国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

銀杏性別決定相關(guān)基因的篩選*

2017-03-29 01:30:12唐海霞杜淑輝邢世巖桑亞林李際紅劉曉靜孫立民
林業(yè)科學(xué) 2017年2期
關(guān)鍵詞:葉球信號轉(zhuǎn)導(dǎo)花芽

唐海霞 杜淑輝,2 邢世巖 桑亞林 李際紅 劉曉靜 孫立民

(1. 山東省森林培育重點實驗室 山東農(nóng)業(yè)大學(xué)林學(xué)院 泰安 271000; 2. 山西農(nóng)業(yè)大學(xué)林學(xué)院 太谷 030800)

?

銀杏性別決定相關(guān)基因的篩選*

唐海霞1杜淑輝1,2邢世巖1桑亞林1李際紅1劉曉靜1孫立民1

(1. 山東省森林培育重點實驗室 山東農(nóng)業(yè)大學(xué)林學(xué)院 泰安 271000; 2. 山西農(nóng)業(yè)大學(xué)林學(xué)院 太谷 030800)

【目的】 銀杏為典型的雌雄異株裸子植物,成熟雌、雄個體在形態(tài)特征和生長習(xí)性等方面存在顯著差異,這些差異的產(chǎn)生與性別決定機(jī)制相關(guān)。本文擬通過對銀杏性別決定相關(guān)基因的篩選為進(jìn)一步探討銀杏的性別決定機(jī)制奠定基礎(chǔ)?!痉椒ā?利用RNA-Seq技術(shù)對來源于同一家系的25年生銀杏雌、雄花芽(CY,XY)及大、小孢子葉球(CH,XH)進(jìn)行轉(zhuǎn)錄組測序及生物信息學(xué)分析,以期發(fā)現(xiàn)可能參與銀杏性別決定過程的相關(guān)基因。利用實時熒光定量PCR方法對隨機(jī)挑選的26個差異表達(dá)基因的表達(dá)量進(jìn)行驗證?!窘Y(jié)果】 通過對8個cDNA文庫的測序共得到大約60 Gb的高質(zhì)量序列,利用高質(zhì)量序列進(jìn)行denovo組裝共得到108 307條unigene。unigene的平均長度為796 bp。26個隨機(jī)挑選差異表達(dá)基因的實時熒光定量PCR結(jié)果與RNA-Seq結(jié)果的相關(guān)性較高。在所有的unigene中有51 953條(47.97%)unigene在核苷酸或蛋白質(zhì)公共數(shù)據(jù)庫中得到功能注釋。差異表達(dá)分析結(jié)果表明分別有4 709和9 802個基因在XY/CY和XH/CH中差異表達(dá)。11個在XY/CY和XH/CH中共同差異表達(dá)參與植物激素信號轉(zhuǎn)導(dǎo)的基因與轉(zhuǎn)錄因子(如PYL、SNRK2和EIN3等)以及編碼甲基轉(zhuǎn)移酶的基因(如MET1和COMT1等)可能參與了銀杏的性別決定過程?!窘Y(jié)論】 參與多種調(diào)控途徑的功能基因可能在銀杏的性別決定中發(fā)揮作用,性別決定相關(guān)基因的篩選可為全面理解銀杏的性別決定機(jī)制奠定基礎(chǔ)。

銀杏; 性別決定; 基因; 轉(zhuǎn)錄組測序

銀杏(Ginkgobiloba)是我國特有的珍稀樹種,有“活化石”、植物中的“熊貓”之稱,在我國種植范圍廣泛。作為裸子植物中獨特的一類,銀杏現(xiàn)僅存一科一屬一種(邢世巖等, 2013)。銀杏是集材用、果用、藥用、觀賞于一體的高效多功能經(jīng)濟(jì)林樹種,具有較高的經(jīng)濟(jì)價值、生態(tài)效益和研究價值。隨著國內(nèi)外市場對銀杏食用、材用、保健、藥用等領(lǐng)域的不斷拓展,銀杏資源已供不應(yīng)求(Zhangetal., 2015)。銀杏為典型的雌雄異株植物,雌雄株在生長習(xí)性、形態(tài)特征與生產(chǎn)應(yīng)用等方面存在顯著差異。雄株生長速度快、樹形美觀、抗性強、根系發(fā)達(dá),常用作綠化觀賞或用材樹使用; 銀杏種子含有銀杏酸等生理藥理活性物質(zhì),具有重要的食用、藥用價值,因此雌株主要以生產(chǎn)種子為主(黃茜等, 2013)。性別決定機(jī)制是雌雄性別差異產(chǎn)生的根本原因,而性別決定基因是性別決定的直接執(zhí)行者(Charlesworth, 2013),但是目前國內(nèi)外關(guān)于銀杏性別決定基因的研究還未見報道。對銀杏性別決定基因的研究不僅可為破解銀杏性別決定機(jī)制打下堅實基礎(chǔ),同時也能夠加深對植物性別決定機(jī)制的理解。

