国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

磁共振成像技術(shù)在特發(fā)性震顫中的研究進(jìn)展

2017-03-23 09:45陳輝月王漢升龐婭顧敏方維東
磁共振成像 2017年4期
關(guān)鍵詞:亞類丘腦環(huán)路

陳輝月,王漢升,龐婭,顧敏,方維東

磁共振成像技術(shù)在特發(fā)性震顫中的研究進(jìn)展

陳輝月,王漢升,龐婭,顧敏,方維東*

作者單位:
重慶醫(yī)科大學(xué)附屬第一醫(yī)院放射科,重慶 400016

特發(fā)性震顫(essential tremor,ET)是最常見的中樞源性運(yùn)動障礙疾病之一,其病因、發(fā)病機(jī)制以及病理生理改變目前尚不清楚。組織病理學(xué)檢查是揭示其病理生理改變最有效的方法,然而特發(fā)性震顫患者尸檢率低,以磁共振成像(magnetic resonance imaging,MRI)為代表的無創(chuàng)檢查方法已成為研究其病理生理改變的主要手段。本文將從磁共振成像新技術(shù),包括基于體素的形態(tài)學(xué)分析(voxel-based morphometry,VBM)、擴(kuò)散張量成像(diffusion tensor imaging,DTI)以及靜息態(tài)功能磁共振成像(resting-state functional MRI,rs-fMRI)3個方面綜述特發(fā)性震顫的研究進(jìn)展。

特發(fā)性震顫;磁共振成像;基于體素的形態(tài)學(xué)分析;擴(kuò)散張量成像;磁共振成像,功能性

特發(fā)性震顫(essential tremor,ET)是最常見的中樞源性運(yùn)動障礙疾病之一[1-2],人群發(fā)病率約為(410~3920)/10萬,隨年齡增加其發(fā)病率顯著上升,是另一癥狀相似疾病帕金森病的20倍左右。研究發(fā)現(xiàn),ET是以雙上肢運(yùn)動性和姿勢性震顫為主要臨床表現(xiàn),同時伴有其他大量運(yùn)動(共濟(jì)失調(diào)、步態(tài)和平衡功能異常、精細(xì)運(yùn)動障礙和動眼異常等)和非運(yùn)動癥狀(認(rèn)知功能障礙、抑郁、焦慮、睡眠障礙和個性改變等)的一組癥狀綜合征的統(tǒng)稱[3-5]。目前,其病因、病理生理改變以及發(fā)病機(jī)制等尚不清楚。極其有限(文獻(xiàn)報道不超過50例)的組織病理學(xué)研究顯示,75%左右的ET患者存在小腦浦肯野氏細(xì)胞數(shù)目和形態(tài)的異常[6-7]??墒牵灿醒芯空卟捎孟嘟难芯糠椒?,卻并未發(fā)現(xiàn)上述病理異常[8-9]。近年,一些無創(chuàng)檢查方法已成為揭示其顱內(nèi)病理生理改變的主要手段。磁共振成像(magnetic resonance imaging,MRI)是無創(chuàng)揭示中樞病變病理生理改變的主要手段,在ET研究中也有一些應(yīng)用。筆者將回顧這些磁共振成像新技術(shù),包括基于體素的形態(tài)學(xué)分析(voxel-based morphometry,VBM)、擴(kuò)散張量成像(diffusion tensor imaging,DTI)以及靜息態(tài)功能磁共振成像(resting-state functional MRI,rs-fMRI)在ET研究中的應(yīng)用現(xiàn)狀及進(jìn)展。

