董 淵*,李曉恒*,侯 琳,程金波
(1.青島大學(xué)醫(yī)學(xué)部,山東青島 266071;2.首都醫(yī)科大學(xué)腦重大疾病研究院,北京 100069;3.軍事醫(yī)學(xué)研究院軍事認(rèn)知與腦科學(xué)研究所,北京 100850)
神經(jīng)炎癥是指發(fā)生在中樞神經(jīng)系統(tǒng)(central nervous system,CNS)及周圍神經(jīng)系統(tǒng)中的炎癥反應(yīng)。感染、外傷、有毒代謝物和自身免疫異常等多種因素均可引起神經(jīng)炎癥的發(fā)生[1]。大量的研究發(fā)現(xiàn),多種神經(jīng)退行性疾病的發(fā)生與神經(jīng)炎癥密切相關(guān)[2],如阿爾茨海默病(Alzheimer disease,AD)[3-4]和帕金森病(Parkinson disease,PD)[5]。在AD中,神經(jīng)炎癥不僅是由β淀粉樣蛋白(β-amyloid protein,Aβ)斑塊和神經(jīng)原纖維纏結(jié)引起的組織反應(yīng),同時(shí)作為一種重要的致病因素,在疾病的發(fā)生發(fā)展過程中起到重要作用[3]。在腦損傷疾病,如腦卒中和創(chuàng)傷性腦損傷中,神經(jīng)炎癥參與損傷修復(fù)和免疫防御的同時(shí),其誘導(dǎo)產(chǎn)生的細(xì)胞增生與腦損傷的不良預(yù)后顯著相關(guān)[6]。此外,神經(jīng)炎癥也參與抑郁癥等精神疾病的發(fā)生[7]。
神經(jīng)炎癥主要由神經(jīng)系統(tǒng)中促炎細(xì)胞因子介導(dǎo),包括腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、白細(xì)胞介素 1β(interleukin-1β,IL-1β)、IL-18、IL-6和Ⅰ型干擾素(interferon,IFN)等。細(xì)胞因子是一類調(diào)控細(xì)胞炎癥、信號轉(zhuǎn)導(dǎo)和細(xì)胞生長的蛋白,其中趨化因子可調(diào)控細(xì)胞遷移,并在感染和損傷中起到招募免疫細(xì)胞的作用[8]。適當(dāng)?shù)纳窠?jīng)炎癥水平是神經(jīng)系統(tǒng)先天免疫防線中重要的一部分。然而,當(dāng)神經(jīng)炎癥反應(yīng)過度且持續(xù)地發(fā)生時(shí),大量釋放的促炎細(xì)胞因子,導(dǎo)致神經(jīng)元的變性和退化、血管內(nèi)皮細(xì)胞的損傷和血腦屏障的破壞,使得外周免疫細(xì)胞浸潤,造成神經(jīng)損傷[8]。因此,神經(jīng)炎癥猶如雙刃劍,在多種神經(jīng)退行性疾病、精神疾病和腦損傷中扮演重要角色。先天免疫受體在神經(jīng)炎癥的發(fā)生過程中發(fā)揮著至關(guān)重要的作用。本綜述重點(diǎn)總結(jié)并討論參與CNS炎癥的主要免疫受體在神經(jīng)疾病中的作用,以及目前靶向神經(jīng)炎癥的藥物研發(fā)研究進(jìn)展。
Toll樣受體(Toll-like receptors,TLR)是先天免疫系統(tǒng)中重要的一類模式識別受體(圖1)。TLR的激活可經(jīng)由聯(lián)接蛋白髓樣分化初次應(yīng)答因子88(myeloid differentiation primary response 88,MYD88)激活下游NF-κB信號通路,調(diào)控促炎細(xì)胞因子,如TNF-α,IL-1β和IL-6的表達(dá);或經(jīng)由β干擾素Toll/白細(xì)胞介素1受體同源結(jié)構(gòu)或銜接蛋白(TIR-domain-containing adapter-inducing interferon-β,TRIF)通路激活干擾素調(diào)節(jié)因子3,引起Ⅰ型IFN如IFN-α和IFN-β的表達(dá)。目前共發(fā)現(xiàn)13種TLR,其中有10種(TLR1~TLR10)在人類細(xì)胞中有表達(dá),它們主要以二聚體的形式發(fā)揮免疫識別受體的作用。TLR家族受體表達(dá)于細(xì)胞的細(xì)胞膜和胞內(nèi)體膜上,識別來自微生物序列保守的病原相關(guān)分子模式和來自細(xì)胞內(nèi)由炎癥和損傷引起的損傷相關(guān)分子模式。在CNS中,TLR主要由神經(jīng)膠質(zhì)細(xì)胞表達(dá),其中小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞表達(dá)TLR1~TLR9,在少突膠質(zhì)細(xì)胞中有TLR2和TLR3的表達(dá)[9],TLR在神經(jīng)元中亦有表達(dá),提示TLR在神經(jīng)系統(tǒng)中的免疫應(yīng)答及膠質(zhì)細(xì)胞和神經(jīng)元的相互作用中起到重要作用[10]。大量的研究發(fā)現(xiàn),多種神經(jīng)系統(tǒng)疾病與TLR參與的神經(jīng)炎癥密切相關(guān)。本文將從神經(jīng)退行性疾病、精神疾病及腦損傷等幾個(gè)方面,總結(jié)TLR參與神經(jīng)系統(tǒng)疾病的研究進(jìn)展。
圖1 先天免疫識別受體調(diào)控細(xì)胞因子的釋放.TLR:Toll樣受體;MYD88:聯(lián)接蛋白髓樣分化初次應(yīng)答因子88;TNF-α:腫瘤壞死因子α;IL-1β:白細(xì)胞介素1β;TRIF:β干擾素Toll/白細(xì)胞介素1受體同源結(jié)構(gòu)域銜接蛋白;IRF:干擾素調(diào)節(jié)因子;IFN:干擾素;NLRP3:NOD樣受體蛋白3;ASC:凋亡相關(guān)點(diǎn)樣蛋白;caspase:胱天蛋白酶;RIG-I:視黃酸誘導(dǎo)基因蛋白I;MDA5:黑素瘤分化相關(guān)蛋白5;MAVS:線粒體抗病毒蛋白.