早期的性別決定基因研究大多以一些與性別有關(guān)的發(fā)育性突變體為材料,研究性別決定基因的作用機(jī)制。隨著分子生物學(xué)技術(shù),特別是分離目的基因的方法的發(fā)展,mRNA差異顯示PCR、消減雜交法、基因芯片技術(shù)、基因表達(dá)的系統(tǒng)分析等方法已廣泛應(yīng)用到大規(guī)?;蚍蛛x與表達(dá)分析研究中,但是以上方法普遍存在需要已知目的基因序列、靈敏度低、難以檢測低豐度的目標(biāo)、無法捕捉到目的基因表達(dá)水平的微小變化等缺點(Wangetal., 2009)。隨著新一代測序技術(shù)(next-generation sequencing,NGS)的迅猛發(fā)展,RNA-Seq(RNA-sequencing)技術(shù)的應(yīng)用彌補了上述研究方法存在的各種不足。Wu等(2010)利用RNA-Seq技術(shù)對黃瓜(Cucumissativus)雌雄花芽的轉(zhuǎn)錄組進(jìn)行了測序與分析,發(fā)現(xiàn)了大量在雌雄花芽中差異表達(dá)或特異表達(dá)的轉(zhuǎn)錄因子和基因,為進(jìn)一步深入探明黃瓜的性別決定機(jī)制奠定了堅實基礎(chǔ)。Liu等(2013)利用RNA-Seq技術(shù)對簸箕柳(Salixsuchowensis)雌雄花芽差異表達(dá)基因進(jìn)行了分析,發(fā)現(xiàn)了在雌雄花芽中差異表達(dá)的806個基因,其中有33個可能定位于性染色體上,有12個基因可能直接參與了簸箕柳的性別決定,為最終發(fā)現(xiàn)楊柳科(Salicaceae)性別決定基因和未來的功能基因組學(xué)研究奠定了基礎(chǔ)。本研究利用高通量測序技術(shù)平臺Illumina Solexa對銀杏雌雄花芽和大、小孢子葉球進(jìn)行轉(zhuǎn)錄組測序、拼接組裝,再利用生物信息學(xué)方法對得到的unigene進(jìn)行功能注釋與功能分類,以期為理解銀杏性別決定機(jī)制奠定基礎(chǔ)。

1 材料與方法

1.1 試驗材料

根據(jù)相關(guān)文獻(xiàn)(史繼孔等, 1998; 張萬萍等, 2001; 韓晨靜, 2011) 報道,在山東農(nóng)業(yè)大學(xué)銀杏種質(zhì)資源圃內(nèi)挑選來源于同一家系的25年生銀杏雌雄株各5株,分別于2015年3月4日和4月10日采集花芽和大、小孢子葉球樣本各10個(每株樹采集2個樣本,共采集40個樣本),每5個樣本為一組(每組樣品設(shè)置2個生物學(xué)重復(fù))用于構(gòu)建cDNA文庫。所采樣本用液氮速凍后存于-80 ℃冰箱備用。

1.2 RNA提取

使用改良的CTAB-LiCl法(Changetal., 1993)提取總RNA,然后使用RNeasy Plant Mini Kit(QIAGEN)對RNA樣品進(jìn)一步純化。利用Agilent的Nano 6000 Assay Kit和瓊脂糖凝膠電泳檢測RNA的完整性和質(zhì)量,保證RNA樣品濃度大于400 ng·μL-1,28S/18S大于1.8。

1.3 cDNA文庫構(gòu)建與測序

利用NEB Next?UltraTMRNA Library Prep Kit for Illumina?(NEB, USA)構(gòu)建cDNA文庫,分別為雄花芽(XY)、雌花芽(CY)、小孢子葉球(XH)和大孢子葉球(CH),然后利用Illumina Hiseq 2500平臺對構(gòu)建的cDNA文庫進(jìn)行DNA雙末端測序,得到2×125 bp的原始數(shù)據(jù)。

