韓渭麗,曹 瑩,錢美睿,聶勇戰(zhàn)
胃微生態(tài)與胃癌的研究進展
韓渭麗,曹 瑩,錢美睿,聶勇戰(zhàn)
胃微生態(tài)平衡是人體健康的重要前提,幽門螺桿菌(Helicobacter pylori, Hp)是目前已發(fā)現(xiàn)的與胃癌相關的關鍵病原體之一,普遍存在于人胃黏膜上皮。Hp感染可引起胃內(nèi)其他菌群的改變,還可引起長期慢性的胃黏膜損傷,導致一系列胃黏膜上皮惡性進展和胃癌的發(fā)生。本文就胃微生態(tài)與Hp感染的關系、Hp感染在胃癌發(fā)生中的作用、胃內(nèi)其他菌群在胃癌發(fā)生中的作用及微生態(tài)制劑在胃癌治療的作用進行綜述。進一步揭示Hp感染對胃微生態(tài)平衡的影響,胃微生態(tài)平衡和Hp感染在胃癌發(fā)生發(fā)展中的作用及微生態(tài)制劑在胃癌治療中的意義。
胃微生態(tài);幽門螺桿菌;胃癌;毒力因子;微生態(tài)制劑
人體微生物與多種疾病存在密切關系,其在與宿主共進化過程中形成共生關系,具有調節(jié)宿主消化吸收、代謝、免疫的重要作用[1]。人胃腸道菌群結構復雜,胃內(nèi)菌群平衡是人類胃腸道健康的基礎和前提,幽門螺桿菌(Helicobacter pylori, Hp)是目前發(fā)現(xiàn)的胃微生態(tài)菌群中與胃癌發(fā)生密切相關的病原體,Hp毒力因子一直被認為是胃癌發(fā)生的重要因素之一[2]。胃癌的發(fā)生是一個多因素、多階段進行性發(fā)展的過程,其發(fā)生受多種因素的影響,如老年、男性、消化道腫瘤家族史陽性、吸煙、不良飲食、Hp感染等,其中,Hp感染者胃癌的發(fā)病風險將增加75%以上[3]。世界人群50%存在不同程度的Hp感染,我國人群具有Hp高感染率和胃癌高發(fā)的特點[4]。目前,胃微生態(tài)和Hp感染在胃癌發(fā)生發(fā)展過程中的作用尚不十分明確。近年來,越來越多的研究發(fā)現(xiàn)Hp感染可誘導胃腸菌群失衡。本文主要總結胃微生態(tài)與Hp感染的關系,Hp感染在胃癌發(fā)生中的作用,胃內(nèi)其他菌群在胃癌發(fā)生中的作用及胃微生態(tài)制劑在胃癌治療的作用。
Hp可定植于人類胃黏膜,引發(fā)胃腸道菌群失衡,形成慢性活動性胃炎,并可進一步發(fā)展成為消化性潰瘍或胃上皮黏膜惡性病變,影響胃黏膜上皮細胞免疫功能[5-6]。有研究對86例成人和兒童進行16S rRNA基因測序發(fā)現(xiàn),無Hp感染的兒童和成人胃內(nèi)菌群組成相似,僅在低豐度類菌群存在細微差異;而Hp感染的兒童胃內(nèi)高豐度菌群比例與非感染的同齡人相比,差異顯著;并且相對于Hp感染的成人,Hp感染兒童有較高水平的IL-10和TGF-β表達;上述表明感染Hp后胃內(nèi)菌群結構發(fā)生明顯改變,且對兒童機體免疫具有一定影響[7]。Hp感染還可能影響胃內(nèi)菌群活性,成人上消化道(胃、十二指腸和口腔)菌群活性檢測發(fā)現(xiàn), Hp陽性患者胃黏膜和胃液活性菌群中Hp占主導地位,而其他菌群活性明顯不同,因此Hp感染可對宿主胃活性菌群造成一定影響[8]。此外,對Hp陽性患者胃內(nèi)菌群分析表明,Hp感染增加了變形桿菌、螺旋菌和酸桿菌,同時減少了放線菌、擬桿菌和厚壁菌,明顯改變胃內(nèi)細菌豐度[9]。再者,對雙胞胎胃內(nèi)菌群分析發(fā)現(xiàn),Hp陰性雙胞胎胃內(nèi)菌群結構及組成無明顯差異;然而,同一對雙胞胎Hp陽性者胃內(nèi)菌群結構相較于Hp陰性者發(fā)生巨大改變,可見Hp感染對胃內(nèi)菌群的影響大于遺傳效應[10]。
對Hp陽性雌性小鼠模型研究發(fā)現(xiàn),Hp定植雌性小鼠胃內(nèi),使硬壁菌門、擬桿菌、變形菌等豐度明顯降低,厚壁菌門等豐度增加[11]。有研究發(fā)現(xiàn),通過16S rDNA檢測發(fā)現(xiàn)蒙古沙鼠胃黏膜感染Hp后,可檢測到Hp和乳酸桿菌的混合菌,且乳酸桿菌處主導地位。表明乳酸桿菌可以抑制胃內(nèi)Hp[12]。
