李鵬濤,楊曉楠,張 輝
(1.河北北方學(xué)院研究生部,河北 張家口 075000;2.河北北方學(xué)院基礎(chǔ)醫(yī)學(xué)院,河北 張家口 075000)
?
骨髓間充質(zhì)干細(xì)胞移植治療阿爾茨海默病研究進(jìn)展
李鵬濤1,楊曉楠1,張 輝2
(1.河北北方學(xué)院研究生部,河北 張家口 075000;2.河北北方學(xué)院基礎(chǔ)醫(yī)學(xué)院,河北 張家口 075000)
阿爾茨海默病(Alzheimer’s disease,AD)是一種膽堿能和多巴胺能神經(jīng)元退行性疾病。目前主要通過藥物治療,但是藥物對(duì)晚期AD治療效果不佳。隨著細(xì)胞治療技術(shù)的逐漸發(fā)展,細(xì)胞移植研究成為熱點(diǎn)。骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)是一種存在于骨髓中的非造血干細(xì)胞,具有多向分化的潛能。將BMSCs應(yīng)用于AD的治療為治療神經(jīng)退行性疾病提供了新的思路和方法。目前國(guó)內(nèi)外對(duì)BMSCs移植治療AD的研究已有很多,研究成果豐碩,但真正將這項(xiàng)技術(shù)運(yùn)用到臨床還有許多困難。綜述了AD和BMSCs的研究進(jìn)展,及BMSCs移植治療AD的研究現(xiàn)狀。
阿爾茨海默癥;骨髓間充質(zhì)干細(xì)胞;細(xì)胞移植
阿爾茨海默病(Alzheimer’s disease,AD)是一種膽堿和多巴胺能神經(jīng)元退行性疾病,最初由德國(guó)巴伐利亞精神病學(xué)家Alois Alzheimer 提出,也稱為老年失能[1]。阿爾茨海默病起病隱匿,與年齡相關(guān),是一種以進(jìn)行性認(rèn)知功能障礙和記憶損害為特征的原發(fā)性中樞神經(jīng)系統(tǒng)退行性疾病[2]。據(jù)統(tǒng)計(jì),阿爾茨海默病在英國(guó)65歲以上人群死亡原因中排第六位,在美國(guó)排第五位[3]。阿爾茨海默病嚴(yán)重影響老年人的日常生活,主要表現(xiàn)為記憶和認(rèn)知功能障礙、行為及人格異常改變。目前,臨床上通過提高和保持神經(jīng)元的活性治療AD,主要以藥物治療為主,但藥物治療對(duì)晚期的AD效果并不理想[4-6]。干細(xì)胞治療阿爾茨海默病逐漸被認(rèn)可,其中骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)是一種存在于骨髓中的非造血干細(xì)胞,具有多向分化的潛能,比起胚胎干細(xì)胞和神經(jīng)干細(xì)胞等有著獨(dú)特的優(yōu)勢(shì),為治療AD提供了豐富的細(xì)胞資源,為臨床的自體細(xì)胞移植奠定了實(shí)驗(yàn)基礎(chǔ)[7],因其來源廣泛,操作簡(jiǎn)單,免疫排斥反應(yīng)弱,成為研究者們的新寵[8]。現(xiàn)就阿爾茨海默癥的發(fā)病機(jī)制和治療,以及骨髓間充質(zhì)干細(xì)胞移植治療AD的研究現(xiàn)狀作一綜述。
1.1 AD發(fā)病機(jī)制
AD的發(fā)病機(jī)制復(fù)雜多樣,由多種因素共同作用引起,之前的研究顯示AD的兩個(gè)特征性病理改變?yōu)棣碌矸蹣拥鞍壮练e形成的老年斑(senile plaques,SPs)和Tau蛋白過度磷酸化形成的神經(jīng)細(xì)胞內(nèi)神經(jīng)元纖維纏結(jié)(neurofibrillary tangles,NFTs),并伴有顆??张葑冃?、平野小體和腦血管的改變[9]。最近研究表明,氧化應(yīng)激與AD發(fā)病密切相關(guān)。