1.4 數(shù)據(jù)拼接和功能注釋

去掉原始數(shù)據(jù)中的低質(zhì)量序列和接頭序列后,將所有高質(zhì)量序列混合后利用軟件Trinity(Grabherretal., 2011)進(jìn)行組裝得到unigene。利用BLAST系列軟件將銀杏的unigene序列與Nr(NCBI非冗余蛋白數(shù)據(jù)庫)、Nt(NCBI核苷酸數(shù)據(jù)庫)、Swiss-Prot蛋白質(zhì)數(shù)據(jù)庫、Pfam蛋白質(zhì)數(shù)據(jù)庫、COG/KOG、GO、KEGG數(shù)據(jù)庫進(jìn)行比對,獲得unigene的注釋信息。

1.5 qRT-PCR驗證

隨機(jī)挑選26個差異表達(dá)基因,利用軟件Primer 5進(jìn)行引物設(shè)計。根據(jù)SYBR Green Dye(Takara, Dalian, China)試劑盒進(jìn)行熒光定量PCR反應(yīng),每個反應(yīng)重復(fù)3次。用GAPDH(Zhangetal., 2015)作為內(nèi)參基因,采用2-ΔΔCt方法(Livaketal., 2001)計算每個基因表達(dá)量的變化。

1.6 差異表達(dá)基因的識別與富集分析

利用Trapnell等(2010)的方法計算每個unigene的FPKM(每百萬片段中比對到某一基因每千堿基長度的片段數(shù)目,fragments per transcript kilobase per million fragments mapped)值,作為衡量unigene表達(dá)量的標(biāo)準(zhǔn)。利用DESeq R軟件包(Anders, 2010)分析XY/CY和XH/CH中unigene表達(dá)量的差異,顯著性檢驗采用校正后的P值(Storeyetal., 2003)。當(dāng)檢驗結(jié)果的P值小于0.05時,就認(rèn)為這個unigene是差異表達(dá)基因。利用軟件GOseq(Youngetal., 2010)和KOBAS(Maoetal., 2005)對差異基因進(jìn)行功能富集分析。

2 結(jié)果與分析

2.1 測序結(jié)果及數(shù)據(jù)拼接

利用Illumina Hiseq 2500平臺對8個cDNA文庫進(jìn)行了高通量測序,去掉接頭序列及低質(zhì)量序列后,分別得到了119 494 172(雄花芽,XY)、115 958 434(雌花芽,CY)、121 730 470(小孢子葉球,XH)、116 504 860(大孢子葉球,CH)條高質(zhì)量序列。所有原始測序數(shù)據(jù)均已上傳到NCBI Sequence Read Archive (SRA)數(shù)據(jù)庫,登錄號分別為SRR2147720(XH),SRR2147715(CH),SRR2147717(CY),SRR2147721(XY)。將所有高質(zhì)量序列混合后采用軟件Trinity進(jìn)行數(shù)據(jù)拼接,最終共獲得108 307條unigene。unigene的平均長度為796 bp,N50為1 648 bp,其中長度大于1 000 bp的unigene有23 624條,占全部unigene的21.81%。

2.2 qRT-PCR驗證

利用qRT-PCR對隨機(jī)挑選的26個差異表達(dá)基因在XY,CY,XH和CH中的表達(dá)量進(jìn)行驗證,從圖1可以看出,RNA-Seq結(jié)果與qRT-PCR結(jié)果具有很高的相關(guān)性(R2> 0.9),表明RNA-Seq方法準(zhǔn)確反映了基因在不同器官中表達(dá)水平的變化。

圖1 26個差異表達(dá)基因RNA-Seq與qRT-PCR表達(dá)量結(jié)果的相關(guān)性Fig.1 Correlation of expression levels of 26 differentially expressed genes measured by RNA-Seq and qRT-PCRCH: 大孢子葉球; CY: 雌花芽; XH: 小孢子葉球; XY: 雄花芽; FPKM: 每百萬片段中比對到某一基因每千堿基長度的片段數(shù)目。CH: Ovulate strobilus; CY: Female bud; XH: Staminate strobilus; XY: Male bud; FPKM: Fragments per transcript kilobase per million fragments mapped.