研究表明,TLR家族受體蛋白在Aβ斑塊周圍表達(dá)顯著升高,包括 TLR2,TLR4,TLR5,TLR7 和TLR9等多種類型,提示其在AD發(fā)病過程中起到重要作用[11-14]。Aβ注射至小鼠海馬體中可引起小膠質(zhì)細(xì)胞中TLR2的表達(dá)增加,TLR2的缺失可抑制Aβ引起的小膠質(zhì)細(xì)胞激活和由此引發(fā)的神經(jīng)炎癥[15]。然而,在另一項(xiàng)研究中,TLR2的缺失卻增加了β淀粉樣前體蛋白/早老素1(amyloid-β precursor protein/presenilin-1,APP/PS1)轉(zhuǎn)基因小鼠腦內(nèi)Aβ的含量,并加劇了小鼠認(rèn)知能力的損傷[16]。TLR4功能缺失性突變卻可抑制Aβ引起小膠質(zhì)細(xì)胞激活和促炎細(xì)胞因子的釋放,從而抑制了神經(jīng)炎癥和神經(jīng)損傷的發(fā)生,因此在AD的發(fā)病中起到保護(hù)作用[17]。TLR4可介導(dǎo)小膠質(zhì)細(xì)胞與Aβ的結(jié)合,并引起細(xì)胞吞噬[18],同時(shí)Aβ寡聚體和纖維又可通過CD36引起TLR4和TLR6的聚合,激活下游神經(jīng)炎癥[19]。此外,神經(jīng)元中TLR2和TLR4參與了Aβ和脂質(zhì)過氧化物引起的神經(jīng)細(xì)胞凋亡[20]。以上這些研究揭示,TLR在神經(jīng)炎癥和神經(jīng)退行性疾病中起到重要作用。一方面,TLR介導(dǎo)小膠質(zhì)細(xì)胞吞噬Aβ,加快蛋白沉積的清除,保護(hù)神經(jīng)元;另一方面,TLR引起的小膠質(zhì)細(xì)胞激活和神經(jīng)炎癥促進(jìn)了神經(jīng)損傷的發(fā)生,反而促進(jìn)AD病情的發(fā)展。
在體過表達(dá)或體外使用α突觸核蛋白刺激可以導(dǎo)致小膠質(zhì)細(xì)胞活化,同時(shí)伴隨TLR2表達(dá)升高和神經(jīng)炎癥的增加[21],表明TLR2在PD發(fā)病過程中具有重要作用。同樣,TLR4的表達(dá)在PD患者腦中顯著增加[22],機(jī)制上TLR4可促進(jìn)小膠質(zhì)細(xì)胞對α突觸核蛋白的吞噬,因此保護(hù)黑質(zhì)區(qū)多巴胺神經(jīng)元,但同時(shí)TLR4又可通過介導(dǎo)神經(jīng)炎癥加劇1-甲基-4-苯基-1,2,3,6-四氫吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)誘導(dǎo)的PD模型小鼠的神經(jīng)損傷[23-24]。
上述研究提示,TLR從不同方面影響了神經(jīng)退行性疾病的發(fā)生發(fā)展:一方面,Aβ和α突觸核蛋白等蛋白的沉積,通過TLR激活小膠質(zhì)細(xì)胞并引起神經(jīng)炎癥進(jìn)而造成神經(jīng)損傷;另一方面,TLR也在調(diào)控小膠質(zhì)細(xì)胞清除蛋白沉積中起到重要作用,因此具有神經(jīng)保護(hù)的功能。
在抑郁癥的研究中發(fā)現(xiàn),慢性溫和應(yīng)激后,TLR4激活導(dǎo)致的神經(jīng)炎癥在抑郁癥的發(fā)病中起到重要作用[25]。臨床研究發(fā)現(xiàn),TLR4的激活還與抑郁癥和焦慮癥引起的腸易激綜合征相關(guān)[26]。在躁郁癥(bipolar disorder,BD)的臨床研究中發(fā)現(xiàn),TLR1,TLR2,TLR4和TLR6以及這些受體介導(dǎo)的炎癥反應(yīng)的增強(qiáng)與BD的發(fā)生密切相關(guān)[27-28],其中,TLR2作用機(jī)制可能與調(diào)控糖原合成酶激酶3β有關(guān)[29]。
在缺血性腦卒中,TLR也發(fā)揮重要作用。腦卒中患者中TLR2和TLR4的表達(dá)量、細(xì)胞因子IL-1β,IL-6和TNF-α的水平與預(yù)后不良程度顯著相關(guān)[30]。腦缺血再灌注(cerebral ischemia/reperfusion,I/R)模型小鼠皮質(zhì)和海馬區(qū)的TLR2和TLR4的含量顯著上升,TLR2或TLR4的缺失或抑制可顯著降低I/R模型中腦損傷程度[31-33],這部分功能可能來自于神經(jīng)元表達(dá)的TLR2[31,34]。研究發(fā)現(xiàn),TLR4的激活不會(huì)增加神經(jīng)細(xì)胞的死亡,低水平的激活反而能促進(jìn)神經(jīng)元的生存[35],然而當(dāng)其過度激活,由此介導(dǎo)的大量神經(jīng)炎癥可能是腦卒中神經(jīng)損傷的重要來源[36]。TLR8在腦卒中患者的血液中表達(dá)量的上升與患者預(yù)后的不良程度顯著相關(guān),伴隨更大的腦梗死面積和嚴(yán)重的神經(jīng)炎癥反應(yīng)[37]。同樣在模型小鼠中,TLR8表達(dá)發(fā)生顯著上調(diào),并加重腦卒中引起的神經(jīng)損傷[38]。