胃內(nèi)微生物與Hp能夠相互作用,Hp感染可影響胃內(nèi)其他菌群結構、豐度和活菌活性,能特定上調或下調某些菌群,其對胃內(nèi)菌群結構的影響大于遺傳作用;其次,胃內(nèi)其他菌群如乳酸桿菌等益生菌可以抑制胃內(nèi)Hp活性。
2.1 Hp毒力因子在胃癌中的作用 Hp感染引起的胃疾病與Hp毒力因子、宿主胃黏膜狀況和胃內(nèi)微環(huán)境密切相關。其中Hp毒力因子是始動因素,主要包括Cag致病島(cag pathogenicity island, Cag PAI)、空泡毒素(vacuolating cytotoxin gene A, VacA)和黏附素Baba[13]。有研究發(fā)現(xiàn),160例Hp陽性患者中CagA、VacA和Baba陽性率分別為69%、100%和78%[14]。
2.1.1 Cag PAI Cag PAI是Hp的主要毒力因子之一,編碼Ⅳ型分泌系統(tǒng)[15]。CagA能夠通過多種分子機制影響至關重要的蛋白表達或功能,CagA可介導Wnt/β-catenin信號通路上調,Wnt /β-catenin信號通路是調節(jié)胚胎發(fā)育和成年組織穩(wěn)態(tài)的關鍵途徑,在胃腸道腫瘤中起著關鍵作用[16-17];此外,CagA能夠激活PI3K/Akt及下游信號通路,誘導P53失活等導致腫瘤的發(fā)生[16]。CagA作為主要的毒力因子能夠使β-連環(huán)蛋白及其靶向胃腺癌起始細胞標記的微小RNA(microRNA , miRNA)-320a和miR-4496表達下調,從而抑制體外細胞自我更新能力[18]。CagA與胃癌、消化性潰瘍之間存在顯著相關,胃癌組患者Hp感染率為72.8%,Hp陽性患者中CagA表達和抗CagA-IgG陽性率分別為63.4%和61.8%;與非潰瘍性消化不良患者相比,二者在胃癌和消化性潰瘍患者中顯著增高[19]。此外,CagA表達陽性患者臨床結局較差,CagA陽性的Hp感染患者胃癌風險高于Hp陰性患者[16]。
2.1.2 VacA VacA因具有使上皮細胞空泡化的功能而得名,VacA在Hp定植和生存中具有重要的作用[20]。VacA毒性還具有促進感染、調節(jié)淋巴細胞、改變膜通透性以及改變自噬細胞功能導致Hp在哺乳動物上皮細胞內(nèi)存活等功能[21-22]。研究顯示,不同VacA亞型,包括VacA m1、i1、d1、c1,與CagA的基因型顯著相關,均可增加胃癌發(fā)生的風險,其OR值依次為4.29、6.11、3.18、15.53和2.59;多因素回歸分析顯示,調整性別和年齡,VacA c1型的胃癌發(fā)生風險可高達38.320倍;因此VacA c1有望成為預測55歲男性患者胃癌發(fā)生的重要指標[23]。此外,在89例Hp感染者中,VacA i1型占51.68%(46/89),在胃癌、消化性潰瘍和慢性胃炎患者中分別占87.50%(21/24)、39.58%(19/48)和35.29%(6/17);與慢性胃炎患者相比,胃癌患者VacA i1型高達13.142倍,表明VacA i1與該地區(qū)胃癌發(fā)病風險顯著相關,具有一定的指導意義[24]。
2.1.3 抗原結合黏附素Baba Baba是抗原結合黏附素,能夠促使細菌黏附到胃黏膜表面,增強菌株毒力,從而成為識別消化性潰瘍和胃癌的危險性的標志之一。Hp感染可使DL1等某些氨基酸替換,進而共同表達功能較多的Baba異構體[25]。研究發(fā)現(xiàn),依賴于Baba黏附到胃黏膜上皮上的Hp能抑制細胞分化并受到ArsS調控[26],Baba等抗原結合黏附素能夠使Hp在胃黏膜表層形成穩(wěn)定的定植[27]。此外,Baba可能有除黏附蛋白外的其他功能,Baba的降低可能與適應性免疫或Toll樣受體信號通路有關[28]。Baba2等基因表達在胃癌患者中明顯高于胃潰瘍性疾病和十二指腸疾病患者,Baba結合OipA、SabA等在精確有效地診斷Hp感染中具有重要意義[29-30]。