2.3 功能注釋

使用BLAST系列軟件將unigene序列與Nr,Nt,Swiss-Prot,Pfam,COG/KOG,GO,KEGG數(shù)據(jù)庫進(jìn)行比對,獲得unigene的注釋信息。從表1可以看出,6 347條unigene(5.86%)在所有數(shù)據(jù)庫中都獲得了注釋信息,有51 953條(47.97%)在至少1個數(shù)據(jù)庫中獲得了注釋信息,在Nr和SwissProt數(shù)據(jù)庫中得到注釋信息的unigene數(shù)量最多,而在KEGG和COG/KOG數(shù)據(jù)庫中得到注釋信息的unigene數(shù)量相對偏少。unigene在GO和KEGG數(shù)據(jù)庫中注釋結(jié)果見圖2和圖3。

2.4 差異表達(dá)基因分析

為了能夠確定參與銀杏性別決定過程的基因,利用軟件DESeq對XY/CY和XH/CH中unigene的表達(dá)量進(jìn)行了比較。結(jié)果表明,有4 709條unigene在XY/CY中差異表達(dá),其中2 235條unigene在XY中上調(diào)表達(dá)而有2 474條unigene下調(diào)表達(dá); 有9 802條unigene在XH/CH中差異表達(dá),其中5 849條unigene在XH中上調(diào)表達(dá)而3 953條unigene下調(diào)表達(dá)。

對差異表達(dá)的unigene進(jìn)行GO富集分析,結(jié)果表明XY/CY中的4 709條差異表達(dá)基因可以劃分為36個類別,其中代謝過程(GO: 0008152,2 154個unigenes)和細(xì)胞代謝過程(GO: 0044237,1 678個unigenes)所占比例最大; XH/CH中的9 802條差異表達(dá)基因可以劃分為18個類別,其中細(xì)胞組分合成(GO: 0044085,427個unigenes)和核糖核蛋白復(fù)合體合成(GO: 0022613,272個unigenes)所占比例最大。差異表達(dá)基因的KEGG代謝通路富集分析結(jié)果表明在XH/CH中,核糖體(143個unigenes)、淀粉和蔗糖代謝(97個unigenes)、植物激素信號轉(zhuǎn)導(dǎo)(76個unigenes)所占比例最大; 在XY/CY中,核糖體(190個unigenes)和苯丙素生物合成(33條unigenes)所占比例最大。在76個參與植物激素信號轉(zhuǎn)導(dǎo)的差異表達(dá)基因中,有11個基因在XY/CY和XH/CH中共同差異表達(dá)(表2)。這些基因可能在銀杏性別決定中發(fā)揮著重要的作用。

表1 unigene的功能注釋結(jié)果Tab. 1 Summary of functional annotation of the unigene

圖2 unigene的GO功能注釋Fig.2 GO functional classification of the unigene生物過程 A: 生物附著; B: 生物調(diào)控; C: 細(xì)胞死亡; D: 細(xì)胞成分和生物合成; E: 細(xì)胞過程; F: 發(fā)育過程; G: 生長; H: 免疫系統(tǒng)過程; I: 定位; J: 移動; K: 新陳代謝過程; L: 多細(xì)胞生物過程; M: 多機(jī)體過程; N: 負(fù)調(diào)控生物過程; O: 正調(diào)控生物過程; P: 生物過程調(diào)節(jié); Q: 再生; R: 再生過程; S: 應(yīng)激反應(yīng); T: 信號傳導(dǎo); U: 單機(jī)體過程。細(xì)胞組成 A: 細(xì)胞; B: 細(xì)胞部分; C: 細(xì)胞外基質(zhì); D: 細(xì)胞外基質(zhì)分化; E: 細(xì)胞外區(qū)域; F: 細(xì)胞外區(qū)域分化; G: 大分子復(fù)合物; H: 膜; I: 膜封閉腔; J: 膜分化; K: 細(xì)胞器; L: 細(xì)胞器分化; M: 病毒體; N: 病毒體分化。分子功能 A: 抗氧化活性; B: 結(jié)合; C: 催化活性; D: 引導(dǎo)調(diào)控活性; E: 酶調(diào)控活性; F: 分子轉(zhuǎn)導(dǎo)活性; G: 核酸結(jié)合的轉(zhuǎn)錄因子活性; H: 蛋白質(zhì)結(jié)合的轉(zhuǎn)錄因子活性; I: 受體活性; J: 結(jié)構(gòu)分子活性; K: 轉(zhuǎn)運活性。