總之,TLR作為重要的先天免疫受體,參與多種神經(jīng)系統(tǒng)疾?。òㄉ窠?jīng)退行性疾病、精神疾病和腦卒中引起的腦損傷)的發(fā)生。TLR的激活,一方面能調(diào)控神經(jīng)膠質(zhì)細(xì)胞清除蛋白沉積和損傷的神經(jīng)元,并因此具有神經(jīng)保護(hù)作用;另一方面,其介導(dǎo)的神經(jīng)炎癥反應(yīng)在多種神經(jīng)系統(tǒng)疾病的發(fā)展過程中起到了放大作用,并加重神經(jīng)損傷。
Nod樣受體(Nod-like receptors,NLR)是一類胞漿內(nèi)的免疫識別受體,在先天免疫系統(tǒng)中起到重要作用(圖1),NLR激活介導(dǎo)的神經(jīng)炎癥與多種神經(jīng)疾病的發(fā)生密切相關(guān)。本部分將主要總結(jié)并探討NLR參與神經(jīng)退行性疾病和精神疾病的研究進(jìn)展。
AD患者腦內(nèi)神經(jīng)元NLRP1(NACHT,LRR and PYD domains-containing protein 1)的表達(dá)發(fā)生顯著上調(diào),同時(shí)伴有胱天蛋白酶6表達(dá)升高[39]。NLRP1炎癥小體可激活胱天蛋白酶1和6,并引起神經(jīng)軸突的變性[40]。AD患者中,NLRP1和NLRP3炎癥小體激活,其下游調(diào)控的細(xì)胞因子IL-1β和IL-18水平顯著增加[41]。在巨噬細(xì)胞中,Aβ可導(dǎo)致溶酶體損傷,誘導(dǎo)NLRP3炎癥小體的激活和IL-1β的激活和釋放。在CNS中,NLRP3由小膠質(zhì)細(xì)胞表達(dá),Aβ可激活小膠質(zhì)細(xì)胞,促進(jìn)IL-1β的釋放[42],說明NLRP3炎癥小體作為Aβ感受器,在Aβ吞噬及溶酶體損傷中起到重要作用。在轉(zhuǎn)基因(APP/PS1)AD模型小鼠中發(fā)現(xiàn),NLRP3的缺失可顯著改善小鼠的空間記憶能力,促進(jìn)小膠質(zhì)細(xì)胞從促炎M1型向抑炎M2型轉(zhuǎn)變[43]。同時(shí),NLRP3選擇性抑制劑MCC950可以顯著改善APP/PS1模型小鼠的認(rèn)知能力,降低小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥,促進(jìn)Aβ吞噬[44]。因此,NLRP3炎癥小體的激活在AD中起到了病情加重的作用,通過促進(jìn)神經(jīng)炎癥的發(fā)生,降低了小膠質(zhì)細(xì)胞細(xì)胞對蛋白沉積的清除能力,從而加劇對神經(jīng)細(xì)胞的損傷[45]。
α突觸核蛋白可在成體神經(jīng)干細(xì)胞(adult neural stem cells,ANSC)中激活TLR/NF-кB和NLRP3/胱天蛋白酶1信號通路,NLRP3的缺失可減弱α突觸核蛋白對ANSC增生的抑制作用[46]。盡管有研究報(bào)道,NLRP3在CNS中僅表達(dá)在小膠質(zhì)細(xì)胞中而非星形膠質(zhì)細(xì)胞[47],但仍有研究發(fā)現(xiàn),CNS中PD的發(fā)生與NLRP3在星形膠質(zhì)細(xì)胞中的激活相關(guān),如在MPTP誘發(fā)的PD模型中發(fā)現(xiàn),解偶聯(lián)蛋白2的缺失,通過激活星形膠質(zhì)細(xì)胞中的NLRP3炎癥小體,加劇了多巴胺神經(jīng)元的丟失[48]。以上研究揭示,NLRP3在PD的發(fā)病中可能承擔(dān)了放大炎癥反應(yīng),加重神經(jīng)損傷的作用。上述研究發(fā)現(xiàn),NLR的激活能在減少蛋白沉積清除的同時(shí),通過神經(jīng)炎癥加劇神經(jīng)損傷。
大量的臨床研究發(fā)現(xiàn),抑郁癥和精神分裂癥等精神疾病的發(fā)生與促炎細(xì)胞因子IL-1β和IL-18有顯著的相關(guān)性[49]。NLRP3和IL-1β的水平在抑郁癥模型小鼠的大腦中顯著上調(diào)[50],說明NLRP3炎癥小體在抑郁癥發(fā)病過程中發(fā)揮作用。同時(shí),抗抑郁藥物的使用能顯著降低患者血清中NLRP3炎癥小體組分和促炎細(xì)胞因子(IL-1β和IL-18)的含量。NLRP3的缺失或抑制可顯著緩解模型小鼠的抑郁樣行為[49]。這些結(jié)果說明NLR與神經(jīng)退行性疾病和抑郁癥發(fā)病的緊密關(guān)系,同時(shí)意味著對NLR的特異性抑制有可能成為治療此類疾病的新的治療方案。