1 基于體素的形態(tài)學(xué)分析

VBM是在統(tǒng)計參數(shù)圖(statistical parametric mapping,SPM)軟件平臺上逐漸發(fā)展的一種圖像后處理技術(shù),能夠?qū)Ω叻直媛实腡1WI結(jié)構(gòu)圖像在體素水平進(jìn)行自動化、客觀而精確的分析,進(jìn)而發(fā)現(xiàn)腦內(nèi)微結(jié)構(gòu)形態(tài)學(xué)變化,常用的觀測指標(biāo)包括腦灰、白質(zhì)密度和體積測定[10-11]。Daniels等[12]最早采用1.5 T MRI掃描和VBM方法觀測ET患者腦灰、白質(zhì)密度和體積的變化,僅發(fā)現(xiàn)ET目的性震顫亞類患者組雙側(cè)顳枕葉灰質(zhì)體積增加,而最常見的運(yùn)動性和姿勢性震顫亞類組并未發(fā)現(xiàn)異常,作者推測可能是目的性震顫亞類患者組該區(qū)域長期參與視覺空間協(xié)調(diào),并產(chǎn)生適應(yīng)性代償,其萎縮程度較同齡對照組輕所致。隨后,Quattrone[13]和Cerasa等[14]采用1.5 T MRI及VBM重復(fù)上述研究。Quattrone等觀測到ET頭部震顫亞類組患者小腦蚓部灰質(zhì)密度和體積較正常對照組明顯減低,Cerasa等除觀測到小腦蚓部異常外,尚可見小腦半球灰質(zhì)密度和體積廣泛減低。然而,ET最常見的手部震顫亞類組,二者的研究均未發(fā)現(xiàn)異常。近年,采用磁場強(qiáng)度和空間分辨率更高的3.0 T MRI研究ET腦微結(jié)構(gòu)形態(tài)學(xué)變化也有文獻(xiàn)報道。Benito-leon等[15]、Bagepally等[16]和Gallea等[17]采用3.0 T MRI研究發(fā)現(xiàn)ET最常見的手部震顫亞類組患者的小腦前葉、后葉以及大腦皮層多個區(qū)域灰質(zhì)密度和體積減低。Lin[18]也發(fā)現(xiàn)ET患者的尾狀核、顳中極、島葉、楔前葉和顳上回等廣泛腦區(qū)灰質(zhì)密度和體積減少,然而并未發(fā)現(xiàn)小腦形態(tài)學(xué)異常。Bhalsing等[19]在ET合并認(rèn)知障礙患者組中除觀察到與認(rèn)知功能正常的ET患者組相似的小腦前葉、后葉灰質(zhì)密度和體積較正常對照組明顯減低的結(jié)果外,還觀測到前扣帶回、島葉、額中回以及中央后回灰質(zhì)體積顯著減低。但是,Klein等[20]、Fang等[21-23]、Nicoletti等[10]和Buijink等[11]先后采用相同的3.0 T MRI重復(fù)上述研究,均未發(fā)現(xiàn)ET患者腦灰、白質(zhì)密度和體積異常。綜上可見,VBM在ET研究中有一些陽性發(fā)現(xiàn),但目前尚無一致的研究結(jié)果報道,且這些結(jié)構(gòu)異常與臨床震顫癥狀間大多缺乏相關(guān)性。筆者推測結(jié)果不一致的原因可能有以下幾點(diǎn):(1)ET是一組癥狀綜合征的統(tǒng)稱,亞類眾多,不同亞類間發(fā)病機(jī)制和病理生理學(xué)機(jī)制可能存在差異;(2)ET組織病理學(xué)改變多樣化,除了小腦的浦肯野氏細(xì)胞數(shù)目和形態(tài)異常外,腦干的路易小體形成以及小腦-丘腦-皮層運(yùn)動區(qū)環(huán)路γ-氨基丁酸(γ-aminobutyric acid,GABA)受體異常等先后均有文獻(xiàn)報道;(3)VBM在探測腦微結(jié)構(gòu)異常的敏感性尚存在不足。因此,采用敏感性更高的精確結(jié)構(gòu)定量分析技術(shù),如:皮層厚度測量或擴(kuò)散張量成像,對同質(zhì)化ET亞類進(jìn)行研究可能會更有助于揭示ET中樞發(fā)病機(jī)制。

