馬雪飛,于 燁(上海交通大學醫(yī)學院藥理與化學生物學系,上海 200025)
ATP一直被認為是一種細胞內能源物質。研究發(fā)現(xiàn),ATP也可作為一個重要的細胞外信號分子[1]。ATP下游信號主要通過激活嘌呤受體傳導,嘌呤受體分為P1和P2兩大類。其中,P1是G蛋白偶聯(lián)受體,P2受體包含P2X離子通道和P2Y G蛋白偶聯(lián)受體[2]。P2X受體是一種非選擇性陽離子通道,有7個亞型(P2X1~P2X7),允許Na+,K+和Ca2+等陽離子通過。其結構由同源或異源的3個亞基組成三聚體[3]。
P2X受體在體內廣泛表達,往往都是較低水平的表達。另外,在腦和脊髓中,未觀測到內源性ATP釋放引起動作電位發(fā)放。目前已建立起多個P2X敲除小鼠,但在相關報道中均未發(fā)現(xiàn)明顯的中樞神經相關的表型。這些現(xiàn)象一方面表明,ATP可能主要是通過激活突觸前P2X受體充當神經調節(jié)物質[4];另一方面表明,P2X受體可能更多在病理情況下起重要作用。研究表明,大多數(shù)神經元細胞和小膠質細胞中都能發(fā)現(xiàn)P2X4受體[5-6],在一定條件下,P2X4受體表達上調,介導多種病理過程,如神經性疼痛[7]、乙醇攝入和偏好[8]、癲癇[9]、卒中缺血或神經退行性疾病恢復[10]和神經炎癥[11]。P2X4受體可作為一個潛在的治療靶標,但由于P2X4受體缺少有效的選擇性抑制劑,非常不利于P2X4受體的功能研究。P2X4受體特異性抑制劑的發(fā)現(xiàn),可促進P2X4受體生理病理功能的研究,也可為治療上述疾病提供新的藥理學方法。
P2X4最早在小鼠大腦中克隆,是第一個在中樞神經系統(tǒng)(central nervous system,CNS)中檢測到的P2X4受體[12]。隨后在人類大腦中也克隆到P2X4[13]。在大腦皮質神經元中發(fā)現(xiàn)具有功能的P2X4受體,伊維霉素(ivermectin,IVM,一類P2X4受體功能增強劑)可增強ATP誘導的電流[14];通過激活P2X受體可誘導大腦皮質快速興奮突觸后電流,影響突觸可塑性[15]。在海馬體中ATP影響突觸可塑性[16],ATP的釋放與海馬體的長時程增強(long-term potentiation,LTP)有關[17],在海馬體神經元中,P2X受體激活會刺激或抑制谷氨酸釋放[18]。P2X4受體在海馬體的錐體細胞層、中間神經元以及海馬CA1,CA2和CA3錐體細胞中高水平表達[19]。相比野生型小鼠,P2X4敲除的小鼠中LTP減少,在野生型小鼠中IVM可增加LTP,但P2X4敲除小鼠中無此作用[20],說明P2X4受體在LTP時可增強突觸活性。在海馬體CA1區(qū)鋅離子可通過調節(jié)P2X4受體而提高LTP[21]。
P2X4受體在小腦皮質大量表達,在浦肯野細胞層和顆粒細胞層,及星狀細胞和籃狀細胞中均檢測到P2X4受體的表達[22]。P2X4受體在舌下神經核中表達,可調節(jié)舌下神經的活性[23]。在室旁核和垂體前葉也檢測到P2X4受體的表達[24]。視上神經元表達了有功能的突觸前和突觸外P2X4受體,可調節(jié)谷氨酸和γ-氨基丁酸(γ-aminobutyrate,GABA)的釋放[25]。在小丘腦神經元中增加P2X4受體的表達會導致GABA能電流減小,P2X4受體和GABAA受體相互作用共同調節(jié)突觸信號[26]。在下丘腦弓狀核的刺鼠肽基因相關蛋白-神經肽神經元中高表達P2X4受體。電生理實驗表明,P2X4受體介導突觸前GABA釋放到阿片-促黑素細胞皮質素原神經元,這些神經元都稱為集中投射神經元,在食欲的調節(jié)中發(fā)揮重要作用[27]。促黃體生成激素釋放激素的釋放也與P2X4受體有關[28]。