RIG-I樣受體(RIG-I-like receptors,RLR)是細(xì)胞內(nèi)一類可識別病毒RNA的免疫識別受體,RLR的激活可引起Ⅰ型IFN的釋放[51](圖1)。在脊髓損傷發(fā)生后6 h內(nèi),RIG-I和黑色素瘤分化相關(guān)蛋白5(melanoma differentiation-associated protein 5,MDA5)的水平即發(fā)生了顯著上調(diào),同時(shí)伴隨IFN-α和IFN-β表達(dá)升高[52]。RIG-I和MDA5通過調(diào)控星形膠質(zhì)細(xì)胞中神經(jīng)膠質(zhì)纖維酸性蛋白和波形蛋白(vimentin)參與CNS外傷后激活星形膠質(zhì)細(xì)胞的過程[52]。線粒體抗病毒信號蛋白(mitochondrial antiviral signaling protein,MAVS)作為RIG-I的聯(lián)接蛋白,它的激活可促進(jìn)自噬作用,在小膠質(zhì)細(xì)胞的激活、神經(jīng)炎癥和相關(guān)的神經(jīng)疾病中發(fā)揮重要作用。MAVS可通過激活NF-кB和干擾素調(diào)節(jié)因子3信號通路引起神經(jīng)炎癥[53]。MAVS的缺失可保護(hù)MPTP導(dǎo)致的小膠質(zhì)細(xì)胞激活和多巴胺神經(jīng)元丟失[54]。同時(shí),線粒體鈣轉(zhuǎn)運(yùn)蛋白可通過與MAVS直接相互作用,介導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激引起的炎癥反應(yīng)[55]。另外,MAVS可介導(dǎo)NLRP3炎癥小體的線粒體移位,從而調(diào)控其激活過程[56],提示MAVS在NLRP3炎癥小體激活以及免疫穩(wěn)態(tài)的維持方面起到重要作用。
環(huán)二核苷酸合成酶(cyclic GMP-AMP synthase,cGAS)是細(xì)胞漿中重要的DNA受體。胞漿中游離的DNA片段被視為DNA病毒入侵或細(xì)胞損傷的標(biāo)志,它們可被cGAS識別,從而催化環(huán)二核苷酸(cyclic guanosin monophosphate-adenosin monophosphate,cGAMP)的合成。cGAMP作為第二信使,與內(nèi)質(zhì)網(wǎng)蛋白干擾素基因刺激蛋白(stimulator of interferon genes,STING)結(jié)合并激活下游信號通路[57-59]。近期研究發(fā)現(xiàn),炎癥小體的激活可引起胱天蛋白酶1與cGAS的相互作用,被剪切激活的胱天蛋白酶1能切割cGAS,從而抑制cGAS-STING介導(dǎo)的IFN產(chǎn)生[60]。這一發(fā)現(xiàn)揭示了cGASSTING信號通路與炎癥小體的交叉調(diào)節(jié),也暗示了cGAS-STING在神經(jīng)疾病中發(fā)揮重要作用,但目前尚無相關(guān)報(bào)道。
神經(jīng)系統(tǒng)疾病的研究一直以來都是神經(jīng)科學(xué)領(lǐng)域研究的重點(diǎn),然而目前的臨床治療手段,無論是藥物治療還是手術(shù)治療,都只能達(dá)到改善癥狀的目的,不能有效阻止病情的發(fā)展,更無法徹底治愈。以AD為例,目前由美國國家食品與藥品監(jiān)督局(Food and Drug Administration,F(xiàn)DA)批準(zhǔn)能用于AD臨床治療的藥物僅有5種,其中4種為乙酰膽堿酯酶抑制劑,另外一種是天門冬氨酸受體拮抗劑。它們均能在一定程度上改善AD癥狀,但通常伴隨嚴(yán)重的副作用。其中,他克林(tacrine)是第一種被FDA批準(zhǔn)用于AD治療的藥物,在2013年因其肝毒性的報(bào)道而被停用[61-65]。在AD中,Aβ為核心的老年斑塊和tau蛋白過磷酸化形成的神經(jīng)原纖維纏結(jié)被認(rèn)為是是導(dǎo)致神經(jīng)損傷和病情惡化的主要因素。因此,靶向Aβ和tau蛋白的藥物研究一直是AD治療研究的熱點(diǎn),然而大量的研究止步于臨床試驗(yàn)階段,目前仍沒有一種藥物能在AD臨床治療中發(fā)揮顯著療效。在PD中,臨床治療目前主要集中于提高腦內(nèi)多巴胺含量和改善多巴胺受體功能,其中主要包括多巴類制劑、抑制多巴胺降解的藥物和多巴胺受體興奮劑。2017年3月,F(xiàn)DA新批準(zhǔn)了沙芬酰胺(safinamide)用于PD的臨床治療[66]。此藥是一種單胺氧化酶B抑制,可以抑制劑多巴胺的降解,增加多巴胺在腦內(nèi)含量,達(dá)到保護(hù)多巴胺能神經(jīng)元的作用。在靶向神經(jīng)炎癥藥物的研究中,非甾體抗炎藥物(non-steroidal anti-inflammatory drugs,NSAID)用于神經(jīng)退行性疾病的治療的研究一直以來是該領(lǐng)域的熱點(diǎn)。研究發(fā)現(xiàn),布洛芬(ibuprofen)可有效緩解AD模型小鼠的癥狀,改善小鼠的認(rèn)知功能[67]。近期研究發(fā)現(xiàn),一種名為AL7的新型NSAID可有效抑制神經(jīng)炎癥的發(fā)生且有可能應(yīng)用于AD的治療[68],然而隨后的多個(gè)研究未發(fā)現(xiàn)NSAID使用能顯著改善人類或模型動(dòng)物的神經(jīng)退行性疾病相關(guān)的認(rèn)知障礙[69-72]。