2.2 根除Hp在胃癌治療中的作用 Hp是胃癌發(fā)生的關鍵致病菌,嚴重的萎縮、腸上皮化生、胃癌與Hp感染有關,根除Hp可能在預防胃癌發(fā)生和惡性進展中具有重要作用[31]。接受Hp根除治療的胃癌患者病死率遠低于安慰劑治療患者(1.50% vs. 2.10%),死亡風險較低[32]。此外,根除Hp可降低老年患者病死率,并且能夠降低胃腸上皮化生或異型增生患者胃癌發(fā)生率[33]。有研究對1000余例消化性潰瘍患者根除Hp后平均隨訪約10年,發(fā)現(xiàn)Hp根除成功組患者患癌率顯著低于根除失敗組(0.21% vs. 0.45%),Hp根除成功組患者患癌的最長間隔是14.5年,而失敗組為13.7年,表明Hp根除對胃癌的預防作用優(yōu)于未根除[34]。在我國胃癌高發(fā)區(qū)進行1600余例Hp感染者隨訪研究,發(fā)現(xiàn)根除Hp可降低無萎縮等胃癌前病變患者胃癌發(fā)生率,療效顯著,高于未根除組(P=0.02),充分表明根除Hp在胃癌預防中的重要作用[35]。
由此可見,Hp感染是胃癌發(fā)生的重要細菌因素,根除Hp能夠有效的在病因上預防胃癌發(fā)生,降低胃癌患者死亡風險。
與健康人群相比,消化系統(tǒng)疾病患者胃內(nèi)微生物結構差異顯著。微生物DNA微陣列分析顯示,從非萎縮性胃炎到腸型胃癌,細菌多樣性呈穩(wěn)步下降[36]。此外,我國一項720例志愿者橫斷面研究結果同樣表明,胃微生物多樣性的減少與胃癌的發(fā)生相關,胃微生物豐度與胃蛋白酶原Ⅱ呈線性相關,降低胃微生物豐度,胃蛋白酶原Ⅰ/Ⅱ也降低,是慢性胃炎及胃癌易感性的標志之一[37]。與健康人群胃微生物群落對比發(fā)現(xiàn),Hp陽性的胃癌患者梭狀芽胞桿菌和普雷沃菌屬較多,而丙酸桿菌、棒狀桿菌和葡萄球菌明顯減少[38]。雖然胃癌的發(fā)生與胃內(nèi)某些特定菌群有關,包括乳酸桿菌、肺炎克雷伯菌等增加和普林單胞菌屬、奈瑟菌屬等的減少,但仍須進一步研究其在胃癌發(fā)生中的作用機制。
胃內(nèi)微生態(tài)平衡是維持身體健康,預防胃癌的關鍵。胃內(nèi)微生物多樣性受食物多樣性和藥物等影響。Hp感染是與胃癌相關的最具代表性的細菌病原因素,因此胃癌的細菌學治療主要為根除Hp。Hp根除治療的關鍵是防止抗藥性和二次耐藥。然而,標準的三聯(lián)療法即質子泵抑制劑、阿莫西林和克拉霉素聯(lián)用,對Hp感染的根除率在世界范圍內(nèi)呈下降趨勢[39-40]。
近年來,各種微生態(tài)制劑,包括益生菌、益生元、合生元在生活中得到廣泛應用,具有保護胃黏膜、增強免疫反應等作用。益生菌被定義為活的微生物,是由生理活菌或死菌組成,主要包括乳酸桿菌、雙歧桿菌、腸球菌等,能夠增強免疫反應、抑制細菌生長、調節(jié)免疫系統(tǒng)和改善腸道屏障功能[41]。益生元主要指能促進體內(nèi)益生菌生長,而不被體內(nèi)消耗的成分。益生元中龍膽低聚糖能夠促進雙歧桿菌生長并且對消化道腫瘤細胞具有明顯的抑制作用,益生元蘑菇多糖能夠通過刺激腸道有益菌生長,達到有效的保健作用[42-43]。合生元則是益生菌和益生元二者的混合成分。
一些益生菌菌株能夠降低Hp活性,合并使用后能夠提高Hp根除率;另一些則可以減少抗生素治療不良反應的發(fā)生[44-45]。此外,在Hp陽性兒童中,使用特定的益生菌菌株同樣能夠減少Hp耐藥,提高根除成功率,但須要進一步驗證是否補充益生菌制劑有助于兒童Hp的根除[46]。在對克拉霉素耐藥低的國家,根除Hp時添加鉍和益生菌能夠提高根除率至100%,同時,添加益生菌有助于減少Hp根除過程中不良反應的發(fā)生[47]。對650例Hp陽性受試者采用益生菌輔助三聯(lián)療法根除Hp的治療結果分析顯示,患者腹痛、腹脹等不良癥狀大部分優(yōu)于安慰劑組,治療效果明顯提高,且減少不良癥狀和反應[48]。因此,益生菌在Hp根除中具有重要的作用,有助于提高胃癌療效。