神經(jīng)元內(nèi)β淀粉樣蛋白(amyloid β-protein,Aβ)的沉積一定程度上由氧化應(yīng)激引起,另一方面,Aβ沉積對(duì)神經(jīng)元也會(huì)產(chǎn)生一定損傷作用,并且引發(fā)進(jìn)一步氧化應(yīng)激,但具體機(jī)制尚不清楚[10-11]。有研究表明,Aβ具有極強(qiáng)的神經(jīng)毒性作用,能導(dǎo)致神經(jīng)元膜上不飽和脂肪酸被氧化,產(chǎn)生大量氧自由基,引起神經(jīng)元細(xì)胞膜通透性增加,大量Ca2+內(nèi)流,依次激活鈣依賴性激酶、蛋白酶、脂肪酶,從而導(dǎo)致細(xì)胞損傷乃至死亡[12]。Aβ寡聚物可以減少神經(jīng)突觸的數(shù)目,使神經(jīng)元之間物質(zhì)的胞質(zhì)運(yùn)輸發(fā)生異常,參與AD早期氧化應(yīng)激損傷[13]。現(xiàn)已證明,炎癥反應(yīng)在AD發(fā)病過程中扮演著重要角色,參與炎癥反應(yīng)的物質(zhì)主要有小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞、補(bǔ)體系統(tǒng)和炎性因子等[14]。近期研究表明,局部炎性反應(yīng)如骨關(guān)節(jié)炎也可能誘發(fā)神經(jīng)炎性反應(yīng),進(jìn)而促進(jìn)AD發(fā)展[15]。此外,誘導(dǎo)AD發(fā)病的機(jī)制還包括胰島素信號(hào)傳導(dǎo)通路障礙、基因突變、Ca2+代謝紊亂和內(nèi)分泌失調(diào)等。
1.2 AD的治療
現(xiàn)階段治療AD主要以藥物為主,最佳藥物是乙酰膽堿酯酶抑制劑(acetylcholinesterase inhibitor,AChEI),治療效果已經(jīng)得到臨床肯定,雖不能治愈AD,但可以延緩病程進(jìn)展,減輕AD精神癥狀[16]。AChEI包括他克林(Tacrine)、多奈哌齊(Donepezil)、加蘭他敏(Galanthamine)和卡巴拉汀(Rivastigmine),這些藥物是FDA批準(zhǔn)用于治療AD 5種藥物中的4種,可見AChEI在AD治療中的重要地位。Minarini A等[17]近期在他克林衍生物中發(fā)現(xiàn),其中一些藥物肝毒性較低,且具有抑制膽堿酶活性、抗氧化、鈣離子拮抗等作用。研究表明,毒蕈堿膽堿能1(M1)受體激動(dòng)藥對(duì)AD模型動(dòng)物的學(xué)習(xí)記憶能力有顯著改善作用,同時(shí)可以減少腦內(nèi)海馬區(qū)Aβ沉積,減輕神經(jīng)元變性和缺失。流行病學(xué)研究發(fā)現(xiàn),長(zhǎng)期使用NSAIDs并且攜帶ApoE4等位基因的人群,AD認(rèn)知障礙可得到一定程度的改善[18]。氧化應(yīng)激會(huì)損害神經(jīng)元生物大分子及其生物膜,對(duì)AD的發(fā)生有一定促進(jìn)作用,但抗氧化應(yīng)激藥物在臨床上治療AD的效果卻不盡人意。一些抗氧化物質(zhì)如維生素C、維生素E及維生素D等攝入不足會(huì)導(dǎo)致AD發(fā)病率增加,用于治療卻是無效的[19-20]。近期研究表明,新型褪黑激素受體激動(dòng)劑Neu-P11對(duì)AD的認(rèn)知和記憶功能有改善作用[21]。治療AD的其他藥物包括針對(duì)Aβ、Tau、胰島素、基因突變的藥物以及中藥。AD發(fā)病機(jī)制復(fù)雜多樣,并未完全研究清楚,所以對(duì)癥治療成為現(xiàn)在治療AD的常規(guī)治療。
由于神經(jīng)元的不可再生性,神經(jīng)退行性疾病的不可逆性,使得目前臨床藥物治療該病遇到了瓶頸[22-24]。近年來,干細(xì)胞移植被廣泛應(yīng)用于脊髓損傷性、腦梗死、缺血性腦病等疾病的治療中,并都取得較好的臨床效果[25-27]。