P2X4受體在軀體感覺神經元[14]、三叉神經元[29]、視網膜神經節(jié)和雙極細胞[30]以及脊髓[31]均有表達。在脊髓膠質細胞中發(fā)現(xiàn)大量的P2X4受體,在周圍神經損傷損傷后,P2X4的轉錄、翻譯水平均上調[6]。在脊髓中周圍神經損傷引起的疼痛可被P2X4受體的阻斷劑反轉[7],敲除P2X4可緩解小鼠炎癥和神經性疼痛[6]。
P2X4受體參與CNS許多生理病理過程,包括慢性痛、乙醇攝入、癲癇、阿爾茨海默?。ˋD)、帕金森病(PD)和卒中,P2X4可作為治療神經性疾病的一個重要潛在靶標。
近年來,P2X4受體對慢性痛的作用受到了廣泛的關注,而之前的研究主要是針對以神經元為中心的機制:原發(fā)性或者二級感受神經元的改變引起的過度興奮性,越來越多的研究證明了膠質細胞微環(huán)境的變化會引起周圍感覺神經元的超興奮性和疼痛應答。研究發(fā)現(xiàn),隨著周圍神經的損傷,脊髓小膠質細胞P2X4受體在細胞膜上的表達量上升。而且P2X4受體抑制劑可反轉神經損傷引起的痛覺過敏,所以提出P2X4受體可能是治療這種神經疼痛的潛在靶標。小神經膠質細胞活化可誘發(fā)神經元超興奮性,這個信號通路的關鍵分子是腦源性神經營養(yǎng)因子(brain derived neurotrophic factor,BDNF)[32],BDNF的釋放依賴ATP激活小膠質細胞的P2X4受體[33]。BDNF激活脊髓背角Ⅰ層神經元的TrkB受體,誘導K+/Cl-轉運體下調,使神經元內的氯離子升高,脊髓背角Ⅰ層神經元陰離子逆轉電位(EAnion)的去極化發(fā)生改變,并減少GABAA受體和甘氨酸對興奮性的抑制,從而產生疼痛[32]。所以,在小膠質細胞中,P2X4受體異常表達促成了周圍神經損傷誘導的神經疼痛,因此P2X4受體表達上調也成為研究對象。其中干擾素調節(jié)因子5(interferon regulatory factor-5,IRF-5)是參與P2X4受體轉錄調控的轉錄因子,缺少IRF-5的小鼠在周圍神經損傷后,脊髓中P2X4受體表達未上調,也未表現(xiàn)出對疼痛異常敏感[34]。
Src家族激酶Lyn對神經疼痛也具有重要作用。Lyn參與小膠質細胞活化,在神經損傷后,Lyn表達水平顯著上升,而在Lyn敲除小鼠隨著神經損傷并未出現(xiàn)P2X4受體表達上調和異常性疼痛[35]。Lyn可激活PI3K-Akt引起P2X4受體表達增加,所以,Lyn可能是調節(jié)小膠質細胞P2X4受體上調的關鍵激酶[36]。趨化因子CCL21也參與增加P2X4受體的表達,缺少CCL21可防止脊髓背角小膠質細胞P2X4受體的過表達,而使用CCL21可使小膠質細胞P2X4受體表達上調[37]。
神經損傷后誘發(fā)神經疼痛的機制存在性別差異,在雄性小鼠中小神經膠質細胞的P2X4受體表達上調并伴隨著P38絲分裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)激活和BDNF的釋放,而在雄性小鼠中未出現(xiàn)P2X4受體表達上調,阻斷通路中的任何一步都不能有效治愈疼痛[38]。因此,上述疼痛機制不適用在雄性小鼠。
最近發(fā)現(xiàn),P2X4受體與嗎啡耐受[39]和嗎啡誘導的痛覺過敏[40]有關。嗎啡誘導的痛覺過敏也需要阿片受體介導的脊髓小膠質細胞P2X4受體的上調[40]。由此說明,P2X4受體在疼痛通路中的重要作用。
乙醇使用障礙已成為比較嚴重的健康問題,針對乙醇使用障礙的藥物開發(fā)是一個相對年輕的領域。目前被美國FDA批準的藥物有雙硫侖、環(huán)丙甲羥二羥嗎啡酮和阿坎酸[41-42]。但這些還遠不夠,因此,關于開發(fā)有效的治療乙醇使用障礙的藥物的研究越來越多。體外研究發(fā)現(xiàn),乙醇可特異性地抑制P2X4受體電流[43],而不抑制其他P2X4受體的功能。進一步研究表明,乙醇抑制P2X4受體是由于降低了ATP對P2X4受體的親和力[44],乙醇會阻止P2X4受體開放狀態(tài),但不影響受體失活。乙醇作用P2X4受體的關鍵位點Trp46,His241,Asp331和 Met336[45-46]也被發(fā)現(xiàn)。