Biological process A: Biological adhesion; B: Biological regulation; C: Cell killing; D: Cellular component organization or biogenesis; E: Cellular process; F: Developmental process; G: Growth; H: Immune system process; I: Localization; J: Locomotion; K: Metabolic process; L: Multicellular organismal process; M: Multi-organism process; N: Negative regulation of biological process; O: Positive regulation of biological process; P: Regulation of biological process; Q: Reproduction; R: Reproductive process; S: Response to stimulus; T: Signaling; U: Single-organism process. Cellular component A: Cell; B: Cell part; C: Extracellular matrix; D: Extracellular matrix part; E: Extracellular region; F: Extracellular region part; G: Macromolecular complex; H: Membrane; I: Membrane-enclosed lumen; J: Membrane part; K: Organelle; L:Organelle part; M: Virion; N: Virion part. Molecular function A: Antioxidant activity; B: Binding; C: Catalytic activity; D: Channel regulator activity; E: Enzyme regulator activity; F: Molecular transducer activity; G: Nucleic acid binding transcription factor activity; H: Protein binding transcription factor activity; I: Receptor activity; J: Structural molecular activity; K: Transporter activity.

圖3 unigene的KEGG功能注釋結(jié)果Fig.3 KEGG pathway prediction of the unigene圖中數(shù)字表示基因數(shù)目。A: 感覺系統(tǒng); B: 神經(jīng)系統(tǒng); C: 免疫系統(tǒng); D: 排泄系統(tǒng); E: 環(huán)境適應(yīng); F: 內(nèi)分泌系統(tǒng); G: 消化系統(tǒng); H: 發(fā)育; I: 循環(huán)系統(tǒng); J: 生物降解與合成; K: 概觀; L: 核苷酸代謝; M: 萜類和聚酮化合物代謝; N: 其他種類氨基酸代謝; O: 輔酶因子和維生素合成; P: 類脂物代謝; Q: 聚糖代謝合成; R: 能量代謝; S: 碳水化合物代謝; T: 其他次生代謝物質(zhì)代謝; U: 氨基酸代謝; V: 翻譯; W: 轉(zhuǎn)錄; X: 復(fù)制和修復(fù); Y: 折疊、排序、降解; Z: 信號分子互作; AA: 信號轉(zhuǎn)導(dǎo); AB: 膜運輸; AC: 運輸分解; AD: 細(xì)胞共同體; AE: 細(xì)胞運動; AF: 細(xì)胞生長與死亡。

Numbers indicate the number of genes.A: Sensory system; B: Nervous system; C: Immune system; D: Excretory system; E: Environmental adaption; F: Endocrine system; G: Digestive system; H: Development; I: Circulatory system; J: Xenobiotics biodegradation and metabolism; K: Overview; L: Nucleotide metabolism; M: Metabolism of terpenoids and polyketides; N: Metabolism of other amino acid; O: Metabolism of cofactors and vitamins; P: Lipid metabolism; Q: Glycan biosynthesis and metabolism; R: Energy metabolism; S: Carbohydrate metabolism; T: Biosynthesis of other secondary metabolites; U: Amino acid metabolism; V: Translation; W: Transcription; X: Replication and repair; Y: Folding, sorting and degradation; Z: Signaling molecules interaction; AA: Signal transduction; AB: Membrane transport; AC: Transport and catabolism; AD: Cellular community; AE: Cell motility; AF: Cell growth and death.