骨髓造血干細(xì)胞的臨床應(yīng)用已經(jīng)相當(dāng)成熟,其安全性和效果也得到了認(rèn)可[28-29]。隨著細(xì)胞技術(shù)的飛速發(fā)展,其治療范圍已不再局限于造血疾病,細(xì)胞移植療法的日漸崛起為神經(jīng)退行性疾病的治療提供了新的路徑[30-33]。細(xì)胞代替療法成為治療AD的最佳選擇,已有實(shí)驗(yàn)證明,向AD嚙齒動(dòng)物模型移植神經(jīng)前體細(xì)胞或海馬神經(jīng)元等細(xì)胞,它們的突觸密度和認(rèn)知功能都有所提高[34-36]。雖然干細(xì)胞移植治療AD的臨床試驗(yàn)研究還未見報(bào)道,但是基礎(chǔ)實(shí)驗(yàn)研究已經(jīng)開展,已有研究人員獲得了AD患者多能誘導(dǎo)干細(xì)胞,并將其用于AD的發(fā)病機(jī)制、診斷和治療的研究[37]。最近有研究報(bào)道,將小鼠胚胎干細(xì)胞體外分化成熟且功能完善的前腦膽堿能神經(jīng)元移植至AD小鼠模型基底前腦部位,結(jié)果發(fā)現(xiàn),移植后小鼠學(xué)習(xí)和記憶能力顯著提高,這為開發(fā)胚胎干細(xì)胞來源的膽堿能神經(jīng)元用于AD治療打下了良好的臨床前基礎(chǔ)[38]。
3 骨髓間充質(zhì)干細(xì)胞移植治療AD的現(xiàn)狀
移植骨髓間充質(zhì)干細(xì)胞(BMSCs)已經(jīng)被認(rèn)為是一種防治各種神經(jīng)退行性疾病的極具潛力的方法,包括AD[39]。BMSCs治療AD小鼠模型的研究已有報(bào)道[40]。BMSCs具有自我更新的能力,存在于骨髓間質(zhì)中,在一些特定情況下可分化為軟骨細(xì)胞、成骨細(xì)胞、脂肪細(xì)胞、成纖維細(xì)胞、血管內(nèi)皮細(xì)胞、肝卵圓細(xì)胞、平滑肌細(xì)胞、神經(jīng)細(xì)胞和心肌細(xì)胞等[41]。目前細(xì)胞治療技術(shù)所用的細(xì)胞可分為3類,第一類為成熟及有一定增殖能力的未成熟功能細(xì)胞,如神經(jīng)前體細(xì)胞和少突膠質(zhì)前體細(xì)胞等;第二類為基質(zhì)或間充質(zhì)類細(xì)胞,可來源于血和骨髓[42];第三類為具有多分化潛能的干細(xì)胞,但其安全性沒有得到證實(shí)。
骨髓間充質(zhì)干細(xì)胞具有多向分化的潛能,現(xiàn)已證明其可以體外分化成為神經(jīng)樣細(xì)胞,移植入人體也可以誘導(dǎo)分化為神經(jīng)細(xì)胞,并且向損傷部位遷移,為神經(jīng)損傷疾病的治療提供了新的契機(jī)[43]。但是,骨髓間充質(zhì)干細(xì)胞的研究仍然處于基礎(chǔ)研究階段,臨床研究的安全性等問題使其臨床應(yīng)用受到限制。近期有實(shí)驗(yàn)將骨髓間充質(zhì)干細(xì)胞立體定位移植入患者的側(cè)腦室區(qū)域治療帕金森病,結(jié)果顯示,帕金森病評(píng)定量表中患者面部表情、步態(tài)和凍結(jié)發(fā)作等主觀癥狀均得到改善,且無嚴(yán)重不良事件發(fā)生[44]。在Lee等人的研究中發(fā)現(xiàn),BMSCs可以減弱β淀粉樣沉積對(duì)記憶的損害,抑制神經(jīng)細(xì)胞的凋亡[45]。最近研究證明,BMSCs有助于大腦損傷的修復(fù),其作用機(jī)制是產(chǎn)生乙酰膽堿轉(zhuǎn)移酶的細(xì)胞數(shù)量和生存表達(dá)顯著提高,并且選擇性地增強(qiáng)seladin-1和巢蛋白基因的表達(dá),組織病理學(xué)檢查表明,BMSCs可以清除海馬β-淀粉樣蛋白斑塊,在治療AD中表現(xiàn)出抗凋亡和神經(jīng)源性免疫調(diào)節(jié)作用[46]。