研究表明,P2X4受體在特定的腦區(qū)表達水平較高,這些腦區(qū)都參與增強乙醇和其他藥物的性能[47]。一些研究發(fā)現(xiàn),P2X4受體在乙醇誘導的行為中起作用,P2X4受體在維持多巴胺體內穩(wěn)態(tài)中起重要作用,因此參與飲酒行為[48]。P2X4受體表達水平與乙醇攝入相關,偏好乙醇的小鼠P2X4表達水平低于不喜乙醇的小鼠[49]。因此,乙醇攝入存在遺傳傾向,突出了在治療乙醇使用障礙的藥物開發(fā)中遺傳異質性的重要意義。P2X4受體敲除小鼠的乙醇攝入量明顯高于野生型小鼠[50]。相比野生型小鼠,敲除P2x4受體小鼠表現(xiàn)出不同的乙醇攝入、乙醇的鎮(zhèn)定催眠作用,小腦GABAA受體表達升高[51]。P2X4受體參與調節(jié)GABA的神經傳遞,意味著P2X4受體參與調節(jié)GABA介導的乙醇攝入調節(jié)。IVM可抑制乙醇對P2X4受體的作用,是因為干擾了乙醇在P2X4受體的結合位點[52]。IVM可能通過P2X4受體影響一些神經信號系統(tǒng),例如GABA、谷氨酸和多巴胺,都參與乙醇攝入。因此,IVM可充當研究P2X4在乙醇攝入中功能的藥理學工具。
前期臨床證明,IVM可減少乙醇消耗,但作用有限[53]。IVM在大腦中無法達到較高的濃度,所以需要開發(fā)新的化合物,既可增強IVM在CNS中的滯留能力,還要保持減少乙醇攝入的能力和安全性。隨后發(fā)現(xiàn)的兩種IVM相關的大環(huán)內脂阿維菌素(abamectin)和司拉克?。╯elamectin),它們可穿過血腦屏障,減少乙醇攝入,改變GABAA受體的調節(jié)以及P2X4受體表達,相比IVM在大腦中濃度較高[54]。莫西菌素(moxidectin)具有作為乙醇使用障礙的新型藥物治療的潛力[55]。在中腦邊緣系統(tǒng)中,P2X4受體調節(jié)多巴胺能神經傳遞,在中腦邊緣系統(tǒng)的多巴胺能神經元中,P2X4受體在飲酒行為中具有重要作用,P2X4受體活性與其他多巴胺能神經傳遞相關的行為也有關[48]。
在大腦和脊髓中發(fā)生的炎癥響應一般稱為神經性炎癥,小神經膠質細胞是CNS的先天性免疫細胞,在介導神經炎癥響應中起關鍵作用[56]。神經炎癥反應需要一些關鍵因子,包括促炎癥細胞因子(IL-1β,IL-6和TNF-α)、趨化因子(CCL2,CCL5和CXCL1)和第二信使(一氧化氮和前列腺素),這些都由激活CNS中小膠質細胞和星形膠質細胞而產生[56]。
在脊髓損傷、外傷性腦損傷和腦缺血后受傷組織的P2X4受體表達增加。炎性體是多蛋白復合體,可促進炎癥細胞因子成熟,如IL-1β,可能參與調控神經炎癥過程。使用P2X4敲除小鼠檢測脊髓損傷后P2X4受體對炎性體激活和神經炎癥的作用,發(fā)現(xiàn)P2X4敲除小鼠在脊髓損傷后炎性體激活,促炎癥細胞因子和炎癥細胞浸潤均顯著減少。因此,P2X4受體在神經元介導的先天性神經炎癥中起重要作用[57]。在P2X4敲除小鼠中,癲癇發(fā)作后神經損傷和炎癥發(fā)生改變,P2X受體家族成員可能在癲癇的病理生理學中發(fā)揮重要作用,為癲癇發(fā)作控制和神經保護提供新的靶點[58]。將P2X4敲除小鼠誘導成持續(xù)癲癇狀態(tài),48 h后小膠質細胞活化的部分功能被損害,如細胞招募、電壓依賴鉀通道上調[9]。
