是否肥胖產(chǎn)生影響。
孕婦懷孕期間進(jìn)行高脂高碳水化合物膳食,會(huì)對(duì)孕婦乳腺疾病、后代仔鼠大腦發(fā)育等方面產(chǎn)生影響。Oliveira[24]等以高脂飲食(60%脂肪),對(duì)懷孕期及哺乳期大鼠乳腺脂肪酸構(gòu)型和基因表達(dá)模式進(jìn)行研究,結(jié)果表明:懷孕期和哺乳期大鼠以豬油為主的高脂飲食,改變了自身脂肪酸構(gòu)型和乳腺癌相關(guān)轉(zhuǎn)錄因子,降低了子代乳腺癌發(fā)病率。Beck[25]等研究孕期高碳水化合物飲食(70%碳水化合物,12%脂肪)和高脂飲食(70%脂肪,12%碳水化合物)對(duì)后代鼠下丘腦神經(jīng)肽Y(Neuropeptide Y,NPY)和食欲肽的影響,研究發(fā)現(xiàn):相比高脂組,高碳水化合物組NPY和食欲肽基因表達(dá)增加,容易引起肥胖。Giriko[26]等研究母鼠采食高脂飲食(52%脂肪,20.9%碳水化合物)對(duì)仔鼠大腦發(fā)育和生理行為的影響,結(jié)果表明:仔鼠大腦發(fā)育遲緩,生理特性和個(gè)體發(fā)育成熟期延遲,成年期易患抑郁。
營(yíng)養(yǎng)過(guò)剩不僅會(huì)引起孕婦肥胖,同時(shí)還會(huì)誘導(dǎo)后代肥胖[27]、高血壓等并發(fā)癥。Ashino[28]等研究成年雌性大鼠懷孕期間和哺乳期喂食高脂飲食(45%脂肪,37%碳水化合物)對(duì)子代肥胖及胰島素抵抗的影響,結(jié)果表明:斷奶后1周,后代肝臟甘油三酯含量增加,胰島素抵抗下降。Guberman[29]等研究發(fā)現(xiàn)大鼠產(chǎn)后高脂飲食(60%脂肪,20%碳水化合物)會(huì)增加后代肥胖和高血壓的風(fēng)險(xiǎn)。另外,懷孕和哺乳期間高脂飲食(45%脂肪,36.5%碳水化合物)還會(huì)損害子代鼠肝臟和白色脂肪組織類(lèi)膽堿抗炎癥途徑[30],并加重后代肺部炎癥反應(yīng)和導(dǎo)致后代出現(xiàn)腸系膜脂肪組織功能障礙[31-32]。
膳食不合理不僅危害自身,還會(huì)對(duì)后代發(fā)育造成不可恢復(fù)的影響,因此合理調(diào)控孕婦營(yíng)養(yǎng),對(duì)自身和子代健康很重要。
膳食中不同比例碳水化合物和油脂,不僅對(duì)糖代謝、脂肪代謝及后代繁殖發(fā)育產(chǎn)生影響,而且對(duì)腫瘤發(fā)生、蛋白代謝及壽命等方面均會(huì)產(chǎn)生影響。
高脂飲食對(duì)腫瘤、蛋白代謝及維生素消耗也有影響,Ip等[33]利用高碳水化合物(66%碳水化合物,12%脂肪)和高脂飲食(26%碳水化合物,60%脂肪)研究發(fā)現(xiàn)長(zhǎng)期高碳水化合物飲食和高脂肪飲食均會(huì)導(dǎo)致小鼠出現(xiàn)嚴(yán)重的肝臟腫瘤。Drolet等[34]研究發(fā)現(xiàn)高脂飲食(59%脂肪)會(huì)誘發(fā)小鼠主動(dòng)脈瓣疾病。Yuasa等[35]通過(guò)高脂食物(4.4%碳水化合物,62.7%脂肪)研究小鼠生物素缺乏癥,發(fā)現(xiàn)低碳高脂飲食增加小鼠生物素利用和消耗,促進(jìn)糖異生和支鏈氨基酸代謝,這會(huì)加重生物素缺乏。另外,有研究發(fā)現(xiàn)高脂飲食會(huì)導(dǎo)致出現(xiàn)低蛋白血癥[36],影響鈣磷的表觀消化[37]。
膳食與壽命關(guān)系密切。Solon-Biet等[38]研究不同比例宏量營(yíng)養(yǎng)素[蛋白(5%-60%)、脂肪(16%-75%)、碳水化合物(16%-75%)]對(duì)小鼠健康和壽命的影響,通過(guò)自由采食25種飲食,研究哺乳動(dòng)物肝臟相關(guān)的雷帕霉素靶點(diǎn)(mammalian Target of Rapamycin,mTOR)活性和線粒體功能,結(jié)果表明:自由喂食動(dòng)物,通過(guò)控制宏量營(yíng)養(yǎng)素比率來(lái)抑制mTOR活性可以延長(zhǎng)壽命。Muller等[39]研究高脂低碳飲食(60%脂肪,15%碳水化合物)對(duì)小鼠壽命的影響,結(jié)果發(fā)現(xiàn):27個(gè)月后,飲食誘導(dǎo)肥胖組小鼠存活率為40%,而對(duì)照組存活率為75%。