在Bae等人的研究中發(fā)現(xiàn),向AD模型小鼠的大腦內(nèi)注射BMSCs可顯著降低大腦β-淀粉樣蛋白的沉積,腦內(nèi)dynamin 1和Synapsin 1以及與突觸傳遞有關(guān)的突觸前體蛋白的表達(dá)也會(huì)明顯降低,并且這種作用在BMSCs治療后的AD小鼠腦內(nèi)可持續(xù)2個(gè)月。實(shí)驗(yàn)數(shù)據(jù)顯示,BMSCs會(huì)顯著降低AD小鼠腦β-淀粉樣蛋白的沉積,促進(jìn)突觸傳遞所需蛋白的提高[47]。小膠質(zhì)細(xì)胞可以通過特異性吞噬作用清除β-淀粉樣蛋白的沉積,BMSCs可以通過激活內(nèi)源性小膠質(zhì)細(xì)胞對(duì)AD大鼠產(chǎn)生良好的治療效果,并且該效果與CCL5的表達(dá)有關(guān)[48]。ZHANG等對(duì)BMSCs側(cè)腦室移植治療AD的研究證明,移植BMSCs后的大鼠海馬區(qū)酪氨酸激酶β和腦源性神經(jīng)生長(zhǎng)因子的水平顯著提高,從而提高AD模型大鼠的記憶能力[49]。近兩年,中藥干預(yù)BMSCs移植治療AD的效果實(shí)驗(yàn)也在進(jìn)行,WU的實(shí)驗(yàn)證明,人參皂苷Rg1可以加強(qiáng)BMSCs移植后癡呆大鼠的空間學(xué)習(xí)記憶能力,其機(jī)制可能與調(diào)控基底前腦的mRNA和神經(jīng)生長(zhǎng)因子的表達(dá)有關(guān)[50]。高明龍等人的研究發(fā)現(xiàn),將BMSCs移植入AD模型大鼠海馬區(qū)后,腦組織中超氧化物歧化酶水平升高,戊二醛水平降低,可有效改善氧自由基在大鼠體內(nèi)的代謝,使AD大鼠的記憶力得到顯著改善[51]。張穎等人的研究證實(shí),經(jīng)BMSCs移植治療后的AD模型大鼠腦組織細(xì)胞變性壞死數(shù)量減少,學(xué)習(xí)和記憶能力有明顯提高[52]。王卓等人研究發(fā)現(xiàn),向AD模型大鼠雙側(cè)海馬區(qū)移植BMSCs后,BMSCs在海馬區(qū)周圍分化為神經(jīng)絲(neurofilament,NF)和膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)陽(yáng)性細(xì)胞,腦內(nèi)β淀粉樣蛋白沉積明顯降低,可有效提高AD大鼠的學(xué)習(xí)記憶能力[53]。隨著對(duì)BMSCs移植治療AD實(shí)驗(yàn)研究的不斷深入,其作用機(jī)制正在逐漸被科研人員所了解。
干細(xì)胞已被成功應(yīng)用于治療血液疾病領(lǐng)域,干細(xì)胞治療AD的前景也相當(dāng)廣闊。隨著BMSCs研究的不斷進(jìn)展,其移植治療AD模型動(dòng)物的初見成效,為BMSCs移植治療AD的臨床研究打下了基礎(chǔ)。然而現(xiàn)階段干細(xì)胞研究主要集中在基礎(chǔ)實(shí)驗(yàn)階段,干細(xì)胞技術(shù)治療AD的臨床實(shí)驗(yàn)研究依舊較少,并且從基礎(chǔ)動(dòng)物實(shí)驗(yàn)到臨床實(shí)驗(yàn)研究還存在很多困難,如BMSCs定位移植入腦遷移至海馬區(qū)的確定時(shí)間,在腦內(nèi)內(nèi)環(huán)境中BMSCs向神經(jīng)細(xì)胞分化的機(jī)制及其向腫瘤細(xì)胞分化的安全性問題等還有待進(jìn)一步研究。
[1]GOEDERT M,SPILLANTINI M G.A century of Alzheimer’s disease[J].Science,2006,314(5800):777-781.