神經退行性疾病,如AD和PD也與神經炎癥相關[59],其中小神經膠質起到重要作用[60-61]。P2X4受體參與調節(jié)小神經膠質細胞的信號通路,因此證明P2X4受體在各類與小膠質炎癥相關的疾病中具有重要作用。在多發(fā)性硬化動物模型中小神經膠質細胞P2X4受體表達上調[62],在脂多糖誘導的神經炎癥中,用P2X4抑制劑可減少小神經膠質細胞的活性。急性缺血損傷導致嚴重神經元損傷的關鍵機制是炎癥。急性缺血導致死亡神經元和非神經元釋放過量的ATP,激活P2X4受體,P2X4受體在CNS高表達,尤其是在脊髓中,小膠質細胞是CNS中的免疫細胞,響應腦功能破壞,如缺血性卒中,卒中后小神經膠質細胞形態(tài)發(fā)生變化,產生炎癥因子IL-1β、IL-6和TNF-α[63-64],這些變化都伴隨著小神經膠質細胞活化和P2X4受體表達上調,P2X4敲除小鼠在脊髓損傷[57]和過敏原誘導的呼吸道炎癥[65]后,炎性體信號減少,在這些損傷模型中,P2X4陽性受體白細胞是釋放促炎癥細胞因子主要來源。這些結果表明,P2X4受體陽性小神經膠質細胞也是促炎癥細胞因子的重要來源。因此,P2X4受體參與神經性炎癥主要是通過P2X4受體調節(jié)小神經膠質細胞的信號通路。
由于缺少特異性P2X4受體抑制劑,P2X4受體研究受到阻礙,之前的研究都用非選擇性P2X4受體抑制劑(TNP-ATP和BBG)研究P2X4受體,但它們對P2X4親和力小,效果不明顯。隨著研究發(fā)現(xiàn),P2X4受體越來越重要,針對P2X4受體特異性抑制劑的研究也越來越受到關注,其發(fā)現(xiàn)可為針對P2X4受體治療提供新途徑。遺憾的是這些化合物與P2X4受體的作用機制并不清楚。根據(jù)已經解析的斑馬魚P2X4受體(zfP2X4)晶體結構,結合其他手段發(fā)現(xiàn)P2X4受體特異性抑制劑的作用位點,可為這些化合物的改造提供分子水平基礎。
5-BDBD是第一個被發(fā)現(xiàn)的有效的P2X4受體特異性抑制劑,在HEK-293細胞表達人源P2X4(hP2X4)受體IC50值為1.2 μmol·L-1,2種不同濃度的5-BDBD導致ATP濃度依賴曲線右移,說明5-BDBD是競爭抑制劑[66]。但后來也有研究表明,5-BDBD并非競爭性抑制劑,而是變構調節(jié)劑[67],在應用方面,敲除P2X4或使用5-BDBD可以緩解小鼠呼吸道炎癥,表明5-BDBD在臨床上有潛在應用價值。
最近發(fā)現(xiàn)的一個P2X4受體抑制劑BX430,IC50值為0.54 μmol·L-1,相比其他P2X受體具有高選擇性,是非競爭性變構調節(jié)劑。BX430對P2X4受體的抑制作用具有種屬特異性,目前發(fā)現(xiàn)它可抑制hP2X4和zfP2X4,但只能較弱抑制小鼠源和大鼠源P2X4受體的功能[68]。
PSB-12054是一個強效的hP2X4受體抑制劑,IC50值為0.189 μmol·L-1,在小鼠和大鼠的效果稍低一些,相比其他P2X受體,也同樣具有高的選擇性。其類似物PSB-12062效率相比之前的低,但在人、小鼠和大鼠3個種屬抑制效率相似[69]。
NP-1815-PX是一個新的P2X4抑制劑,在人源P2X4 上,IC50值為 0.26 μmol·L-1,對小鼠源和大鼠源也同樣具有抑制作用。相比其他P2X受體,它對P2X4具有高選擇性。在慢性痛模型中,NP-1815-PX可緩解神經損傷相關的疼痛[70]。
大量研究表明,P2X4受體在CNS中的重要作用(圖1)。當周圍神經損傷、脊髓損傷、外傷性腦損傷以及腦缺血時,引起P2X4受體表達上調,通過相關的信號轉導最終導致慢性痛、神經炎癥、乙醇使用障礙和多發(fā)性硬化等疾患。因此,P2X4受體可作為潛在的藥物靶點在這些疾病中發(fā)揮作用。隨著P2X4受體晶體結構的相繼解析,對P2X4受體結構有了更深入的研究,為研究P2X4受體與抑制劑和增強劑的結合機制提供了結構基礎。多個內源性或外源性的物質或者藥物分子都可以調節(jié)P2X4受體的功能。新型P2X4受體特異性抑制劑或者增強劑的發(fā)現(xiàn),有助于研究P2X4受體在疾病中的作用,為治療相關疾病提供新的潛在藥物。
圖1 P2X4受體在中樞神經系統(tǒng)中的重要作用及目前已知的靶向P2X4受體的抑制劑.