2015年,Coll等[73]發(fā)現(xiàn),NLRP3炎癥小體特異性抑制劑MCC950可在體有效減少促炎細(xì)胞因子IL-1β的分泌,減輕實(shí)驗(yàn)性變態(tài)反應(yīng)性腦脊髓炎模型小鼠的癥狀,增加冷吡啉相關(guān)自發(fā)炎癥綜合癥(cryopyrin-associated autoinflammatory syndrom,CAPS)模型小鼠的生存率。隨后的研究中發(fā)現(xiàn),MCC950能通過促進(jìn)Aβ的清除,改善AD模型小鼠(APP/PS1轉(zhuǎn)基因)的認(rèn)知功能[44]。2017年Jiang等[74]通過藥物篩選,發(fā)現(xiàn)CY-09能直接與NLRP3的ATP結(jié)合位點(diǎn)相互作用,特異性抑制NLRP3炎癥小體的活性,同時(shí)能緩解CAPS和2型糖尿病模型小鼠的癥狀。此外,TLR4抑制劑瑞沙托維(resatorvid)在創(chuàng)傷性腦損傷中具有神經(jīng)保護(hù)作用[75-76]。盡管目前仍沒有靶向神經(jīng)炎癥的藥物被美國FDA批準(zhǔn)用于此類神經(jīng)疾病的臨床治療,但這些研究為能有效緩解,甚至治愈此類神經(jīng)系統(tǒng)疾病的研究提供新的方向。
越來越多的證據(jù)顯示,許多神經(jīng)系統(tǒng)疾病的發(fā)生發(fā)展與神經(jīng)免疫炎癥密切相關(guān),其中先天免疫受體介導(dǎo)的神經(jīng)炎癥發(fā)揮重要作用。盡管目前已對先天免疫受體介導(dǎo)的神經(jīng)炎癥的作用以及調(diào)控機(jī)制有了一定認(rèn)識,但相較于外周免疫系統(tǒng)活化,腦內(nèi)神經(jīng)炎癥的活化機(jī)制還需要進(jìn)一步闡明,同時(shí)外周免疫系統(tǒng)如何影響神經(jīng)炎癥,它們兩者的互作如何影響神經(jīng)疾病的進(jìn)程都需要進(jìn)一步研究。針對目前臨床缺乏行之有效的治療藥物,免疫炎癥激活機(jī)制的闡明,以及靶向神經(jīng)炎癥藥物的開發(fā)以及應(yīng)用,為我們提供了一種新的治療策略和手段。
[1 ]Gendelman HE.Neural immunity:friend or foe?[J].J Neurovirol,2002,8(6):474-479.
[2 ]Ransohoff RM.How neuroinflammation contributes to neurodegeneration[J].Science,2016,353(6301):777-783.
[3 ]Heneka MT,Carson MJ,El Khoury J,Landreth GE,Brosseron F,F(xiàn)einstein DL,et al.Neuroinflammation in Alzheimer′s disease[J].Lancet Neurol,2015,14(4):388-405.
[4 ]McManus RM,Heneka MT.Role of neuroinflammation in neurodegeneration:new insights[J].Alzheimers Res Ther,2017,9(1):14.
[5 ]Vivekanantham S,Shah S,Dewji R,Dewji A,KhatriC,OlogundeR.Neuroinflammationin Parkinson′s disease:role in neurodegeneration and tissue repair[J].Int J Neurosci,2015,125(10):717-725.
[6 ]Jassam YN,Izzy S,Whalen M,McGavern DB,El Khoury J.Neuroimmunology of traumatic brain injury: time for a paradigm shift[J].Neuron,2017,95(6):1246-1265.
[7]Rossi S,Studer V,Motta C,Polidoro S,Perugini J,Macchiarulo G,et al.Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis[J].Neurology,2017,89(13):1338-1347.
[8 ]Ramesh G,MacLean AG,Philipp MT.Cytokines and chemokines at the crossroads of neuroinflammation,neurodegeneration,and neuropathic pain[J/OL].Mediators Inflamm,2013,2013:480739(2013-08-12).http://dx.doi.org/10.1155/2013/480739
[9 ]Jack CS,Arbour N,Manusow J,Montgrain V,Blain M,McCrea E,et al.TLR signaling tailors innate immune responses in human microglia and astrocytes[J].J Immunol,2005,175(7):4320-4330.