[2]SASSI C,GUERREIRO R,GIBBS R,et al.Investigating the role of rare coding variability in Mendelian dementia genes(APP,PSEN1,PSEN2,GRN,MAPT,and PRNP)in late-onset Alzheimer’s disease[J].Neurobiol Aging,2014,35(12):2881-2886.
[3]Alzheimer’s Association.2012 Alzheimer’s disease facts and figures[J].Alzheimers Dement,2012,8(2):131-168.
[4]LI X,LI M,LI Y,et al.Cellular and molecular mechanisms underlying the action of ginsenoside Rg1 against Alzheimer’s disease[J].Neural Regen Res,2012,7(36):2860-2866.
[5]SCHWARZ S C,SCHWARZ J.Translation of stem cell therapy for neurological diseases[J].Transl Res,2010,156(3):155-160.
[6]BAHARNOORI M,BRAKE W G,SRIVASTAVA L K.Prenatal immune challenge induces developmental changes in the morphology of pyramidal neurons of the prefrontal cortex and hippocampus in rats[J].Schizophr Res,2009,107(1):99-109.
[7]DEZAWA M,KANNO H,HOSHINO M,et al.Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation[J].J Clin Invest,2004,113(12):1701-1710.
[8]RONSYN M W,DAANS J,SPAEPEN G,et al.Plasmid-based genetic modification of human bone marrow-derived stromal cells:analysis of cell survival and transgene expression after transplantation in rat spinal cord[J].BMC Biotechnol,2007,7(1):90.
[9]FAIVRE E,HOLSCHER C.Neuroprotective effects of D-Ala2GIP on Alzheimer’s disease biomarkers in an APP/PS1 mouse model[J].Alzheimer’s Res The,2013,5(2):20.
[10]CHEN Z C,ZHONG C J.Oxidative stress in Alzheimer’s disease[J].Neurosci Bull,2014,30(2):271-281.
[11]PETERSEN R B,NUNOMURA A,LEE H G,et al.Signal transduction cascades associated with oxidative stress in Alzheimer’s disease[J].J Alzheimers Dis,2007,11(2):143-152.
[12]ANCOLI-ISRAEL S,PALMER B W,COOKE J R,et al.Cognitive effects of treating obstructive sleep apnea in Alzheimer’s disease:a randomized controlled study[J].Am Geriatr Soc,2008,56(11):2076-2081.
[13]TILLEMENT L,LECANU L,PAPADOPOULOS V.Alzheimer’s disease:effects of beta-amyloid on mitochondria[J].Mitochondrion,2011,11(1):13-21.
[14]MICHELUCCI A,HEURTAUX T,GRANDBARBE L,et al.Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions:effects of oligomeric and fibrillary amyloid-β[J].J Neuroimmunol,2009,210(1-2):3-12.
[15]KYRKANIDES S,TALLENTS R H,MILLER J N,et al.Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in mice[J].J Neuroinflammation,2011,8:112.
[16]COLOVIC M B,KRSTIC D Z,LAZAREVIC-PASTI T D,et al.Acetylcholinesterase inhibitors:pharmacology and toxicology[J].Curr Neuropharmcol,2013,11(3):315-335.
[17]MINARINI A,MILELLI A,SIMONI E,et al.Multifunctional tacrine derivatives in Alzheimer’s disease[J].Curr Top Med Chem,2013,13(15):1771.
[18]DRYE L T,ZANDI P P.Role of APOE and age at enrollment in the Alzheimer’s disease anti-inflammatory prevention trial(ADAPT)[J].Dement Geriatr Cogn Dis Extra,2012,2(1):304.