[1 ]Burnstock G.Historical review:ATP as a neurotransmitter[J].Trends Pharmacol Sci,2006,27(3):166-176.
[2]Ralevic V,Burnstock G.Receptors for purines and pyrimidines[J].Pharmacol Rev,1998,50(3):413-492.
[3 ]Saul A,Hausmann R,Kless A,Nicke A.Heteromeric assembly of P2X subunits[J/OL].Front Cell Neurosci,2013,7:250[2013-12-18].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866589/
[4 ]Cunha RA,Ribeiro JA.ATP as a presynaptic modulator[J].Life Sci,2000,68(2):119-137.
[5 ]Burnstock G,Knight GE.Cellular distribution and functions of P2 receptor subtypes in different systems[J].Int Rev Cytol,2004,240:31-304.
[6]Ulmann L,Hatcher JP,Hughes JP,Chaumont S,Green PJ,Conquet F,et al.Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain[J].J Neurosci,2008,28(44):11263-11268.
[7 ]Tsuda M, Shigemoto-Mogami Y, Koizumi S,Mizokoshi A,Kohsaka S,Salter MW,et al.P2X4 Receptors induced in spinal microglia gate tactile allodynia after nerve injury[J].Nature,2003,424(6950):778-783.
[8 ]Wyatt LR, Finn DA, Khoja S, Yardley MM,Asatryan L,Alkana RL,et al.Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice[J].Neurochem Res,2014,39(6):1127-1139.
[9]Ulmann L,Levavasseur F,Avignone E,Peyroutou R,Hirbec H,Audinat E,et al.Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus[J].Glia,2013,61(8):1306-1319.
[10 ]Burnstock G.Purinergic signalling and disorders of the central nervous system[J].Nat Rev Drug Discov,2008,7(7):575-590.
[11 ]Guo LH,Trautmann K,Schluesener HJ.Expression of P2X4 receptor by lesional activated microglia during Formalin-induced inflammatory pain[J].J Neuroimmunol,2005,163(1-2):120-127.
[12 ]Soto F,Garcia-Guzman M,Karschin C,Stühmer W.Cloning and tissue distribution of a novel P2X receptor from rat brain[J].Biochem Biophys Res Commun,1996,223(2):456-460.
[13 ]Garcia-Guzman M,Soto F,Gomez-Hernandez JM,Lund PE,Stühmer W.Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue[J].Mol Pharmacol,1997,51(1):109-118.
[14 ]Lalo U,Verkhratsky A,Pankratov Y.Ivermectin potentiates ATP-induced ion currents in cortical neurones:evidence for functional expression of P2X4 receptors?[J].Neurosci Lett,2007,421(2):158-162.
[15 ]Pankratov Y,Lalo U,Krishtal OA,Verkhratsky A.P2X Receptors and synaptic plasticity[J].Neuroscience,2009,158(1):137-148.
[16 ]Amadio S,Montilli C,Picconi B,Calabresi P,Volonté C.Mapping P2X and P2Y receptor proteins in striatum and substantia nigra:an immunohistological study[J].Purinergic Signal,2007,3(4):389-398.
[17 ]Wieraszko A.Extracellular ATP as a neurotransmitter:its role in synaptic plasticity in the hippocampus[J].Acta Neurobiol Exp(Wars),1996,56(2):637-648.