3 討論

植物的性別決定涉及到復(fù)雜的調(diào)控網(wǎng)絡(luò)以及在不同發(fā)育階段差異或特異表達(dá)的功能基因(Aryaletal., 2014)。有研究表明參與花發(fā)育的功能基因(如ABC類基因)并不是性別決定基因(Ainsworthetal., 1995; Hardenacketal., 1994),而參與植物激素合成與信號轉(zhuǎn)導(dǎo)的基因在植物性別決定中發(fā)揮著重要的作用(Aryaletal., 2014; Guoetal., 2010)。從表2中可以看到,2個負(fù)調(diào)控ABA信號轉(zhuǎn)導(dǎo)的基因PP2C(proteinphosphatase2C)和PYL(abscisicacidreceptor2)在雄芽(XY)和小孢子葉球(XH)中下調(diào)表達(dá),而正調(diào)控ABA信號轉(zhuǎn)導(dǎo)的基因SNRK2(SNF1-relatedproteinkinasesubfamily2)在XY和XH中上調(diào)表達(dá)。在大麥(Hordeumvulgare)中,反義表達(dá)SNRK2基因會導(dǎo)致花粉敗育,從而引起雄性不育(Zhangetal., 2001)。由此可以推測,參與ABA信號轉(zhuǎn)導(dǎo)的基因可能在銀杏雄性性別決定中發(fā)揮作用(Fujiietal., 2009; Parketal., 2009)。生長素誘導(dǎo)基因SAUR(smallauxinupRNA)和生長素應(yīng)答基因GH3(GretchenHagen3)在XY和XH中分別下調(diào)和上調(diào)表達(dá),說明參與生長素信號轉(zhuǎn)導(dǎo)的基因在銀杏性別決定中發(fā)揮的作用有一定的差異,這與Kong等(2013)對擬南芥(Arabidopsisthaliana)的研究結(jié)果一致。在XY和XH中,參與茉莉酸信號轉(zhuǎn)導(dǎo)的基因COI1(coronatineinsensitive1)上調(diào)表達(dá)。擬南芥COI1突變體呈現(xiàn)出不同程度的雄性不育(Ellisetal., 2002; Turneretal., 2002),這說明茉莉酸在銀杏雄性性別決定和育性發(fā)育方面也有重要作用。參與水楊酸信號轉(zhuǎn)導(dǎo)的基因NPR1(nonexpressorofPR)在XY和XH中上調(diào)表達(dá),但是這個基因的上調(diào)表達(dá)可能只與銀杏雄株的抗性相關(guān),而與性別決定的關(guān)系不大(Mouetal., 2003)。參與赤霉素信號轉(zhuǎn)導(dǎo)的轉(zhuǎn)錄因子DELLA蛋白和參與乙烯信號轉(zhuǎn)導(dǎo)的轉(zhuǎn)錄因子EIN3(ethylene-insensitiveprotein3)在XY和XH中上調(diào)表達(dá)。有研究表明DELLA蛋白D8在玉米(Zeamays)的性別決定中發(fā)揮重要的作用(Pengetal., 1999); 黃瓜中參與乙烯生物合成與信號轉(zhuǎn)導(dǎo),以及乙烯誘導(dǎo)表達(dá)的大量基因都在性別決定中發(fā)揮重要的作用(Boualem, 2009; Wuetal., 2010); 擬南芥EIN3突變體中乙烯信號轉(zhuǎn)導(dǎo)受阻并且雄性不育(Solanoetal., 1998)。因此可以推測乙烯在銀杏性別決定中同樣發(fā)揮一定的作用。

銀杏的性染色體為ZW型,雄性性染色體為ZZ而雌性為ZW(Lanetal., 2008)。楊樹的性染色體組成同樣為ZW型,第19號染色體可能是楊樹的性染色體(Yinetal., 2008),Song等(2013)研究發(fā)現(xiàn)2個參與DNA甲基化的基因定位到毛白楊性染色體上的性別決定區(qū)域。DNA甲基化對植物的性別決定起到重要的調(diào)控作用(Hultquistetal., 2008;

表2 在雄花芽(XY)/雌花芽(CY)和小孢子葉球(XH)/大孢子葉球(CH)中共同差異表達(dá)的11個基因①Tab. 2 The 11 commonly differentially expressed genes in the male bud(XY) vs. female bud(CY) and staminate strobilus(XH) vs. ovulate strobilus(CH) comparisons

①log2FC: log2(foldchange).

Janou?eketal., 1996; Martinetal., 2009; Parkinsonetal., 2007)。本次研究中在雌芽(CY)和大孢子葉球(CH)中發(fā)現(xiàn)了參與DNA甲基化的特異表達(dá)基因,其中包括已經(jīng)報道的參與植物性別決定的基因,如MET1和COMT1(Doetal., 2007; Schmidtetal., 2013)。另外,差異基因的GO富集分析表明,編碼DNA甲基化轉(zhuǎn)移酶的基因在CY和CH中均上調(diào)表達(dá)。這一結(jié)果與楊樹中研究結(jié)果(Songetal., 2012)類似,CY和CH中DNA甲基化水平的上升可能有助于銀杏雌性的分化與發(fā)育。

