蘇晴+鄧小飛++周人杰
[摘要] 目的 探討脂蛋白酯酶在compound K調(diào)節(jié)血脂水平中的作用。 方法 36只雄性SD大鼠隨機分為6組,除對照組外均給予高脂飲食,對照組和模型組給予生理鹽水腹腔注射,compound K給藥組分別給予compound K 1、3、9 mg/kg腹腔注射,GGPP組同時給予compound K 3、9 mg/kg GGPP。4周后處死動物,取樣測定血脂、肝素后脂蛋白酯酶活性、脂蛋白酯酶表達水平等;培養(yǎng)大鼠肝細(xì)胞株BRL,分別給予compound K 3、10、30 μmol/L處理12 h后,檢測脂蛋白酯酶表達水平。 結(jié)果 與模型組比較,compound K 3、9 mg/kg組的總膽固醇、低密度脂蛋白膽固醇、三酰甘油顯著降低,高密度脂蛋白膽固醇、肝素后血清脂蛋白酯酶活性和脂蛋白酯酶表達量顯著增高,差異有統(tǒng)計學(xué)意義(P < 0.05),且呈劑量依賴性。體外細(xì)胞試驗結(jié)果與動物實驗一致。 結(jié)論 compound K能夠通過增加脂蛋白酯酶的表達和活性達到降低高脂飲食大鼠血清三酰甘油的作用,其機制與compound K激活肝X受體α相關(guān)。
[關(guān)鍵詞] compound K;動脈粥樣硬化;脂蛋白酯酶;肝X受體α
[中圖分類號] R543 [文獻標(biāo)識碼] A [文章編號] 1673-7210(2017)01(b)-0020-05
Role of lipoprotein lipase on serum lipid modulation of compound K
SU Qing DENG Xiaofei ZHOU Renjie
Department of Emergency, Xinqiao Hospital, the Third Military Medical University of PLA, Chongqing 400037, China
[Abstract] Objective To explore the role of lipoprotein lipase (LPL) on serum lipid modulation of compound K. Methods 36 male SD rats were divided into 6 groups. All animals were fed with high fat diet except control group. Control group and model group were given intraperitoneal injection of saline. compound K groups were treated with different doses of compound K (1, 3, 9 mg/kg). GGPP group was administrated with compound K 3 and 9 mg/kg GGPP simultaneously. After 4 weeks, animals were sacrificed. Serum lipid profile, LPL activity and the expression of LPL mRNA and protein were measured. BRL cells were treated with different doses of compound K (3, 10, 30 μmol/L) for 12 h, and the expression levels of LPL were measured. Results Compared with model group, total cholesterol, low-density lipoprotein cholesterol and triglycerides levels of compound K 3 and 9 mg/kg groups were significantly decreased, high density lipoprotein cholesterol, serum lipoprotein lipase activity after heparin and LPL expression of compound K 3 and 9 mg/kg groups were significantly increased, with statistical differences (P < 0.05), and the action depended on its dose. The results of in vitro cell experiments were consistent with animal experiments. Conclusion compound K can reduce the expression of serum triglyceride via up-regulation of LPL expression and activity, and the mechanism is associated with compound K activated liver X receptor α.