2 擴(kuò)散張量成像

DTI是目前唯一能夠在活體中無創(chuàng)顯示白質(zhì)纖維束走形方向、排列、緊密度以及髓鞘完整性的磁共振成像技術(shù),其基本原理是對水分子微觀自由運(yùn)動進(jìn)行觀測。常用的觀測指標(biāo)包括表觀擴(kuò)散系數(shù)(apparent diffusion coefficient,ADC)、部分各向異性分?jǐn)?shù)(fractional anisotropy,F(xiàn)A)、徑向擴(kuò)散系數(shù)(radial diffusivity,RD)、軸向擴(kuò)散系數(shù)(axial diffusivity,AD)以及平均擴(kuò)散系數(shù)(mean diffusivity,MD)等,其中FA圖像觀察腦白質(zhì)纖維結(jié)構(gòu)最清晰,應(yīng)用最為廣泛。中樞神經(jīng)系統(tǒng)退行性疾病DTI腦白質(zhì)微結(jié)構(gòu)異常,主要表現(xiàn)為受損白質(zhì)區(qū)FA值減低和MD值升高。Nicoletti等[24]采用手工勾畫ROI (region of interest,ROI)方法,選取紅核、齒狀核、小腦白質(zhì)、小腦上腳、小腦中腳、丘腦腹外側(cè)核為ROI,發(fā)現(xiàn)齒狀核、小腦上腳FA值減低,小腦上腳MD值升高。劉佳等[25]則選取基底節(jié)、丘腦、紅核、黑質(zhì)為ROI,分析發(fā)現(xiàn)僅紅核的ADC值升高,而其他ROI擴(kuò)散參數(shù)均存在差異。盡管ROI分析方法在探測局部微小結(jié)構(gòu)異常上有較高的敏感性,但其測量結(jié)果明顯依賴于操作者,ROI的大小和位置選取的不一致,會嚴(yán)重影響結(jié)果的重復(fù)性和可比性,不利于篩查基于人群大樣本疾病微結(jié)構(gòu)的異常。近年,基于纖維束骨架的空間統(tǒng)計方法(tract-based spatial statistics,TBSS)克服了依賴操作者的缺點(diǎn),可重復(fù)性明顯提高,而且具有較高的配準(zhǔn)精確度,便于組間比較和大樣本篩查。Klein等[20]和Saini等[26]采用TBSS分析方法,發(fā)現(xiàn)ET患者顱內(nèi)存在廣泛腦白質(zhì)MD值異常,包括頂葉、顳頂交界區(qū)以及額頂交界區(qū)等,但小腦以及這些區(qū)域FA值均未發(fā)現(xiàn)異常。Bhalsing等[27]發(fā)現(xiàn)伴有認(rèn)知功能障礙的ET患者扣帶回、楔前葉、額中回等腦區(qū)MD、RD和AD等擴(kuò)散參數(shù)異常,且這些參數(shù)與ET患者的認(rèn)知損害評分相關(guān)。Novellino等[28]報道了ET伴有和不伴有靜息性震顫亞類組小腦半球MD值較正常對照組升高,且伴有靜息性震顫組升高更明顯,而FA值變化不顯著。但是,Martinelli等[29]和Buijink等[30]先后采用類似研究方法,均未發(fā)現(xiàn)ET患者腦白質(zhì)纖維束上述擴(kuò)散參數(shù)異常。可見,與VBM研究一樣,大部分研究支持ET患者存在腦白質(zhì)纖維束微結(jié)構(gòu)的異常,但這些擴(kuò)散參數(shù)異常的腦區(qū)以及異常的參數(shù)指標(biāo)多不一致,且與典型的神經(jīng)退行性疾病,如阿爾茨海默氏病的擴(kuò)散參數(shù)異常也不完全相同。同時,采用DTI確定性或概率追蹤(deterministic or probabilistic fiber tracking,DFT or PFT)方法研究小腦齒狀核-紅核-丘腦纖維束(dentato-rubro-thalamic tract,DRTT)連通的小腦-丘腦-皮層運(yùn)動區(qū)環(huán)路構(gòu)成的震顫網(wǎng)絡(luò)與ET發(fā)病機(jī)制的關(guān)系也有文獻(xiàn)報道。Coenen等[31]和Schlaier等[32]報道深部腦刺激的靶點(diǎn),即丘腦腹中間核與DRTT關(guān)系密切,但深入研究DRTT擴(kuò)散參數(shù)是否存在異常以及這些異常與ET發(fā)病機(jī)制間的關(guān)系尚未見文獻(xiàn)報道。此外,DTI白質(zhì)纖維束擴(kuò)散參數(shù)異常與組織病理學(xué)改變?nèi)狈σ灰粚?yīng)關(guān)系,且這些擴(kuò)散參數(shù)異常在反映病理生理損害的時間對應(yīng)關(guān)系也不明確。因此,采用多模態(tài)功能影像學(xué)檢查進(jìn)行相互驗證顯得尤為重要。