[10 ]Lafon M,Megret F,Lafage M,Prehaud C.The innate immune facet of brain:human neurons express TLR-3 and sense viral dsRNA[J].J Mol Neurosci,2006,29(3):185-194.
[11 ]Zhang W,Wang LZ,Yu JT,Chi ZF,Tan L.Increased expressions of TLR2 and TLR4 on peripheral blood mononuclear cells from patients with Alzheimer′s disease[J].J Neurol Sci,2012,315(1-2):67-71.
[12 ]Walter S,Letiembre M,Liu Y,Heine H,Penke B,Hao W,et al.Role of the toll-like receptor 4 in neuroinflammation in Alzheimer′s disease[J].Cell Physiol Biochem,2007,20(6):947-956.
[13 ]Letiembre M,Liu Y,Walter S,Hao W,Pfander T,Wrede A,et al.Screening of innate immune receptors in neurodegenerative diseases:a similar pattern[J].Neurobiol Aging,2009,30(5):759-768.
[14 ]Frank S,Copanaki E,Burbach GJ,Müller UC,Deller T.Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice[J].Neurosci Lett,2009,453(1):41-44.
[15 ]Jana M,Palencia CA,Pahan K.Fibrillar amyloidbeta peptides activate microglia via TLR2:implications for Alzheimer′s disease[J].J Immunol,2008,181(10):7254-7262.
[16 ]Richard KL,F(xiàn)ilali M,Préfontaine P,Rivest S.Tolllike receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer′s disease[J].J Neurosci,2008,28(22):5784-5793.
[17 ]Minoretti P,Gazzaruso C,Vito CD,Emanuele E,Bianchi M,Coen E,et al.Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer′s disease[J].Neurosci Lett,2006,391(3):147-149.
[18 ]Tahara K,Kim HD,Jin JJ,Maxwell JA,Li L,F(xiàn)ukuchi K.Role of toll-like receptor signalling in a beta uptake and clearance[J].Brain,2006,129(Pt 11):3006-3019.
[19 ]Stewart CR,Stuart LM,Wilkinson K,van Gils JM,Deng J,Halle A,et al.CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer[J].Nat Immunol,2010,11(2):155-161.
[20 ]Tang SC, Lathia JD, Selvaraj PK, Jo DG,Mughal MR,Cheng A,et al.Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal[J].Exp Neurol,2008,213(1):114-121.
[21]Kim C,Ho DH,Suk JE,You S,Michael S,Kang J,et al.Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia[J/OL].Nat Commun,2013,4:1562(2013-03-05).http://www.nature.com/articles/ncomms2534
[22 ]Doorn KJ,Moors T,Drukarch B,van de Berg WDj,Lucassen PJ,van Dam AM.Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson′s disease patients[J/OL].Acta Neuropathol Commun,2014,2:90(2014-08-07).http://www.actaneurocomms.org/content/2/1/90
[23 ]Stefanova N,F(xiàn)ellner L,Reindl M,Masliah E,Poewe W,Wenning GK.Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons[J].Am J Pathol,2011,179(2):954-963.
[24 ]Noelker C, Morel L, Lescot T, Osterloh A,Alvarez-Fischer D,Breloer M,et al.Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease[J/OL].Sci Rep,2013,3:1393(2013-03-06).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589722/pdf/srep01393.pdf
[25 ]Gárate I,García-Bueno B,Madrigal JL,Bravo L,Berrocoso E,Caso JR,et al.Origin and consequences of brain toll-like receptor 4 pathway stimulation in an experimental model of depression[J/OL].J Neuroinflammation,2011,8:151(2011-11-03).http://www.jneuroinflammation.com/content/8/1/151
[26]Jizhong S,Qiaomin W,Chao W,Yanqing L.Corticotropin-releasing factor and toll-like receptor gene expression is associated with low-grade inflammation in irritable bowel syndrome patients with depression[J/OL].Gastroenterol Res Pract, 2016,2016:7394924(2016-07-12).http://dx.doi.org/10.1155/2016/7394924
[27]Wieck A,Grassi-Oliveira R,do Prado CH,Viola TW,Petersen LE,Porto B,et al.Toll-like receptor expression and function in type Ⅰ bipolar disorder[J].Brain Behav Immun,2016,54:110-121.
[28]Oliveira J, Busson M, Etain B, Jamain S,Hamdani N,Boukouaci W,et al.Polymorphism of toll-like receptor 4 gene in bipolar disorder[J].J Affect Disord,2014,152-154:395-402.
[29]Li Y,Li H,Zhang Y,Sun X,Hanley GA,Le Sage G,et al.Toll-like receptor 2 is required for opioidsinduced neuronal apoptosis[J].Biochem Biophys Res Commun,2010,391(1):426-430.
[30 ]Brea D,Blanco M,Ramos-Cabrer P,Moldes O,Arias S,Pérez-Mato M,et al.Toll-like receptors 2 and 4 in ischemic stroke:outcome and therapeutic values[J].J Cereb Blood Flow Metab,2011,31(6):1424-1431.
[31]TangSC, ArumugamTV, XuX, ChengA,Mughal MR,Jo DG,et al.Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits[J].Proc Natl Acad Sci USA,2007,104(34):13798-13803.