[Key words] compound K; Atherosclerosis; Lipoprotein lipase; Liver X receptor α
近年來,因動脈粥樣硬化導(dǎo)致的心肌梗死、中風(fēng)等多種嚴(yán)重心腦血管疾病引發(fā)的死亡人數(shù)居各類疾病之首[1]。在目前廣泛采取防治措施的情況下,動脈粥樣硬化的發(fā)病率并沒有出現(xiàn)顯著的下降,提示現(xiàn)有防治手段尚待改進,并亟需作用于新靶點的動脈粥樣硬化防治藥物。compound K是二醇型人參皂苷經(jīng)過消化代謝后產(chǎn)生并吸收入血液循環(huán)的活性物[2-3],具有多種藥理學(xué)活性。近期有研究證實,compound K能夠通過激活肝X受體α(liver X receptor α,LXRα)達到調(diào)節(jié)血脂和抗炎的作用,從而延緩實驗動物動脈粥樣硬化的形成[4]。
compound K作用靶點與現(xiàn)有調(diào)節(jié)血脂藥物不同,其機制也不相同。但目前的研究只關(guān)注了膽固醇逆轉(zhuǎn)運通路的變化,解釋了低密度脂蛋白膽固醇(low-density lipoprotein cholesterol,LDL-C)、高密度脂蛋白膽固醇(high-density lipoprotein cholesterol,HDL-C)水平變化的機制,但對于三酰甘油(triglyceride,TG)水平變化的機制尚缺乏探討[4]。有研究證實,脂蛋白酯酶(lipoprotein lipase,LPL)在血脂代謝中也具有重要作用,血漿LPL是清除TG的限速酶,能夠通過催化富含TG的乳糜微粒水解供能或轉(zhuǎn)化為脂肪儲存,另外,LPL還在HDL-C合成中起一定的促進作用。研究也表明,LPL單基因突變能夠?qū)е耇G異常升高和HDL-C降低等變化,并且顯著增加冠心病的危險性[5-6]。本實驗擬利用高血脂大鼠模型,對LPL在compound K調(diào)節(jié)血脂中的作用進行探討,以進一步深化對compound K防治動脈粥樣硬化作用的機制研究。
1 材料與方法
1.1 實驗動物與試劑
雄性SD大鼠:180~200 g,8~10周齡,購于第三軍醫(yī)大學(xué)實驗動物中心,實驗前為SPF級飼養(yǎng),許可證號:SYXK(渝)2012-0002;高脂飼料配置:3%膽固醇、10%豬油、0.2%丙基硫氧嘧啶及86.8%基礎(chǔ)飼料。compound K(上海同田生物技術(shù)股份有限公司,純度> 98%);GGPP(Sigma-Aldrich,USA);血清生化AU-2700全自動生化分析儀標(biāo)準(zhǔn)品(Randox Laboratories Ltd,UK);LPL活性檢測試劑盒(HY-60073,上海鈺博生物科技有限公司);反轉(zhuǎn)錄試劑盒(RR047,Takara,Japan);Real-time定量PCR試劑盒(RR820,Takara,Japan);LPL一抗(sc-73646,Santa Cruz,USA);HRP標(biāo)記羊抗小鼠IgG抗體(ZDR-5117,北京中杉金橋生物技術(shù)有限公司)。
1.2 動物分組
雄性SD大鼠36只隨機分為6組,每組6只,除對照組外均給予高脂飲食,compound K給藥組分別給予compound K 1、3、9 mg/kg腹腔注射,1次/d;對照組和模型組均給予生理鹽水腹腔注射;GGPP組同時給予compound K 3、9 mg/kg GGPP腹腔注射,共持續(xù)4周。
1.3 樣本采集
每周測量體重一次,在實驗第4周禁食12 h后采血獲得血清后用于血脂水平的檢測;尾靜脈給予肝素321.5 U/kg,15 min后采集肝素后血清樣本用于LPL活性檢測;脫頸椎法處死動物后,取肝臟用于Real-time PCR、Western blot檢測。
1.4 血脂水平測定
將血清置于AU-2700全自動生化分析儀中檢測總膽固醇(total cholesterol,TC)、TG、HDL-C和LDL-C水平。
1.5 LPL活性及表達水平測定
使用LPL活性檢測試劑盒測定肝素后血清中LPL活性。Real-time PCR法測定肝臟組織中LPL mRNA表達水平,引物為5′-TCCCAACCATACAAGACTCC-3′,5′-ACGTCGTCCATTGCTTTTGC-3′;內(nèi)參為GAPDH,引物為5′-TGAAGGTCGGTGTGAACGGATTTGG-3′,5′-ACGACATACTCAGCACCAGCATCAC-3′。Western blot法測定肝臟組織中LPL蛋白表達水平,LPL一抗?jié)舛葹?∶500,二抗?jié)舛?∶5000。