[18 ]Wieraszko A,Ehrlich YH.On the role of extracellular ATP in the induction of long-term potentiation in the hippocampus[J].J Neurochem,1994,63(5):1731-1738.
[19 ]Lê KT,Villeneuve P,Ramjaun AR,McPherson PS,Beaudet A,Séguéla P.Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors[J].Neuroscience,1998,83(1):177-190.
[20 ]Sim JA,Chaumont S,Jo J,Ulmann L,Young MT,Cho K,et al.Altered hippocampal synaptic potentiation in P2X4 knock-out mice[J].J Neurosci,2006,26(35):9006-9009.
[21 ]Lorca RA,Rozas C,Loyola S,Moreira-Ramos S,Zeise ML,Kirkwood A,et al.Zinc enhances longterm potentiation through P2X receptor modulation in the hippocampal CA1 region[J].Eur J Neurosci,2011,33(7):1175-1185.
[22 ]García-Lecea M, Sen RP, Soto F, Ma MP,Castro E.P2 receptors in cerebellar neurons:molecular diversity of ionotropic ATP receptors in Purkinje cells[J].Drug Dev Res,2010 ,52(1-2):104-113.
[23 ]Funk GD,Kanjhan R,Walsh C,Lipski J,Comer AM,Parkis MA,et al.P2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo:a molecular physiological analysis[J].J Neurosci,1997,17(16):6325-6337.
[24 ]Zemkova H,Kucka M,Li S,Gonzalez-Iglesias AE,Tomic M,Stojilkovic SS.Characterization of purinergic P2X4 receptor channels expressed in anterior pituitary cells[J].Am J Physiol Endocrinol Metab,2010,298(3):E644-E651.
[25 ]Vavra V,Bhattacharya A,Zemkova H.Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices[J].Neuroscience,2011,188:1-12.
[26 ]Jo YH,Donier E,Martinez A,Garret M,Toulmé E,Boué-Grabot E.Cross-talk between P2X4 and gamma-aminobutyric acid,type A receptors determines synaptic efficacy at a central synapse[J].J Biol Chem,2011,286(22):19993-20004.
[27 ]Xu J,Bernstein AM,Wong A,Lu XH,Khoja S,Yang XW,et al.P2X4 receptor reporter mice:sparse brain expression and feeding-related presynaptic facilitation in the arcuate nucleus[J].J Neurosci,2016,36(34):8902-8920.
[28 ]Terasawa E,Keen KL,Grendell RL,Golos TG.Possible role of 5′-adenosine triphosphate in synchronization of Ca2+oscillations in primate luteinizing hormonereleasing hormone neurons [J].Mol Endocrinol,2005,19(11):2736-2747.
[29 ]Luo J,Yin GF,Gu YZ,Liu Y,Dai JP,Li C,et al.Characterization of three types of ATP-activated current in relation to P2X subunits in rat trigeminal ganglion neurons[J].Brain Res,2006,1115(1):9-15.
[30 ]Wheeler-Schilling TH,Marquordt K,Kohler K,Guenther E,Jabs R.Identification of purinergic receptors in retinal ganglion cells[J].Brain Res Mol Brain Res,2001,92(1-2):177-180.
[31 ]Kobayashi K,F(xiàn)ukuoka T,Yamanaka H,Dai Y,Obata K,Tokunaga A,et al.Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat[J].J Comp Neurol,2005,481(4):377-390.
[32]Coull JA,Beggs S,Boudreau D,Boivin D,Tsuda M,Inoue K,et al.BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain[J].Nature,2005,438(7070):1017-1021.
[33 ]Trang T,Beggs S,Wan X,Salter MW.P2X4-receptor-mediated synthesis and release of brainderived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation[J].J Neurosci,2009,29(11):3518-3528.
[34 ]Masuda T,Iwamoto S,Yoshinaga R,Tozaki-Saitoh H,Nishiyama A,Mak TW,et al.Transcription factor IRF5 drives P2X4R+/-reactive microglia gating neuropathic pain[J/OL].Nat Commun,2014,5:3771.[2014-05-13].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024744/
[35]Tsuda M,Tozaki-Saitoh H,Masuda T,Toyomitsu E,Tezuka T,Yamamoto T,et al.Lyn tyrosine kinase is required for P2X4 receptor upregulation and neuropathic pain after peripheral nerve injury[J].Glia,2008,56(1):50-58.