胃內(nèi)微生態(tài)平衡是人體健康的前提和預防胃癌發(fā)生的關鍵,Hp是胃癌發(fā)生的關鍵病原體之一。Hp感染可對胃內(nèi)菌群產(chǎn)生影響,影響機體免疫調節(jié),改變胃內(nèi)菌群活性和結構。根除Hp能夠降低胃癌發(fā)生率,降低胃癌前病變發(fā)展為胃癌的風險和胃癌患者死亡風險。微生態(tài)制劑能夠調節(jié)機體免疫功能,抑制Hp耐藥,有效提高Hp根除率,在胃癌的預防和治療中具有重要作用。
綜上所述,維持胃內(nèi)微生態(tài)平衡,根除Hp,合理使用益生菌等微生態(tài)制劑在胃癌的防治中具有重要的作用。然而,合理的Hp根除方式須要進一步探討并進行大量的臨床驗證,以避免在根除Hp過程中可能對人體造成的損傷。
[1] 蔣建文,李蘭娟. 人體微生態(tài)與疾病的研究現(xiàn)狀和展望[J].傳染病信息,2016,29(5):257-263.
[2] Wang LL, Yu XJ, Zhan SH, et al. Participation of microbiota in the development of gastric cancer[J]. World J Gastroenterol, 2014, 20(17):4948-4952.
[3] Peek RM, Kuipers EJ. Gained in translation: the importance of biologically relevant models of Helicobacter pylori-induced gastric cancer[J]. Gut, 2012, 61(1):2-3.
[4] Xie C, Lu NH. Review: clinical management of Helicobacter pylori infection in China[J]. Helicobacter, 2015, 20(1):1-10.
[5] Sibony M, Jones NL. Recent advances in Helicobacter pylori pathogenesis[J]. Curr Opin Gastroen, 2012, 28(1):30-35.
[6] Conteduca V, Sansonno D, Lauletta G, et al. H. pylori infection and gastric cancer: state of the art (review)[J]. Int J Oncol, 2013, 42(1):5-18.
[7] Brawner KM, Kumar R, Serrano CA, et al. Helicobacter pylori infection is associated with an altered gastric microbiota in children[J]. Mucosal Immunol, 2017.
[8] Schulz C, Schütte K, Koch N, et al. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection[J]. Gut, 2016:1-10.
[9] Maldonadocontreras A, Goldfarb KC, Godoyvitorino F, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status [J]. ISME J, 2011, 5(4):574-579.
[10] Dong Q, Xin Y, Wang L, et al. Characterization of gastric microbiota in twins[J]. Curr Microbiol, 2017, 74(2):224-229.