4 結(jié)論

本研究通過使用RNA-Seq技術(shù)對銀杏雌、雄花芽和大、小孢子葉球進(jìn)行轉(zhuǎn)錄組測序與生物信息學(xué)分析,發(fā)現(xiàn)11個參與植物激素信號轉(zhuǎn)導(dǎo)的基因在雄芽/雌芽和小孢子葉球/大孢子葉球中共同差異表達(dá),參與DNA甲基化的基因在雌芽和大孢子葉球中顯著上調(diào)表達(dá),這些基因的差異表達(dá)可能促進(jìn)了銀杏雌性或雄性的分化,從而在銀杏的性別決定中發(fā)揮一定的作用。本研究表明銀杏的性別決定涉及多種調(diào)控途徑和功能基因,性別決定相關(guān)基因的篩選為全面理解銀杏的性別決定機(jī)制奠定了基礎(chǔ)。

韓晨靜. 2011. 銀杏與葉籽銀杏胚珠發(fā)育的組織化學(xué)比較研究. 泰安: 山東農(nóng)業(yè)大學(xué)碩士學(xué)位論文.

(Han C J. 2011. Comparative studies on histochemistry of the developmental ovule inGinkgobilobaL. andGinkgobilobavar.epiphyllaMak. Tai’an: MS thesis of Shandong Agricultural University. [in Chinese])

黃 茜, 劉霽瑤, 曹 敏, 等. 2013. 銀杏性別特征表現(xiàn)與鑒別研究進(jìn)展. 果樹學(xué)報, 30(6): 1065-1071.

(Huang Q, Liu Q Y, Cao M,etal. 2013. Advance of gender characteristics expression and identification ofGinkgobiloba. Journal of Fruit Science, 30(6): 1065-1071. [in Chinese])

史繼孔, 樊衛(wèi)國, 文曉鵬. 1998. 銀杏雌花芽形態(tài)分化的研究. 園藝學(xué)報, 25(1): 33-36.

(Shi J K, Fan W G, Wen X P. 1998. Female flower bud differentiation ofGinkgobiloba. Acta Horticulture Sinica, 25(1): 33-36. [in Chinese])

邢世巖, 張 倩, 付兆軍, 等. 2013. 銀杏垂乳個體發(fā)生及系統(tǒng)學(xué)意義. 林業(yè)科學(xué), 49(8): 108-116.

(Xing S Y, Zhang Q, Fu Z J,etal. 2013. Ontogenesis and systematics implications ofGinkgobilobachichi. Scientia Silvae Sinicae, 49(8): 108-116. [in Chinese])

張萬萍, 史繼孔, 樊衛(wèi)國, 等. 2001. 銀杏雄花芽的形態(tài)分化. 園藝學(xué)報, 28(3): 255-258.

(Zhang W P, Shi J K, Fan W G,etal. 2001. Morphological differentiation of male flower ofGinkgobiloba. Acta Horticulture Sinica, 28(3): 255-258. [in Chinese])

Ainsworth C, Crossley S, Buchanan-Wollaston V,etal. 1995. Male and female flowers of the dioecious plant sorrel show different patterns of MADS Box gene expression. Plant Cell, 7(10): 1583-1598.

Anders S. 2010. Differential expression analysis for sequence count data. Genome Biology, 11(10): 79-82.

Aryal R, Ming R. 2014. Sex determination in flowering plants: papaya as a model system. Plant Science, 217: 56-62.

Boualem A. 2009. A conserved ethylene biosynthesis enzyme leads to andromonoecy in twoCucumisspecies. PloS One, 4(7): e6144.

Chang S J, Puryear J, Caimey J. 1993. A simple and efficient method for isolation RNA from pine trees. Plant Molecular Biology Reporter, 11(2): 113-116.

Charlesworth D. 2013. Plant sex chromosome evolution. Journal of Experimental Botany, 64(2): 405-420.

Do C T, Pollet B, Thévenin J,etal. 2007. Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis inArabidopsis. Planta, 226(5): 1117-1129.

Ellis C, Turner J G. 2002. A conditionally fertileCOI1 allele indicates cross-talk between plant hormone signalling pathways inArabidopsisthalianaseeds and young seedlings. Planta, 215(4): 549-556.

Fujii H, Zhu J K. 2009.Arabidopsismutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20): 8380-8385.

Grabherr M G, Haas B J, Yassour M,etal. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644-652.

Guo S, Zheng Y, Joung J G,etal. 2010. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 11(1): 384-395.