研究發(fā)現(xiàn)植物提取物如酚酸類(lèi)物質(zhì)具有很強(qiáng)抗氧化性,對(duì)肥胖相關(guān)疾病,如糖尿病、心腦血管疾病、高脂血癥等都有一定的治療效果。Heber等[40]研究喂食小鼠高脂飲食(32%脂肪,25%碳水化合物)輔助綠茶、紅茶和烏龍茶茶多酚,對(duì)內(nèi)臟脂肪和炎癥的影響,發(fā)現(xiàn)高脂飲食會(huì)導(dǎo)致體重增加和炎癥的發(fā)生,而3種茶多酚提取物均會(huì)減弱體重增加和抗炎作用。Saravanan等[41]研究發(fā)現(xiàn)麝香草酚能夠顯著抑制高脂膳食誘導(dǎo)的脂肪聚積[42-44]。不僅多酚類(lèi)物質(zhì)可減弱糖脂代謝相關(guān)疾病,阿魏酸也可降低高脂血癥大鼠的血脂和血糖水平[45]。Myoung J S等[46]研究發(fā)現(xiàn)在膳食中添加阿魏酸或阿魏酸酯化物質(zhì)谷維素,可以顯著抑制高脂飲食誘導(dǎo)的肥胖小鼠體重增加。朱黎霞等[47]研究發(fā)現(xiàn)丹參總酚酸—山楂總黃酮配伍可增強(qiáng)高脂飲食喂養(yǎng)大鼠的降脂和抗氧化效應(yīng)。沒(méi)食子酸及其酯類(lèi)也可預(yù)防高脂飲食誘導(dǎo)的肥胖病[48]。
近幾年國(guó)內(nèi)外廣泛關(guān)注飲食中高脂高碳水化合物研究,很多研究結(jié)果表明高脂高碳水化合物飲食對(duì)健康有不利影響。本文綜述了不同碳水化合物與脂肪比例的飲食對(duì)脂肪代謝、糖代謝、繁殖發(fā)育、壽命等方面的影響,研究發(fā)現(xiàn)高脂高碳水化合物會(huì)引發(fā)一系列慢性疾病。針對(duì)這一情況,國(guó)內(nèi)外學(xué)者利用酚酸類(lèi)等植物提取物在肥胖、高脂血癥治療方面取得了一定效果。分析了不合理膳食引發(fā)的疾病及其治療方法,幫助人們了解攝入碳水化合物與油脂的量與疾病發(fā)生的關(guān)系,對(duì)于人們膳食有積極指導(dǎo)意義。但是,目前國(guó)內(nèi)外對(duì)于飲食中高脂、高碳水化合物研究還存在很多問(wèn)題,例如高脂高碳水化合物飲食對(duì)相關(guān)調(diào)控基因的通路研究和對(duì)腸道菌群影響方面的研究還不完全清楚。另外,由于取材等的特殊性,應(yīng)用動(dòng)物實(shí)驗(yàn)去驗(yàn)證的較多,而直接用人去研究較少。相信隨著研究的深入和技術(shù)的不斷發(fā)展,飲食對(duì)腸道菌群及基因通路等方面的研究會(huì)有不斷的進(jìn)展。
參考文獻(xiàn):
[1]Mazzucco M B, Fornes D, Capobianco E, et al. Maternal saturated fat-rich diet promotes leptin resistance in fetal liver lipid catabolism and programs lipid homeostasis impairments in the liver of rat offspring[J]. Journal of Nutritional Biochemistry, 2015, 27: 61-69.
[2]Inoue S, Honma K, Mochizuki K, et al. Induction of histone H3K4 methylation at the promoter, enhancer, and transcribed regions of the SI and SGLT1 genes in rat jejunum in response to a high-starch/low-fat diet[J]. Nutrition, 2015, 31(2): 366-372.
[3]Shirai T, Shichi Y, Sato M, et al. High dietary fat-induced obesity in Wistar rats and type 2 diabetes in nonobese Goto-Kakizaki rats differentially affect retinol binding protein 4 expression and vitamin A metabolism[J]. Nutrition Research, 2016, 36(3): 262-270.
[4]Waise T M Z, Toshinai K, Naznin F, et al. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice[J]. Biochemical and biophysical research communications, 2015, 464(4): 1157-1162.