3 靜息態(tài)功能磁共振

rs-fMRI是指被試者在不需要執(zhí)行特定的認(rèn)知任務(wù),處于清醒狀態(tài)下,利用功能磁共振成像序列觀測大腦內(nèi)部血氧水平依賴(blood oxygenation level dependent,BOLD)信號的自發(fā)性調(diào)節(jié)。rs-fMRI除直接觀測腦BOLD低頻振蕩特性即低頻振幅(amplitude of low frequency fluctuations,ALFF)外,還主要用于考察空間上分離和功能上獨(dú)立的不同腦區(qū)之間的整合關(guān)系即腦功能連接(functional connectivity,F(xiàn)C)。Popa等[33]最先采用rs-fMRI對比研究ET患者行小腦低頻重復(fù)經(jīng)顱磁刺激(repetitive transcranial magnetic stimulation,rTMS)治療前后小腦-丘腦-皮層運(yùn)動區(qū)環(huán)路功能連接變化,發(fā)現(xiàn)治療前該環(huán)路功能連接顯著減低,而有效治療后該環(huán)路功能連接顯著增加,推測小腦-丘腦-皮層運(yùn)動區(qū)環(huán)路與ET震顫的產(chǎn)生和傳播密切相關(guān)。隨后,F(xiàn)ang等[23]用rs-fMRI的局部一致性(regional homogeneity,ReHo)分析局部腦區(qū)基于體素水平的功能連接改變,發(fā)現(xiàn)ET患者雙側(cè)小腦前葉和后葉、雙側(cè)丘腦、島葉ReHo值減低,而雙側(cè)前額葉、頂葉皮層、左側(cè)初級運(yùn)動皮層和次級運(yùn)動皮層ReHo值升高,且小腦-丘腦-運(yùn)動皮層區(qū)環(huán)路ReHo值與ET震顫嚴(yán)重程度相關(guān)。近來,F(xiàn)ang等[22]以ET患者的深部腦刺激靶點(diǎn)丘腦腹中間核作為種子點(diǎn)行全腦功能連接分析,發(fā)現(xiàn)ET患者功能連接異常的腦區(qū)也主要位于小腦-丘腦-皮層運(yùn)動區(qū)環(huán)路,表現(xiàn)為丘腦腹中間核與小腦功能連接減弱,而與運(yùn)動皮層區(qū)功能連接增強(qiáng),這些功能連接改變與ET患者震顫嚴(yán)重程度評分相關(guān)。此外,他們用純數(shù)據(jù)驅(qū)動的獨(dú)立成分分析研究發(fā)現(xiàn)ET患者小腦網(wǎng)絡(luò)功能連接減低,感覺運(yùn)動網(wǎng)絡(luò)、突顯網(wǎng)絡(luò)功能連接增加,且小腦網(wǎng)絡(luò)和感覺運(yùn)動網(wǎng)絡(luò)內(nèi)以及網(wǎng)絡(luò)間功能連接異常與ET震顫嚴(yán)重程度評分相關(guān),而小腦網(wǎng)絡(luò)內(nèi)以及小腦網(wǎng)絡(luò)與默認(rèn)網(wǎng)絡(luò)間功能連接異常與ET患者認(rèn)知功能損害相關(guān)[21]。另外,Gallea等[17]和Yin等[34]先后以ALFF作為指標(biāo)觀察ET患者腦內(nèi)改變,結(jié)果顯示ET患者ALFF改變也主要集中在小腦-丘腦-皮層運(yùn)動區(qū)環(huán)路,包括雙側(cè)中央前回、中央后回及次級運(yùn)動皮層ALFF升高,雙側(cè)小腦ALFF減低,且該環(huán)路ALFF改變與ET患者震顫病程相關(guān)。可見,rsfMRI分別從局部腦區(qū)BOLD信號自發(fā)低頻振蕩、局部功能連接、種子點(diǎn)功能連接和純數(shù)據(jù)驅(qū)動功能連接上發(fā)現(xiàn)ET患者小腦-丘腦-皮層運(yùn)動區(qū)環(huán)路及小腦-丘腦-皮層非運(yùn)動區(qū)環(huán)路參與ET震顫和非運(yùn)動功能損害。這與組織病理學(xué)發(fā)現(xiàn)小腦浦肯野氏細(xì)胞異常、電生理研究發(fā)現(xiàn)小腦-丘腦-皮層運(yùn)動區(qū)構(gòu)成的“震顫網(wǎng)絡(luò)”以及臨床選擇丘腦作為ET治療靶點(diǎn)改善震顫癥狀等相印證[35-36]。然而,上述研究均為小樣本研究,最大樣本量不超過50例,結(jié)果尚需大樣本、同質(zhì)化研究對象重復(fù)研究進(jìn)一步驗證。