1.6 細(xì)胞培養(yǎng)及處理
常規(guī)培養(yǎng)BRL大鼠肝細(xì)胞于含10%胎牛血清的DMEM培養(yǎng)基中,置37℃、5%CO2恒溫培養(yǎng)箱。對照組給予空溶劑處理,藥物處理組分別給予compound K 3、10、30 μmol/L處理12 h,GGPP組在給予compound K 10 μmol/L的基礎(chǔ)上給予GGPP 10 mmol/L。Real-time PCR法及Western blot方法同上。
1.7 統(tǒng)計學(xué)方法
采用SPSS 13.0統(tǒng)計軟件對數(shù)據(jù)進行分析和處理,計量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用t檢驗,多組間比較采用單因素方差分析,以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 compound K對大鼠體重的影響
各組大鼠體重在試驗期間正常增長,各組大鼠體重比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。見表1。
2.2 compound K對大鼠血脂水平的影響
模型組與對照組TC、LDL-C和TG比較,差異有統(tǒng)計學(xué)意義(P < 0.05),提示高血脂動物模型造模成功。與模型組比較,compound K 3 mg/kg組、compound K 9 mg/kg組的TC、LDL-C和TG降低,HDL-C升高,差異有統(tǒng)計學(xué)意義(P < 0.05),且具有劑量依賴性。GGPP組與模型組TC、HDL-C、LDL-C和TG比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。見表2。
2.3 compound K對大鼠肝素后血清LPL活性的影響
與對照組比較,模型組肝素后LPL活性降低,差異有統(tǒng)計學(xué)意義(P < 0.05);與模型組比較compound K 3 mg/kg組、compound K 9 mg/kg組的LPL活性升高,差異有統(tǒng)計學(xué)意義(P < 0.05),且各給藥組導(dǎo)致的LPL活性增高呈劑量依賴性。GGPP組與模型組的LPL活性比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。見表3。
2.4 compound K對大鼠肝臟中LPL表達水平的影響
與對照組比較,模型組肝臟中LPL mRNA表達水平顯著降低,差異有統(tǒng)計學(xué)意義(P < 0.05);模型組與對照組肝臟中LPL蛋白表達水平比較,差異無統(tǒng)計學(xué)意義(P > 0.05);與模型組比較,compound K各劑量組的LPL mRNA表達水平呈劑量依賴性升高,分別為306%、557%和618%,差異有統(tǒng)計學(xué)意義(P < 0.05);LPL蛋白表達水平與mRNA表達水平變化規(guī)律一致,各組差異有統(tǒng)計學(xué)意義(P < 0.05)。GGPP組與模型組LPL mRNA和蛋白表達水平比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖1。
2.5 compound K對體外培養(yǎng)大鼠肝細(xì)胞LPL表達水平的影響
與動物實驗結(jié)果一致,與對照組比較,compound K 3、10、30 μmol/L組肝細(xì)胞中LPL mRNA表達水平呈劑量依賴性升高,分別為252%、317%、408%,差異均有統(tǒng)計學(xué)意義(P < 0.05);LPL蛋白表達水平變化與mRNA表達水平變化規(guī)律一致,且各組差異有統(tǒng)計學(xué)意義(P < 0.05)。GGPP組LPL mRNA和蛋白表達水平與compound K 3、10、30 μmol/L組比較,差異有統(tǒng)計學(xué)意義(P < 0.05),提示阻斷LXR途徑能夠抑制compound K導(dǎo)致的LPL蛋白表達水平增高。見圖2。
3 討論