[5]D′Souza S S, Bindu B S C, Ali M M, et al. Nutritional profile of high fat simple carbohydrate diet used to induce metabolic syndrome in C57BL/6J mice[J]. Journal of Nutrition & Intermediary Metabolism, 2015, 3: 41-49.
[6]Ronis M J J, Mercer K, Suva L J, et al. Influence of fat/carbohydrate ratio on progression of fatty liver disease and on development of osteopenia in male rats fed alcohol via total enteral nutrition (TEN)[J]. Alcohol, 2014, 48(2): 133-144.
[7]Ferreira A V M, Menezes-Garcia Z, Viana J B, et al. Distinct metabolic pathways trigger adipocyte fat accumulation induced by high-carbohydrate and high-fat diets[J]. Nutrition, 2014, 30(10): 1138-1143.
[8]Caton S J, Bielohuby M, Bai Y, et al. Low-carbohydrate high-fat diets in combination with daily exercise in rats: effects on body weight regulation, body composition and exercise capacity[J]. Physiology & behavior, 2012, 106(2): 185-192.
[9]Montgomery M K, Hallahan N L, Brown S H, et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding[J]. Diabetologia, 2013, 56(5): 1129-1139.
[10]Akoum S E, Lamontagne V, Cloutier I, et al. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice[J]. Diabetology & Metabolic Syndrome, 2011, 3(12): 2319-2327.
[11]Hall K D, Bemis T, Brychta R, et al. Calorie for Calorie, Dietary Fat Restriction Results in More Body Fat Loss than Carbohydrate Restriction in People with Obesity[J]. Cell metabolism, 2015, 22(3): 427-436.
[12]Ibrahim I A A E H, El-Aziz M F M A, Ahmed A F, et al. Is the effect of high fat diet on lipid and carbohydrate metabolism related to inflammation[J]. Mediterranean Journal of Nutrition and Metabolism, 2011, 4(3): 203-209.
[13]De Oliveira M C, Menezes-Garcia Z, Do Nascimento Arifa R D, et al. Platelet-activating factor modulates fat storage in the liver induced by a high-refined carbohydrate-containing diet[J]. The Journal of nutritional biochemistry, 2015, 26(9): 978-985.
[14]Wall C E, Whyte J, Suh J M, et al. High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice[J]. Proceedings of the National Academy of Sciences, 2015, 112(28): 8714-8719.
[15]Mochizuki K, Igawa-Tada M, Takase S, et al. Feeding rats a high fat/carbohydrate ratio diet reduces jejunal S/I activity ratio and unsialylated galactose on glycosylated chain of S-I complex[J]. Life sciences, 2010, 86(13): 524-531.
[16]Tanaka T, Suzuki A, Kuranuki S, et al. Higher expression of jejunal LPH gene in rats fed the high-carbohydrate/low-fat diet compared with those fed the low-carbohydrate/high-fat diet is associated with in vitro binding of Cdx-2 in nuclear proteins to its promoter regions[J]. Life sciences, 2008, 83(3): 122-127.
[17]Zhang Y, Fang F, Goldstein J L, et al. Reduced autophagy in livers of fasted, fat-depleted, ghrelin-deficient mice: Reversal by growth hormone[J]. Proceedings of the National Academy of Sciences, 2015, 112(4): 1226-1231.
[18]Choi C S, Savage D B, Abu-Elheiga L, et al. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity[J]. Proceedings of the National Academy of Sciences, 2007, 104(42): 16480-16485.
[19]Wang Y, Miura Y, Kaneko T, et al. Glucose intolerance induced by a high-fat/low-carbohydrate diet in rats[J]. Endocrine, 2002, 17(3): 185-191.
[20]Wang Y, Wang P Y, Qin L Q, et al. The development of diabetes mellitus in Wistar rats kept on a high-fat/low-carbohydrate diet for long periods[J]. Endocrine, 2003, 22(2): 85-92.
[21]Noakes M, Foster P R, Keogh J B, et al. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk[J]. Nutrition & metabolism, 2006, 3(1):163-167.
[22]Yang Z H, Miyahara H, Takeo J, et al. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice[J]. Diabetol Metab Syndr, 2012, 4(1):1-10.
[23]Silva J. The effects of very high fat, very low carbohydrate diets on safety, blood lipid profile, and anabolic hormone status[J]. Journal of the International Society of Sports Nutrition, 2014, 11(1):39.
[24]De Oliveira Andrade F, De Assis S, Jin L, et al. Lipidomic fatty acid profile and global gene expression pattern in mammary gland of rats that were exposed to lard-based high fat diet during fetal and lactation periods associated to breast cancer risk in adulthood[J]. Chemico-biological interactions, 2015, 239: 118-128.