[11] Rolig AS, Cech C, Ahler E, et al. The degree of Helicobacter pylori-triggered inflammation is manipulated by preinfection hostmicrobiota[J]. Infection & Immunity, 2013, 81(5):1382-1389
[12] Zaman C, Osaki T, Hanawa T, et al. Analysis of the microflora in the stomach of Mongolian gerbils infected with Helicobacter pylori[J]. J Gastroen Hepatol, 2010, 25(Suppl 1):S11-S14
[13] Sun YQ, Monstein HJ, Nilsson LE, et al. Profiling and identification of eubacteria in the stomach of Mongolian gerbils with and without Helicobacter pylori infection[J]. Helicobacter, 2003, 8(2):149-157.
[14] Bernard MD, Josenhans C. Pathogenesis of Helicobacter pylori infection[J]. Helicobacter, 2014, 1(s1):11-18.
[15] Dabiri H, Jafari F, Baghai K, et al. Helicobacter pylori vacA, cagA, cagE, oipA, iceA, babA2 and babB genotypes in Iranian patients with diverse clinical outcomes[J]. Microb Pathogenesis, 2017, 105:226-230.
[16] Censini S, Lange C, Xiang Z, et al. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and diseaseassociated virulence factors[J]. Proc Natl Acad Sci U S A, 1996, 93(25):14648-14653.
[17] Yong X, Tang B, Li BS, et al. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways[J]. Cell Commun Signal, 2015, 13(1):30-42.
[18] White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers[J]. Gastroenterology, 2012, 142(2):219-232.
[19] Kang DW, Yang ES, Noh YN, et al. MicroRNA-320a and -4496 attenuate Helicobacter pylori CagA-induced cancer-initiating potential and chemo-resistance by targeting β-catenin and ABCG2[J]. J Pathol, 2017, 241(5):614-625.
[20] Saber T, Ghonaim MM, Yousef AR, et al. Association of Helicobacter pylori CagA Gene with gastric cancer and peptic ulcer in Saudi patients[J]. J Microbiol Biotechn, 2015, 25(7):1146-1153.
[21] Atherton JC, Cao P, Peek RM, et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori association of specific vacA types with cytotoxin production and peptic ulceration[J]. J Biol Chem, 1995, 270(30):17771-17777.
[22] Memon AA, Hussein NR, Miendje Deyi VY, et al. Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: a matched case-control study[J]. J Clin Microbiol, 2014, 52(8):2984-2989.
[23] Buck PA, Schomberg DW. [125I]iodo-epidermal growth factor binding and mitotic responsiveness of porcine granulosa cells are modulated by differentiation and follicle-stimulating hormone[J]. Endocrinology, 1988, 122(1):28-33.
[24] Bakhti SZ, Latifi-Navid S, Mohammadi S, et al. Relevance of Helicobacter pylori vacA 3′-end region polymorphism to gastric cancer[J]. Helicobacter, 2015, 21(4):305-316.
[25] Mottaghi B, Safaralizadeh R, Bonyadi M, et al. Helicobacter pylori vacA i region polymorphism but not babA2 status associated to gastric cancer risk in northwestern Iran[J]. Clin Exp Med, 2016, 16(1):57-63.
[26] Moonens K, Gideonsson P, Subedi S, et al. Structural insight into polymorphic ABO glycan binding by Helicobacter pylori[J]. Cell Host & Microbe, 2016, 19(1):55-66.
[27] Skoog EC, Padra M, ?berg A, et al. BabA dependent binding of Helicobacter pylori to human gastric mucins cause aggregation that inhibits proliferation and is regulated via ArsS[J]. Sci Rep, 2017, 7:40656-40669.
[28] Hatakeyama M. A sour relationship between BabA and Lewis b[J]. Cell Host Microbe, 2017, 21(3):318-320.
[29] Kable ME, Hansen LM, Styer CM, et al. Host determinants of expression of the Helicobacter pylori BabA adhesin[J]. Sci Rep, 2017, 7:46499-46510.
[30] Su YL, Huang HL, Huang BS, et al. Combination of OipA, BabA, and SabA as candidate biomarkers for predicting Helicobacter pylori-related gastric cancer[J]. Sci Rep, 2016, 6:36442-36453.
[31] Talebi BAA, Taghvaei T, Mohabbati MA, et al. High correlation of babA 2-positive strains of Helicobacter pylori with the presence of gastric cancer[J]. Intern Emerg Med, 2013, 8(6):497-501.
[32] Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer[J]. N Engl J Med, 2001, 345(11):784-789.
[33] Ma JL, Zhang L, Brown LM, et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality[J]. J Natl Cancer Inst, 2012,104(6):488-492.