[36]Tsuda M,Toyomitsu E,Kometani M,Tozaki-Saitoh H,Inoue K.Mechanisms underlying fibronectin-induced up-regulation of P2X4R expression in microglia:distinct roles of PI3K-Akt and MEK-ERK signalling pathways[J].J Cell Mol Med,2009,13(9B):3251-3259.
[37]Biber K,Tsuda M,Tozaki-Saitoh H,Tsukamoto K,Toyomitsu E,Masuda T,et al.Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development[J].EMBO J,2011,30(9):1864-1873.
[38 ]Mapplebeck JC,Beggs S,Salter MW.Sex differences in pain:a tale of two immune cells[J].Pain,2016,157(Suppl 1):S2-S6.
[39]Horvath RJ,Romero-Sandoval EA,De Leo JA.Inhibition of microglial P2X4 receptors attenuates morphine tolerance,Iba1,GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2[J].Pain,2010,150(3):401-413.
[40 ]Ferrini F,Trang T,Mattioli TA,Laffray S,Del′Guidice T,Lorenzo LE,et al.Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl-homeostasis[J].Nat Neurosci,2013,16(2):183-192.
[41]Harris AH,Kivlahan DR,Bowe T,Humphreys KN.Pharmacotherapy of alcohol use disorders in the Veterans Health Administration [J].Psychiatr Serv,2010,61(4):392-398.
[42]Litten RZ,Egli M,Heilig M,Cui C,F(xiàn)ertig JB,Ryan ML,et al.Medications development to treat alcohol dependence:a vision for the next decade[J].Addict Biol,2012,17(3):513-527.
[43]Davies DL,Kochegarov AA,Kuo ST,Kulkarni AA,Woodward JJ,King BF,et al.Ethanol differentially affects ATP-gated P2X3 and P2X4 receptor subtypes expressed in Xenopus oocytes[J].Neuropharmacology,2005,49(2):243-253.
[44 ]Xiong K,Hu XQ,Stewart RR,Weight FF,Li C.The mechanism by which ethanol inhibits rat P2X4 receptors is altered by mutation of histidine 241[J].Br J Pharmacol,2005,145(5):576-586.
[45 ]Popova M,Asatryan L,Ostrovskaya O,Wyatt LR,Li K,Alkana RL,et al.A point mutation in the ectodomain-transmembrane 2 interface eliminates the inhibitory effects of ethanol in P2X4 receptors[J].J Neurochem,2010,112(1):307-317.
[46 ]Popova M,Trudell J,Li K,Alkana R,Davies D,Asatryan L.Tryptophan 46 is a site for ethanol and ivermectin action in P2X4 receptors[J].Purinergic Signal,2013,9(4):621-632.
[47 ]Kimpel MW,Strother WN,McClintick JN,Carr LG,Liang T,Edenberg HJ,et al.Functional gene expression differences between inbred alcohol-preferring and-non-preferring rats in five brain regions[J].Alcohol,2007,41(2):95-132.
[48 ]Khoja S, Shah V, Garcia D, Asatryan L,Jakowec MW,Davies DL.Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors[J].J Neurochem,2016,139(1):134-148.
[49 ]Franklin KM,Hauser SR,Lasek AW,Bell RL,McBride WJ.Involvement of purinergic P2X4 receptors in alcohol intake of high-alcohol-drinking(HAD)rats[J].Alcohol Clin Exp Res,2015,39(10):2022-2031.
[50 ]Asatryan L,Nam HW,Lee MR,Thakkar MM,Saeed Dar M,Davies DL,et al.Implication of the purinergic system in alcohol use disorders[J].Alcohol Clin Exp Res,2011,35(4):584-594.
[51]Franklin KM,Asatryan L,Jakowec MW,Trudell JR,Bell RL,Davies DL.P2X4 receptors(P2X4Rs)represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders[J/OL].Front Neurosci,2014,8:176.[2014-06-24].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068020/
[52 ]Asatryan L,Popova M,Perkins D,Trudell JR,Alkana RL,Davies DL.Ivermectin antagonizes ethanol inhibition in purinergic P2X4 receptors[J].J Pharmacol Exp Ther,2010,334(3):720-728.