compound K是二醇型人參皂苷(如Rb1等)在體內(nèi)的代謝產(chǎn)物,早期研究發(fā)現(xiàn),口服Rb1后血清中只能檢測出compound K成分,而無Rb1[7],且給腸道無微生物小鼠口服Rb1(200 mg/kg)后,血液中未檢測出Rb1及其代謝產(chǎn)物。提示compound K可能是口服二醇型人參皂苷后在體內(nèi)發(fā)揮藥理作用的活性代謝產(chǎn)物。研究發(fā)現(xiàn),compound K具有多種藥理學(xué)活性,包括抑制多種腫瘤細(xì)胞生長[8-9]、增強順鉑化療效果[10]、抑制平滑肌細(xì)胞增殖[11]、激動糖皮質(zhì)激素受體[12]、緩解嗎啡成癮[13]和抗炎作用[14]等,但對于compound K對心血管系統(tǒng)和血脂代謝方面的藥理學(xué)研究還比較少見。本研究通過體內(nèi)外試驗探索了compound K對血脂代謝關(guān)鍵酶LPL的可能作用及機制。
本研究結(jié)果中compound K能夠顯著降低LDL-C和升高HDL-C的活性,與Zhou等[4]對膽固醇逆轉(zhuǎn)運活性方面的研究結(jié)果一致。本研究還發(fā)現(xiàn),compound K能夠?qū)е赂咧嬍炒笫笱逯蠺G顯著下降。TG是動脈粥樣硬化形成的獨立危險因素,目前臨床上廣泛使用的苯氧乙酸類(貝特類)降血脂藥就是以降低TG水平為靶點的。本研究結(jié)果提示,compound K除了能夠通過增強膽固醇逆轉(zhuǎn)運的途徑達到防治動脈粥樣硬化的目的外,還具有顯著降低TG的作用。為探索compound K降低TG水平的機制,我們對在TG代謝中起重要作用的LPL活性進行了檢測。結(jié)果顯示,compound K能夠?qū)е赂嗡睾笱逯蠰PL活性的顯著升高,其變化規(guī)律與TG水平的變化規(guī)律一致。且該活性升高的機制與LPL表達水平增高有關(guān),其上調(diào)作用發(fā)生在轉(zhuǎn)錄環(huán)節(jié)。體外細(xì)胞實驗也得到相同的結(jié)果。結(jié)合關(guān)于compound K具有LXRα激動劑作用的結(jié)果,以及LXRα具有調(diào)節(jié)LPL轉(zhuǎn)錄表達作用的報道,我們推測,compound K上調(diào)LPL表達與激活LXRα有關(guān)。故利用GGPP阻斷LXRα的活性進行驗證,結(jié)果顯示,GGPP在體內(nèi)外試驗中均能夠顯著抑制compound K導(dǎo)致的LPL表達水平上調(diào),提示compound K上調(diào)LPL表達水平確與其激活LXRα相關(guān)。
血管內(nèi)皮上的LPL能夠有效地脂解富含TG脂蛋白,使其轉(zhuǎn)變?yōu)椴灰字聞用}粥樣硬化的脂蛋白譜[15],并在HDL-C的形成中具有重要作用[16],故LPL活性的增高對動脈粥樣硬化病變具有一定的保護作用,還能改善高脂飲食導(dǎo)致的代謝功能紊亂[17-18]。盡管有研究發(fā)現(xiàn)特異性地增加動脈壁巨噬細(xì)胞LPL的表達可能通過促進LDL在內(nèi)皮下基質(zhì)的潴留而促進動脈粥樣硬化進程[19],但研究認(rèn)為,LPL對動脈粥樣硬化的具體作用與其表達部位關(guān)系更密切[20],本試驗發(fā)現(xiàn)的肝臟中LPL表達增高與乳糜微粒在肝臟中的攝取和代謝水平增高有關(guān),提示compound K調(diào)節(jié)血脂從而抑制動脈粥樣硬化形成的作用可能與其增加LPL活性有關(guān)。故深入探索compound K上調(diào)LPL表達及活性的機制,進一步明確其構(gòu)效關(guān)系,可能為將來研發(fā)更有效的動脈粥樣硬化防治藥物提供新的策略和靶點。
[參考文獻]
[1] Logue J,Murray HM,Welsh P,et al. Obesity is associated with fatal coronary heart disease independently of traditional risk factors and deprivation [J]. Heart,2011,97(7):564-568.
[2] Akao T,Kida H,Hatori M,et al. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseg [J]. J Pharm Pharmacol,1998,50(10):1155-1160.