[32]Ziegler G,Harhausen D,Schepers C,Hoffmann O,R?hr C,Prinz V,et al.TLR2 has a detrimental role in mouse transient focal cerebral ischemia[J].Biochem Biophys Res Commun,2007,359(3):574-579.
[33]Ziegler G,F(xiàn)reyer D,Harhausen D,Khojasteh U,Nietfeld W,Trendelenburg G.Blocking TLR2 in vivo protects againstaccumulation ofinflammatory cells and neuronal injury in experimental stroke[J].J Cereb Blood Flow Metab,2011,31(2):757-766.
[34 ]Li HY,Hu J,Zhao S,Yuan ZY,Wan HJ,Lei F,et al.Comparative study of the effect of baicalin and its natural analogs on neurons with oxygen and glucose deprivation involving innate immune reaction of TLR2/TNFα[J/OL].J Biomed Biotechnol,2012,2012:267890(2012-03-21).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321472/pdf/JBB2012-267890.pdf
[35]De Paola M, Mariani A, Bigini P,Peviani M,F(xiàn)errara G,Molteni M,et al.Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration[J].Mol Med,2012,18(1):971-981.
[36]Jin R,Yang G,Li G.Inflammatory mechanisms in ischemic stroke:role of inflammatory cells[J].J Leukoc Biol,2010,87(5):779-789.
[37 ]Brea D,Sobrino T,Rodríguez-Yá?ez M,Ramos-Cabrer P,Agulla J,Rodríguez-González R,et al.Toll-like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke[J].Clin Immunol,2011,139(2):193-198.
[38 ]Tang SC,Yeh SJ,Li YI,Wang YC,Baik SH,Santro T,et al.Evidence for a detrimental role of TLR8 in ischemic stroke[J].Exp Neurol,2013,250:341-347.
[39 ]Tan MS,Tan L,Jiang T,Zhu XC,Wang HF,Jia CD,et al.Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer′s disease[J/OL].Cell Death Dis,2014,5(8):e1382(2024-08-21).http://www.nature.com/cddis
[40]Kaushal V,Dye R,Pakavathkumar P,F(xiàn)oveau B,F(xiàn)lores J,Hyman B,et al.Neuronal NLRP1 inflammasome activation of caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated caspase-6 activation[J].Cell Death Differ,2015,22(10):1676-1686.
[41 ]Saresella M,La Rosa F,Piancone F,Zoppis M,Marventano I,Calabrese E,et al.The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer′s disease[J/OL].Mol Neurodegener,2016,11:23(2016-03-03).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778358/pdf/13024_2016_Article_88.pdf
[42 ]Terrill-Usery SE,Mohan MJ,Nichols MR.Amyloid-β(1-42)protofibrils stimulate a quantum of secreted IL-1β despite significant intracellular IL-1β accumulation in microglia[J].Biochim Biophys Acta,2014,1842(11):2276-2285.
[43]Heneka MT,Kummer MP,Stutz A,Delekate A,Schwartz S,Vieira-Saecker A,et al.NLRP3 is activated in Alzheimer′s disease and contributes to pathology in APP/PS1 mice[J].Nature,2013,493(7434):674-678.
[44]Dempsey C,Rubio Araiz A,Bryson KJ,F(xiàn)inucane O,Larkin C,Mills EL,et al.Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice[J].Brain Behav Immun,2017,61:306-316.
[45]Tan MS,Yu JT,Jiang T,Zhu XC,Tan L.The NLRP3 inflammasome in Alzheimer′s disease[J].Mol Neurobiol,2013,48(3):875-882.
[46]Fan Z,Lu M,Qiao C,Zhou Y,Ding JH,Hu G.MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/Caspase-1 axis in adult neural stem cells[J].Mol Neurobiol,2016,53(10):7057-7069.
[47]Gustin A,Kirchmeyer M,Koncina E,F(xiàn)elten P,Losciuto S,Heurtaux T,et al.NLRP3 Inflammasome is expressed and functional in mouse brain microglia but not in astrocytes[J/OL].PLoS One,2015,10(6):e0130624(2015-06-19).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474809/pdf/pone.0130624.pdf
[48]Lu M,Sun XL,Qiao C,Liu Y,Ding JH,Hu G.Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation[J].Neurobiol Aging,2014,35(2):421-430.
[49]Alcocer-Gómez E,Cordero MD.NLRP3 inflammasome:a new target in major depressive disorder[J].CNS Neurosci Ther,2014,20(3):294-295.
[50]Zhang Y,Liu L,Peng YL,Liu YZ,Wu TY,Shen XL,et al.Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors[J].CNS Neurosci Ther,2014,20(2):119-124.
[51 ]Szabo A,Bene K,Gogolák P,Réthi B,Lányi á,Jankovich I,et al.RLR-mediated production of interferon-β by a human dendritic cell subset and its role in virus-specific immunity[J].J Leukoc Biol,2012,92(1):159-169.
[52 ]de Rivero Vaccari JP,Minkiewicz J,Wang X,De Rivero Vaccari JC,German R,Marcillo AE,et al.Astrogliosis involves activation of retinoic acidinducible gene-like signaling in the innate immune response after spinal cord injury[J].Glia,2012,60(3):414-421.
[53]Seth RB,Sun L,Ea CK,Chen ZJ.Identification and characterization of MAVS,a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3[J].Cell,2005,122(5):669-682.