[19]DEVORE E E,GRODSTEIN F,VAN R,et al.Dietary antioxidants and long-term risk of dementia[J].Arch Neurol,2010,67(7):819.
[20]LLEWELLYN D J,LANG I A,LANGA K M,et al.Vitamin D and risk of cognitive decline in elderly persons[J].Arch Intern Med,2010,170(13):1135.
[21]HE P,OUYANG X,ZHOU S,et al.A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer’disease[J].Horm Behav,2013,64(1):1.
[22]CHAN K Y,WANG W,WU J J,et al.Epidemiology of Alzheimer’s disease and other forms of dementia in China,1990-2010:a systematic review and analysis[J].Lancet,2013,381(9882):2016-2023.
[23]REIMAN E M.Alzheimer’s disease and other dementias: advances in 2013[J].Lancet Neurol,2014,13(1):3-5.
[24]ROSENBLUM W I.Why Alzheimer trials fail:Removing soluble oligomeric beta amyloid is essential,inconsistent,and difficult[J].Neurobiol Aging,2014,35(5):969-974.
[25]HWANG D H,SHIN H Y,KIM B G.Fortuitous benefits of activity-based rehabilitation in stem cell-based therapy for spinal cord repair:enhancing graft survival[J].Neural Regen Res,2015,10(10):1589-1590.
[26]YIN Y,ZHOU X,GUAN X,et al.In vivo tracking of human adipose-derived stem cell labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging[J].Neural Regen Res,2015,10(6):909-915.
[27]YU H B,CHEN P D,YANG Z X,et al.Electro-acupuncture at Conception and Governor vessels and transplantation of umbilical cord blood-derived messenchymal stem cells for treating cerebral ischemia/reperfusion injury[J].Neural Regen Res,2014,9(1):84-91.
[28]MIURA Y,YOSHIOKA S,YAO H,et al.Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation:is it clinically relevant[J].Chimerism,2013,4(3):78-83.
[29]RAMKUMAR C,GERSTEIN R M,ZHANG H.Serial transplantation of bone marrow to test self-renewal capacity of hematopoietic stem cells in vivo[J].Methods Mol Biol,2013,976:17-24.
[30]OH K W,MOON C,KIM H Y,et al.Phase Ⅰ trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis[J].Stem Cells Transl Med,2015,4(6):590-597.
[31]LEE H J,KIM K S,AHN J,et al.Human motor neurons generated from neural stem cells delay clinical onset and prolong life in ALS mouse model[J].PLoS One,2014,9(5):e97518.
[32]FELDMAN E L,BOULIS N M,HUR J,et al.Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis:phase 1 trial outcomes[J].Ann Neurol,2014,75(3):363-373.
[33]LAMPRON A,PIMENTEL COELHO P M,RIVEST S.Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration[J].J Comp Neurol,2013,521(17):3863-3876.
[34]WANG Z,PENG W,ZHANG C,et al.Effects of stem cell transplantatiom on cognitive decline in animal models of Alzheimer’s disease:a systematic review and meta-analysis[J].Sci Rep,2015,5:12134.
[35]TONG L M,F(xiàn)ONG H,HUANG Y.Stem cell therapy for Alzheimer’s disease and related disorders:current status and future perspectives[J].Exp Mol Med,2015,47:e151.
[36]ZHANG W,GU G J,SHEN X,et al.Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology[J].Neurobiol Aging,2015,36(3):1282-1292.
[37]AGER R R,DAVIS J L,AGAZARYAN A,et al.Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss[J].Hippocampus,2015,25(7):813-826.
[38]YUE W,LI Y,ZHANG T,et al.ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models[J].Stem Cell Reports,2015,5:776-790.
[39]LEE J K,JIN H K,ENDO S,et al.Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses[J].Stem Cells,2010,28(2):329-343.
[40]LIU Z L,WANG C,WANG X,et al.Therapeutic effects of transplantation of as-MiR-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease[J].Cell Physiol Biochem,2015,37(1):321-330.
[41]SCHWARTZ R E,REYES M,KOODIE L,et al.Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-likecells[J].J Clin Invest,2002,109(10):1291-1302.
[42]YEH D C,CHAN T M,HARN H J,et al.Adipose tissue-derived stem cells in neural regenerative medicine[J].Cell Transplant,2015,24(3):487-492.