[3] Kim HK. Pharmacokinetics of ginsenoside Rb1 and its met-abolite compound K after oral administration of Korean Red Ginseng extract [J]. J Ginseng Res,2013,37(4):451-456.
[4] Zhou L,Zheng Y,Li ZY,et al. Compound K attenuates the development of atherosclerosis in ApoE-/- mice via LXRα activation [J]. Int J Mol Sci,2016,17(7):1054.
[5] Nordestgaard BG,Wittrup HH,Tybjrg-Hansen A. Lipoprotein lipase mutations,plasma lipids and lipoproteins and risk of ischemic heart disease. A meta-analysis [J]. Circulation,1999,99(22):2901-2907.
[6] Soto AG,McIntyre A,Agrawal S,et al. Severe hypertriglyceridemia due to a novel p.Q240H mutation in the Lipoprotein Lipase gene [J]. Lipids Health Dis,2015,14:102.
[7] Paek IB,Moon Y,Kim J,et al. Pharmacokinetics of a ginseng saponin metabolite compound K in rats [J]. Biopharm Drug Dispos,2006,27(1):39-45.
[8] Hu C,Song G,Zhang B,et al. Intestinal metabolite compound K of panaxoside inhibits the growth of gastric carcinoma by augmenting apoptosis via bid-mediated mitochondrial pathway [J]. J Cell Mol Med,2012,16(1):96-106.
[9] Zheng ZZ,Ming YL,Chen LH,et al. Compound K-induced apoptosis of human hepatocellular carcinoma MHCC97-H cells in vitro [J]. Oncol Rep,2014,32(1):325-331.
[10] Li Y,Zhou T,Ma C,et al. Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells [J]. J Thorac Dis,2015,7(3):400-406.
[11] Park ES,Lee KP,Jung SH,et al. Compound K,an intestinal metabolite of ginsenosides,inhibits PDGF-BB-induced VSMC proliferation and migration through G1 arrest and attenuates neointimal hyperplasia after arterial injury [J]. Atherosclerosis,2013,228(1):53-60.
[12] Yang CS,Ko SR,Cho BG,et al. The ginsenoside metabolite compound K,a novel agonist of glucocorticoid receptor,induces tolerance to endotoxin-induced lethal shock [J]. J Cell Mol Med,2008,12(5A):1739-1753.
[13] Yayeh T,Yun K,Jang S,et al. Morphine dependence is attenuated by red ginseng extract and ginsenosides Rh2,Rg3,and compound K [J]. J Ginseng Res,2016,40(4):445-452.
[14] Chen J,Wang Q,Wu H,et al. The ginsenoside metabolite compound K exerts its anti-inflammatory activity by down regulating memory B cell in adjuvant-induced arthritis [J]. Pharm Biol,2016,54(7):1280-1288.
[15] He D,Huang L,Xu Y,et al. Computational analysis and enzyme assay of inhibitor response to disease single nucleotide polymorphisms(SNPs)in lipoprotein lipase [J]. J Bioinform Comput Biol,2016,14(5):1650028.
[16] Tani M,Horvath KV,Lamarche B,et al. High-density lipoprotein subpopulation profiles in lipoprotein lipase and hepatic lipase deficiency [J]. Atherosclerosis,2016, 253:7-14.
[17] Walton RG,Zhu BB,Unal R,et al. Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity [J]. J Biol Chem,2015,290(18):11547-11556.
[18] Vishram JK,Hansen TW,Torp-Pedersen C,et al. Relationship between two common lipoprotein lipase variants and the metabolic syndrome and its individual components [J]. Metab Syndr Relat Disord,2016,14(9):442-448.
[19] Mead JR,Cryer A,Ramji DP. Lipoprotein lipase,a key role in atherosclerosis? [J]. FEBS Lett,2000,462(1-2):1-6.
[20] Savonen R,Hiden M,Hultin M,et al. The tissue distribution of lipoprotein lipase determines where chylomicrons bind [J]. J Lipid Res,2015,56(3):588-598.
(收稿日期:2016-10-02 本文編輯:李亞聰)