[53 ]Yardley MM,Wyatt L,Khoja S,Asatryan L,Ramaker MJ,F(xiàn)inn DA,et al.Ivermectin reduces alcohol intake and preference in mice[J].Neuropharmacology,2012,63(2):190-201.
[54 ]Asatryan L,Yardley MM,Khoja S,Trudell JR,Hyunh N,Louie SG,et al.Avermectins differentially affect ethanol intake and receptor function:implications for developing new therapeutics for alcohol use disorders[J].Int J Neuropsychopharmacol,2014,17(6):907-916.
[55]Huynh N,Arabian N,Naito A,Louie S,Jakowec MW,Asatryan L,et al.Preclinical development of moxidectin as a novel therapeutic for alcohol use disorder[J].Neuropharmacology,2017,113(Pt A):60-70.
[56 ]DiSabato DJ,Quan N,Godbout JP.Neuroinflammation:the devil is in the details[J].J Neurochem,2016,139(Suppl 2):136-153.
[57 ]de Rivero Vaccari JP, Bastien D, Yurcisin G,Pineau I,Dietrich WD,De Koninck Y,et al.P2X4 receptors influence inflammasome activation after spinal cord injury[J].J Neurosci,2012,32(9):3058-3066.
[58 ]Henshall DC,Diaz-Hernandez M,Miras-Portugal MT,Engel T.P2X receptors as targets for the treatment of status epilepticus[J/OL].Front Cell Neurosci,2013,7:237.[2013-11-26].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840793/
[59 ]Ransohoff RM.How neuroinflammation contributes to neurodegeneration[J].Science,2016,353(6301):777-783.
[60 ]Wes PD,Sayed FA,Bard F,Gan L.Targeting microglia for the treatment of Alzheimer′s disease[J].Glia,2016,64(10):1710-1732.
[61 ]Joers V,Tansey MG,Mulas G,Carta AR.Microglial phenotypes in Parkinson′s disease and animal models of the disease[J].Prog Neurobiol,2017,155:57-75.
[62 ]Vázquez-Villoldo N,Domercq M,Martín A,Llop J,Gómez-Vallejo V,Matute C.P2X4 receptors control the fate and survival of activated microglia[J].Glia,2014,62(2):171-184.
[63 ]Ritzel RM, Patel AR,Grenier JM,Crapser J,Verma R,Jellison ER,et al.Functional differences between microglia and monocytes after ischemic stroke[J/OL].J Neuroinflammation,2015,12:106.[2015-05-29].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465481/
[64 ]Lambertsen KL,Biber K,F(xiàn)insen B.Inflammatory cytokines in experimental and human stroke[J].J Cereb Blood Flow Metab,2012,32(9):1677-1698.
[65 ]Zech A,Wiesler B,Ayata CK,Schlaich T,Dürk T,Ho?feld M,et al.P2RX4 deficiency in mice alleviates allergen-induced airway inflammation[J].Oncotarget,2016,7(49):80288-80297.
[66 ]Balázs B,Dankó T,Kovács G,K?les L,Hediger MA,Zsembery A.Investigation of the inhibitory effects of the benzodiazepine derivative,5-BDBD on P2X4 purinergic receptors by two complementary methods[J].Cell Physiol Biochem,2013,32(1):11-24.
[67 ]Abdelrahman A, Namasivayam V, Hinz S,Schiedel AC,K?se M,Burton M,et al.Characterization of P2X4 receptor agonists and antagonists by calcium influx and radioligand binding studies[J].Biochem Pharmacol,2017,125:41-54.
[68 ]Ase AR,Honson NS,Zaghdane H,Pfeifer TA,Séguéla P.Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels[J].Mol Pharmacol,2015,87(4):606-616.
[69 ]Hernandez-Olmos V,Abdelrahman A,El-Tayeb A,F(xiàn)reudendahl D,Weinhausen S,Müller CE.N-substituted phenoxazine and acridone derivatives:structure-activity relationships of potent P2X4 receptor antagonists[J].J Med Chem,2012,55(22):9576-9588.
[70]Matsumura Y,Yamashita T,Sasaki A,Nakata E,Kohno K,Masuda T,et al.A novel P2X4 receptorselective antagonist produces anti-allodynic effect in a mouse model of herpetic pain[J/OL].Sci Rep,2016,6:32461.[2016-08-31].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006034/