[34] Graham DY, Asaka M. RE: effects of Helicobacter pylori treatment on gastric cancer incidence and mortality in subgroups[J]. J Natl Cancer I, 2014,106(7):766-776.
[35] Take S, Mizuno M, Ishiki K, et al. Seventeen-year effects of eradicating Helicobacter pylori on the prevention of gastric cancer in patients with peptic ulcer; a prospective cohort study[J]. J Gastroenterol, 2015, 50(6):638-644.
[36] Wong BC, Lam SK, Wong WM, et al. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial[J]. JAMA, 2004, 291(2):187-194.
[37] Avilesjimenez F, Vazquezjimenez F, Medranoguzman R, et al. Stomach microbiota composition varies between patients with nonatrophic gastritis and patients with intestinal type of gastric cancer[J]. Sci Rep, 2014, 4:4202-4212.
[38] Yu G, Gail MH, Shi J, et al. Association between upper digestive tract microbiota and cancer predisposing states in the esophagus and stomach[J]. Cancer Epidem Biomar, 2014, 23(5):735-741.
[39] Seo I, Jha BK, Suh SI, et al. Microbial profile of the stomach: comparison between normal mucosa and cancer tissue in the same patient[J]. J Bacteriol & Virol, 2014, 44(2):162-169.
[40] Kawai T, Akira S. TLR signaling[J]. Cell Death Differ, 2006, 13(5):816-825.
[41] Federico A, Gravina AG, Miranda A, et al. Eradication of Helicobacter pylori infection: which regimen first?[J]. World J Gastroenterol, 2014, 20(3):665-672.
[42] Andrews JM, Tan M. Probiotics in luminal gastroenterology: the current state of play[J]. Intern Med J, 2012, 42(12):1287-1291.
[43] Kothari D, Goyal A. Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties[J]. Food Funct, 2014, 6(2):604-611.
[44] Nowak R, Nowackajechalke N, Juda M, et al. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth[J]. Eur J Nutr, 2017.
[45] Homan M, Orel R. Are probiotics useful in Helicobacter pylori eradication [J]. World J Gastroentero, 2015, 21(37):10644-10653.
[46] Zhang MM, Qian W, Qin YY, et al. Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis[J]. World J Gastroenterol, 2015, 21(14):4345-4357.
[47] Lucia P, John FO, Enea B, et al. Probiotics for the treatment of Helicobacter pylori infection in children[J]. World J Gastroentero, 2014, 20(3):673-683.
[48] Shekhar S, Kelly C, Watson M. Improved eradication rate of standard triple therapy by adding bismuth and probiotic supplement for Helicobacter pylori treatment in thailand[J]. Asian Pac J Cancer Prev, 2014,15(22):9909-9913.
(2017-05-19收稿 2017-06-18修回)
(本文編輯 閆晶晶)
Research progress of gastric microecology and gastric cancer
HAN Wei-li, CAO Ying, QIAN Mei-rui, NIE Yong-zhan*
State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi′an 710043, China *Corresponding author, E-mail: nieyongzhan@gmail.com
Gastric microecology is the critical premise of human health. Helicobacter pylori (Hp) is one of the pivotal pathogens related to gastric cancer, and Hp is commonly present in human gastric epithelial cells. Hp infection can give rise to changes of other bacterial flora in the stomach and long-term chronic gastric mucosal injuries, thus lead to a series of malignant progression of gastric mucosa, and even gastric cancer. In this review, we summarize the relationship of gastric microecology and Hp infection, the role of Hp infection and other gastric flora in gastric carcinogenesis, and the effect of microecologics in gastric cancer treatment. This review aims to further reveal the influence of Hp infection in gastric microecology, the role of gastric microecology and Hp infection in gastric carcinogenesis, and the significance of microecologics in the treatment of gastric cancer.
gastric microecology; Helicobacter pylori; gastric cancer; virulence factor; microecologics
R735.2;R37
A
1007-8134(2017)03-0144-04
10.3969/j.issn.1007-8134.2017.03.005
重大慢性非傳染性疾病防控研究(2016YFC1303204);國家科技部支撐項目(2015BAI13B00)
710043 西安,第四軍醫(yī)大學西京消化病醫(yī)院腫瘤生物學國家重點實驗室(韓渭麗、曹瑩、錢美睿),消化內(nèi)科(聶勇戰(zhàn))
聶勇戰(zhàn),E-mail: nieyongzhan@gmail.com