[54]Cheng J,Liao Y,Xiao L,Wu R,Zhao S,Chen H,et al.Autophagy regulates MAVS signaling activation in a phosphorylation-dependent manner in microglia[J].Cell Death Differ,2017,24(2):276-287.
[55]Cheng J,Liao Y,Zhou L,Peng S,Chen H,Yuan Z.Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stressmitochondrial calcium uniporter protein loop[J/OL].Sci Rep,2016,6:20158(2016-02-19).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759556/pdf/srep 20158.pdf
[56 ]Subramanian N,Natarajan K,Clatworthy MR,Wang Z,Germain RN.The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation[J].Cell,2013,153(2):348-361.
[57 ]Sun L,Wu J,Du F,Chen X,Chen ZJ.Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the typeⅠinterferon pathway[J].Science,2013,339(6121):786-791.
[58 ]Wu J,Sun L,Chen X,Du F,Shi H,Chen C,et al.CyclicGMP-AMP isanendogenoussecond messenger in innate immune signaling by cytosolic DNA[J].Science,2013,339(6121):826-830.
[59 ]Zhang X,Shi H,Wu J,Zhang X,Sun L,Chen C,et al.Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING[J].Mol Cell,2013,51(2):226-235.
[60 ]Wang Y,Ning X,Gao P,Wu S,Sha M,Lv M,et al.Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNAvirusinfection[J].Immunity,2017,46(3):393-404.
[61 ]Crismon ML.Tacrine:first drug approved for Alzheimer′s disease [J].Ann Pharmacother,1994,28(6):744-751.
[62 ]Pan SY,Guo BF,Zhang Y,Yu Q,Yu ZL,Dong H,et al.Tacrine treatment at high dose suppresses the recognition memory in juvenile and adult mice with attention to hepatotoxicity[J].Basic Clin Pharmacol Toxicol,2011,108(6):421-427.
[63 ]Galisteo M,Rissel M,Sergent O,Chevanne M,Cillard J,Guillouzo A,et al.Hepatotoxicity of tacrine:occurrence of membrane fluidity alterations without involvement of lipid peroxidation[J].J Pharmacol Exp Ther,2000,294(1):160-167.
[64 ]Gutzmann H,Kühl KP,Hadler D,Rapp MA.Safety and efficacy of idebenone versus tacrine in patients with Alzheimer′s disease:results of a randomized,double-blind,parallel-group multicenter study[J].Pharmacopsychiatry,2002,35(1):12-18.
[65 ]Gracon SI,Knapp MJ,Berghoff WG,Pierce M,DeJong R,Lobbestael SJ,et al.Safety of tacrine:clinical trials,treatment IND,and postmarketing experience [J].AlzheimerDisAssocDisord,1998,12(2):93-101.
[66 ]Cruz MP.Xadago(safinamide):A monoamine oxidase B inhibitor for the adjunct treatment of motor symptoms in Parkinson′s disease[J].P T,2017,42(10):622-637.
[67 ]Van Dam D,Coen K,De Deyn PP.Ibuprofen modifies cognitive disease progression in an Alzheimer′s mouse model[J].J Psychopharmacol,2010,24(3):383-388.
[68]Cacciatore I,Marinelli L,F(xiàn)ornasari E,Cerasa LS,Eusepi P,Türkez H,et al.Novel NSAID-derived drugs for the potential treatment of Alzheimer′s disease[J/OL].Int J Mol Sci,2016,17(7):1035(2016-06-30).http://www.mdpi.com/journal/ijms
[69 ]Miguel-álvarez M,Santos-Lozano A,Sanchis-Gomar F,F(xiàn)iuza-Luces C,Pareja-Galeano H,Garatachea N,et al.Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer′s disease:a systematic review and meta-analysis of treatment effect[J].Drugs Aging,2015,32(2):139-147.
[70]Jaturapatporn D,Isaac MG,McCleery J,Tabet N.Aspirin,steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer′s disease[J/OL].Cochrane Database Syst Rev,2012,(2):CD006378(2012-02-15).http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD006378.pub2/epdf/abstract
[71]Rees K,Stowe R,Patel S,Ives N,Breen K,Clarke CE,et al.Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson′s disease:evidence from observational studies[J/OL].Cochrane Database Syst Rev,2011,(11):CD008454(2011-11-09).http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD008454.pub2/epdf/abstract
[72]Hillmann A,Hahn S,Schilling S,Hoffmann T,Demuth HU,Bulic B,et al.No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer′s disease[J].Neurobiol Aging,2012,33(4):833.e39-833.e50.
[73 ]Coll RC,Robertson AA,Chae JJ,Higgins SC,Mu?oz-Planillo R,Inserra MC,et al.A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases[J].Nat Med,2015,21(3):248-255.
[74 ]Jiang H,He H,Chen Y,Huang W,Cheng J,Ye J,et al.Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders[J].J Exp Med,2017,214(11):3219-3238.
[75]Zhang D,Li H,Li T,Zhou M,Hao S,Yan H,et al.TLR4 inhibitor resatorvid provides neuroprotection in experimental traumatic brain injury:implication in the treatment of human brain injury[J].Neurochem Int,2014,75:11-18.
[76 ]Matsunaga N,Tsuchimori N,Matsumoto T,Ii M.TAK-242(resatorvid),a small-molecule inhibitor of Toll-like receptor(TLR)4 signaling,binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules[J].Mol Pharmacol,2011,79(1):34-41.