4 總結(jié)與展望

MRI新技術(shù)以其具有較高的空間和時間分辨力以及活體、無創(chuàng)檢測等優(yōu)點(diǎn),為從腦微結(jié)構(gòu)和功能上揭示ET發(fā)病的中樞機(jī)制提供了重要的可視化途徑。利用這些新技術(shù)不僅揭示了ET患者存在廣泛腦微結(jié)構(gòu)形態(tài)學(xué)異常,而且也存在靜息狀態(tài)下腦功能異常。同時,采用腦網(wǎng)絡(luò)分析技術(shù),深入研究小腦-丘腦-皮層運(yùn)動環(huán)路以及小腦-丘腦-皮層非運(yùn)動區(qū)環(huán)路的結(jié)構(gòu)和功能網(wǎng)絡(luò)異常,可能是揭示ET運(yùn)動和非運(yùn)動癥狀產(chǎn)生的中樞網(wǎng)絡(luò)機(jī)制的重要途徑,必將為ET研究開創(chuàng)嶄新的局面。

[References]

[1] Muth CC. Essential Tremor. JAMA, 2016, 316(20): 2162.

[2] Malkki H. Movement disorders: Novel genetic risk variants for essential tremor. Nat Rev Neurol, 2016, 12(12): 679.

[3] Elias WJ, Shah BB. Tremor. JAMA, 2014, 311(9): 948-954.

[4] Hopfner F, Ahlf A, Lorenz D, et al. Early-and late-onset essential tremor patients represent clinically distinct subgroups. Mov Disord,2016, 31(10): 1560-1566.

[5] Louis ED. Essential tremor: A common disorder of purkinje neurons?. Neuroscientist, 2016, 22(2): 108-118.

[6] Louis ED. De sedibuset causis morborum: is essential tremor a primary disease of the cerebellum? Cerebellum, 2016, 15(3): 233-234.

[7] Louis ED, Rabinowitz D, Choe M, et al. Mapping purkinje cell placement along the purkinje cell layer: an analysis of postmortem tissue from essential tremor patients vs controls. Cerebellum, 2016,15(6): 726-731.

[8] Rajput AH, Robinson CA, Rajput ML, et al. Essential tremor is not dependent upon cerebellar Purkinje cell loss. Parkinsonism Relat Disord, 2012, 18(5): 626-628.