[25]Beck B, Richy S, Archer Z A, et al. Early and persistent up-regulation of hypothalamic orexigenic peptides in rat offspring born to dams fed a high-carbohydrate supplement during gestation[J]. Brain research, 2012, 1477: 10-18.
[27]Takumi K, Shimada K, Iijima N, et al. Maternal high-fat diet during lactation increases Kiss1 mRNA expression in the arcuate nucleus at weaning and advances puberty onset in female rats[J]. Neuroscience research, 2015, 100: 21-28.
[28]Ashino N G, Saito K N, Souza F D, et al. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver[J]. The Journal of nutritional biochemistry, 2012, 23(4): 341-348.
[29]Guberman C, Jellyman J K, Han G, et al. Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system[J]. American journal of obstetrics and gynecology, 2013, 209(3): 1-8.
[30]Payolla T B, Lemes S F,De Fante T, et al. High-fat diet during pregnancy and lactation impairs the cholinergic anti-inflammatory pathway in the liver and white adipose tissue of mouse offspring[J]. Molecular and cellular endocrinology, 2015, 422: 192-202.
[31]Song Y, Yu Y, Wang D, et al. Maternal high-fat diet feeding during pregnancy and lactation augments lung inflammation and remodeling in the offspring[J]. Respiratory physiology & neurobiology, 2015, 207: 1-6.
[32]Umekawa T, Sugiyama T, Du Q, et al. A maternal mouse diet with moderately high-fat levels does not lead to maternal obesity but causes mesenteric adipose tissue dysfunction in male offspring[J]. The Journal of nutritional biochemistry, 2015, 26(3): 259-266.
[33]Ip B C, Liu C, Smith D E, et al. High-refined-carbohydrate and high-fat diets induce comparable hepatic tumorigenesis in male mice[J]. Journal of Nutrition, 2014, 144(5): 647-653.
[34]Drolet M C, Roussel E, Deshaies Y, et al. A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6J mice[J]. Journal of the American College of Cardiology, 2006, 47(4):850-855.
[35]Yuasa M, Matsui T, Ando S, et al. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice[J]. Nutrition, 2013, 29(10): 1266-1270.
[36]Frommelt L, Bielohuby M, Menhofer D, et al. Effects of low carbohydrate diets on energy and nitrogen balance and body composition in rats depend on dietary protein-to-energy ratio[J]. Nutrition, 2014, 30(7): 863-868.
[37]Frommelt L, Bielohuby M, Stoehr B J M, et al. Effects of low-carbohydrate, high-fat diets on apparent digestibility of minerals and trace elements in rats[J]. Nutrition, 2014, 30(7): 869-875.
[38]Solon-Biet S M, McMahon A C, Ballard J W O, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice[J]. Cell metabolism, 2014, 19(3): 418-430.
[39] Muller A P, De Oliveira Dietrich M, De Assis A M, et al. High saturated fat and low carbohydrate diet decreases lifespan independent of body weight in mice[J]. Longevity & healthspan, 2012, 2(1): 1-5.
[40]Heber D, Zhang Y, Yang J, et al. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets[J]. The Journal of nutrition, 2014, 144(9): 1385-1393.
[41]Saravanan S, Pari L. Role of thymol on hyperglycaemia and hyperlipidemia in High fat diet-induced type 2 diabetic C57BL/6J mice[J]. European journal of pharmacology, 2015, 761: 279-287.
[42]Takatoshi M, Satoshi H, Akira S, et al. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2005, 288(3): R708-R715.
[43]Takatoshi M, Koichi M, Yoshihiko M, et al. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice[J]. Ajp Endocrinology & Metabolism, 2011, 300(1): 122-133.
[44]Suzuki A, Yamamoto M, Jokura H, et al. Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats[J]. American Journal of Hypertension, 2007, 20(5): 508-513.
[45]Balasubashini M S, Rukkumani R, Menon V P. Protective effects of ferulic acid on hyperlipidemic diabetic rats[J]. Acta Diabetologica, 2003, 40(3): 118-122.
[46]Myoung J S, Catherine W R, Seok H N, et al. Influence of oryzanol and ferulic Acid on the lipid metabolism and antioxidative status in high fat-fed mice[J]. Journal of Clinical Biochemistry & Nutrition, 2010, 46(2): 150-156.
[47]朱黎霞, 王利勝, 張英豐. 丹參總酚酸、山楂總黃酮組分配伍對(duì)高脂血癥大鼠血脂、超氧化物歧化酶及丙二醛的影響[J]. 中國(guó)醫(yī)藥導(dǎo)報(bào), 2014, 11(20): 9-12.
[48]Jang A, Srinivasan P, Na Y L, et al. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice[J]. Chemico-Biological Interactions, 2008, 174(2): 109-117.●