[43]CHO J S,PARK H W,PARK S K,et al.Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture[J].Neurosci Lett,2009,454(1):43-48.
[44]VENKATARAMANA N K,KUMAR S K,BALARAJU S,et al.Open-labeled study of unilateral autologous bone marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease[J].Transl Res,2010,155(2):62-70.
[45]LEE J K,JIN H K,BAE J S.Bone marrow-derived mesenchymal stem cells attenuate amyloid β-induced memory impairment and apoptosis by inhibiting neuronal cell death[J].Curr Alzheimer Res,2010,7(6):540-548.
[46]SALEM A M,AHMED H H,ATTA H M,et al.Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats[J].Cell Biol Int,2014,38(12):1367-1383.
[47]BAE J S,JIN H K,LEE J K,et al.Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease[J].Curr Alzheimer Res,2013,10(5):524-531.
[48]LEE J K,SCHUCHMAN E H,JIN H K,et al.Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activation by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses[J].Stem Cells,2012,30(7):1544-1555.
[49]ZHANG P,ZHAO G,KANG X,et al.Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer’s disease[J].Neural Regen Res,2012,7(4):245-250.
[50]WU W,YANG J Q,HE Z Y.Effect of ginsenoside Rg1 on the spatial learning-memory ability in dementia rats after transplanted with bone marrow mesenchymal stem cells[J].Zhongguo Zhong Xi Yi Jie He Za Zhi,2011,31(6):799-802.
[51]高明龍,孫麗,趙小川,等.骨髓間充質(zhì)干細(xì)胞移植對(duì)老年癡呆行為學(xué)的影響[J].中國(guó)組織工程研究,2016,32(20):4798-4804.
[52]張穎,郭建華,閆洪娟,等.骨髓間充質(zhì)干細(xì)胞移植治療老年癡呆模型大鼠的行為學(xué)檢測(cè)[J].中國(guó)組織工程研究,2016,36(20):5371-5377.
[53]王卓,任向前,未東興.向海馬區(qū)移植骨髓間充質(zhì)干細(xì)胞改善阿爾茨海默病大鼠記憶能力[J].中國(guó)組織工程研究,2014,50(18):8130-8134.
[責(zé)任編輯:李薊龍 英文編輯:劉彥哲]
Research Progresses of Bone Marrow Mesenchymal Stem Cell Transplantation for Treatment of Alzheimer’s Disease
LI Peng-tao1,YANG Xiao-nan1,ZHANG Hui2
(1.Graduate Faculty,Hebei North University,Zhangjiakou,Hebei 075000,China; 2.School of Basic Medicine,Hebei North University,Zhangjiakou,Hebei 075000,China)
Alzheimer’s diseases(AD)is a kind of disease that cholinergic and dopaminergic neurons are degenerative.AD is mainly treated by medication at present,but the therapeutic effect is unsatisfactory in advanced stage of AD.With the gradual development of cell therapy technology,the research of cell transplantation becomes a hot spot.Bone marrow mesenchymal stem cells(BMSCs)is a kind of non-hematopoietic stem cell,which it is in the bone marrow at present and has the potential of multi-directional differentiation.The BMSCs for the treatment of AD provides a new thought for the treatment of neurodegenerative diseases.There has been a lot of research on BMSCs transplantation for the treatment of AD at home and abroad,and the research achievement is fruitful.But there are amount of difficulties to apply the therapy to clinic treatment.In this paper,the research development of AD and BMSCs as well as BMSCs transplantation that has been used to treat AD were reviewed.
Alzheimer’s diseases;bone marrow mesenchymal stem cell;cell transplantation
河北省高等學(xué)??茖W(xué)技術(shù)研究項(xiàng)目(No.ZD2014067)
李鵬濤(1991-),男,漢族,河北邯鄲人,河北北方學(xué)院2014級(jí)碩士研究生。
張輝(1963-),男,漢族,河北三河人,教授,碩士生導(dǎo)師,主要從事神經(jīng)損傷修復(fù)研究。
R 74
C
10.3969/j.issn.1673-1492.2017.08.018
來稿日期:2016-11-29