[9] Rajput AH, Adler CH, Shill HA, et al. Essential tremor is not a neurodegenerative disease. Neurodegener Dis Manag, 2012, 2(3):259-268.

[10] Nicoletti V, Cecchi P, Frosini D, et al. Morphometric and functional MRI changes in essential tremor with and without resting tremor. J Neurol, 2015, 262(3): 719-728.

[11] Buijink AW, Broersma M, van der Stouwe AM, et al. Cerebellar atrophy in cortical myoclonic tremor and not in hereditary essential tremor-a voxel-based morphometry study. Cerebellum, 2016, 15(6):696-704.

[12] Daniels C, Peller M, Wolff S, et al. Voxel-based morphometry shows no decreases in cerebellar gray matter volume in essential tremor.Neurology, 2006, 67(8): 1452-1456.

[13] Quattrone A, Cerasa A, Messina D, et al. Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxelbased morphometry MR imaging study. AJNR Am J Neuroradiol,2008, 29(9): 1692-1697.

[14] Cerasa A, Messina D, Nicoletti G, et al. Cerebellar atrophy in essential tremor using an automated segmentation method. AJNR Am J Neuroradiol, 2009, 30(6): 1240-1243.

[15] Benito-Leon J, Alvarez-Linera J, Hernandez-Tamames JA, et al. Brain structural changes in essential tremor: voxel-based morphometry at 3-Tesla. J Neurol Sci, 2009, 287(1-2): 138-142.

[16] Bagepally BS, Bhatt MD, Chandran V, et al. Decrease in cerebral and cerebellar gray matter in essential tremor: a voxel-based morphometric analysis under 3.0 T MRI. J Neuroimaging, 2012,22(3): 275-278.

[17] Gallea C, Popa T, Garcia-Lorenzo D, et al. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain, 2015, 138(Pt 10): 2920-2933.

[18] Lin CH, Chen CM, Lu MK, et al.VBM reveals brain volume differences between parkinson's disease and essential tremor patients.Front Hum Neurosci, 2013(7): 247.

[19] Bhalsing KS, Upadhyay N, Kumar KJ, et al. Association between cortical volume loss and cognitive impairments in essential tremor.Eur J Neurol, 2014, 21(6): 874-883.

[20] Klein JC, Lorenz B, Kang JS, et al. Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp,2011, 32(6): 896-904.

[21] Fang W, Chen H, Wang H, et al. Multiple resting-state networks are associated with tremors and cognitive features in essential tremor.Mov Disord, 2015, 30(14): 1926-1936.

[22] Fang W, Chen H, Wang H, et al. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate nucleus-motor cortex-cerebellum circuit. Hum Brain Mapp, 2016,37(1): 165-178.

[23] Fang W, Lv F, Luo T, et al. Abnormal regional homogeneity in patients with essential tremor revealed by resting-state functional MRI. PLoS One, 2013, 8(7): e69199.

[24] Nicoletti G, Manners D, Novellino F, et al. Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology, 2010, 74(12): 988-994.

[25] Jia L, Jia-Lin S, Qin D, et al. A diffusion tensor imaging study in essential tremor. J Neuroimaging, 2011, 21(4): 370-374.

[26] Saini J, Bagepally BS, Bhatt MD, et al. Diffusion tensor imaging:tract based spatial statistics study in essential tremor. Parkinsonism Relat Disord, 2012, 18(5): 477-482.

[27] Bhalsing KS, Kumar KJ, Saini J, et al. White matter correlates of cognitive impairment in essential tremor. AJNR Am J Neuroradiol,2015, 36(3): 448-453.

[28] Novellino F, Nicoletti G, Cherubini A, et al. Cerebellar involvement in essential tremor with and without resting tremor: A diffusion tensor imaging study. Parkinsonism Relat Disord, 2016, 27: 61-66.

[29] Martinelli P, Rizzo G, Manners D, et al. Diffusion-weighted imaging study of patients with essential tremor. Mov Disord, 2007, 22(8):1182-1185.

[30] Buijink AW, Caan MW, Tijssen MA, et al. Decreased cerebellar fiber density in cortical myoclonic tremor but not in essential tremor.Cerebellum, 2013, 12(2): 199-204.

[31] Coenen VA, Allert N, Madler B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentatorubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir (Wien), 2011, 153(8): 1579-1585, 1585.

[32] Schlaier J, Anthofer J, Steib K, et al. Deep brain stimulation for essential tremor: targeting the dentato-rubro-thalamic tract?.Neuromodulation, 2015, 18(2): 105-112.

[33] Popa T, Russo M, Vidailhet M, et al. Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: an open label trial.Brain Stimul, 2013, 6(2): 175-179.

[34] Yin W, Lin W, Li W, et al. Resting state fMRI demonstrates a disturbance of the cerebello-cortical circuit in essential tremor. Brain Topogr, 2016, 29(3): 412-418.

[35] Muthuraman M, Heute U, Arning K, et al. Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?. Neuroimage, 2012, 60(2): 1331-1339.

[36] Raethjen J, Deuschl G. The oscillating central network of essential tremor. Clin Neurophysiol, 2012, 123(1): 61-64.

Progresses in magnetic resonance imaging of essential tremor

CHEN Hui-yue, WANG Han-sheng, PANG Ya, GU Min, FANG Wei-dong*
Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
*Correspondence to: Fang WD, E-mail: fwd9707@sina.com

Essential tremor (ET) is one of the most common movement disorder origining from the central nervous system in adults. The pathophysiology of ET remains unclear. Histopathological examination is the most effective method to ascertain the pathophysiology changes. However, the autopsy rate is very low.Magnetic resonance imaging (MRI) provides reliable evidence for the functionalpathological mechanism of ET. The latest progresses in the field of voxel-based morphometry (VBM), diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) of ET were reviewed in this paper.

Essential tremor; Magnetic resonance imaging; Voxel-based morphometry; Diffusion tensor imaging; Magnetic resonance imaging, functional

21 Nov 2016, Accepted 12 Jan 2017

國家自然科學(xué)基金項目(編號:81671663);國家臨床重點(diǎn)??平ㄔO(shè)項目(編號:[2013]544);重慶市科委自然科學(xué)基金(編號:cstc2014jcyjA0275)

方維東,E-mail:fwd9707@sina.com

2016-11-21

接受日期:2017-01-12

R445.2;R742

A

10.12015/issn.1674-8034.2017.04.013

陳輝月, 王漢升, 龐婭, 等. 磁共振成像技術(shù)在特發(fā)性震顫中的研究進(jìn)展. 磁共振成像, 2017, 8(4): 308-311.

ACKNOWLEDGMENTS This work was part of National Nature Science Foundation of China (No. 81671663); National Clinical Specialty Construction Project (No.[2013]544) and Natural Science Foundation of Chongqing (No. cstc2014jcyjA10047).

猜你喜歡
亞類丘腦環(huán)路
纖維母細(xì)胞生長因子3對前丘腦γ-氨基丁酸能抑制性軸突的排斥作用
基于草原綜合順序分類法的中國山地草地亞類分類研究
人丘腦斷面解剖及磁共振圖像三維重建
免疫球蛋白G亞型檢測在小兒反復(fù)呼吸道感染中的應(yīng)用
選取環(huán)路切換策略的高動態(tài)載波跟蹤算法研究*
電針“百會”“足三里”穴對IBS 模型大鼠行為及丘腦中CGRP mRNA 表達(dá)的影響
幾種環(huán)路穩(wěn)定性仿真方法介紹
丘腦前核與記憶障礙的研究進(jìn)展
系統(tǒng)性硬化癥患者血清IgG亞類特點(diǎn)
單脈沖雷達(dá)導(dǎo)引頭角度跟蹤環(huán)路半實(shí)物仿真