Hardenack S, Ye D, Saedler H,etal. 1994. Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell, 6(12): 1775-1787.

Hultquist J, Dorweiler J. 2008. Feminized tassels of maizemop1 andts1 mutants exhibit altered levels of miR156 and specific SBP-box genes. Planta, 229(1): 99-113.

Kong Y, Zhu Y, Gao C,etal. 2013. Tissue-specific expression ofSMALLAUXINUPRNA41 differentially regulates cell expansion and root meristem patterning inArabidopsis. Plant & Cell Physiology, 54(4): 609-621.

Lan T, Chen R, Li X,etal. 2008. Microdissection and painting of the W chromosome inGinkgobilobashowed different labelling patterns. Bot Studies, 49: 33-37.

Liu J, Yin T, Ye N,etal. 2013. Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salixsuchowensis). PloS One, 8(4): e60181.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod. Methods, 25(4): 402-408.

Mao X, Tao C, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21(19): 3787-3793.

Martin A, Troadec C, Boualem A,etal. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature, 461(7267): 1135-1138.

Mou Z, Fan W, Dong X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113(7): 935-944.

Park S Y, Fung P, Nishimura N,etal. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324(5930): 1068-1071.

Parkinson S E, Gross S M, Hollick J B. 2007. Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Developmental Biology, 308(2): 462-473.

Peng J, Richards D E, Hartley N M,etal. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400(6741): 256-261.

Schmidt A, Wohrmann H J P, Raissig M T,etal. 2013. The polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development inArabidopsis. Plant Journal, 73(5): 776-787.

Solano R, Stepanova A, Chao Q,etal. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated byETHYLENE-INSENSITIVE3 andETHYLENE-RESPONSE-FACTOR1. Genes & Development, 12(23): 3703-3714.

Song Y, Ma K, Bo W,etal. 2012. Sex-specific DNA methylation and gene expression in andromonoecious poplar. Plant Cell Reports, 31(8): 1393-1405.

Song Y, Ma K, Ci D,etal. 2013. Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis inPopulustomentosa. Plant Molecular Biology, 83(6): 559-576.

Storey J D, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16): 9440-9445.

Trapnell C, Williams B A, Pertea G,etal. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5): 511-515.

Turner J G, Ellis C, Devoto A. 2002. The jasmonate signal pathway. Plant Cell, 14(1): 153-164.

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1): 57-63.

Wu T, Qin Z, Zhou X,etal. 2010. Transcriptome profile analysis of floral sex determination in cucumber. Journal of Plant Physiology, 167(11): 905-913.

Yin T, DiFazio S P, Gunter L E,etal. 2008. Genome structure and emerging evidence of an incipient sex chromosome inPopulus. Genome Research, 18(3): 422-430.

Young M D, Wakefield M J, Smyth G K,etal. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 11(2): R14.

Zhang Q, Li J, Sang Y,etal. 2015. Identification and characterization of microRNAs inGinkgobilobavar.epiphyllaMak. PloS One, 10(5): e0127184.

Zhang Y, Shewry P R, Jones H,etal. 2001. Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant Journal, 28(4): 431-441.

(責(zé)任編輯 徐 紅)

Screening of Sex Determination Related Genes inGinkgobiloba

Tang Haixia1Du Shuhui1, 2Xing Shiyan1Sang Yalin1Li Jihong1Liu Xiaojing1Sun Limin1

(1.KeyLaboratoryofSilvicultureofShandongProvinceCollegeofForestry,ShandongAgriculturalUniversityTai’an271000; 2.CollegeofForestry,ShanxiAgriculturalUniversityTaigu030800)

【Objective】 In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially or specially expressed in distinct developmental phases.Ginkgobilobais a typical dioecious gymnosperm species with high ecological and economical values. The morphological traits and growth habits are significantly different between mature female and male individuals. These differences are likely related to sex determination inG.biloba. In the present study, the screening of sex determination genes ofG.bilobawill lay a solid foundation for further exploring the mechanism of sex determination in this species. 【Method】We conducted RNA-sequencing of female and male buds (CY and XY) as well as ovulate strobilus and staminate strobilus (CH and XH) ofG.bilobafrom the same family to gain insights into the genes potentially related to sex determination in this species. The expression level of 26 randomly selected differentially expressed genes (DEGs) was tested using quantitative real-time PCR. 【Result】 Approximately 60 Gb of clean reads were obtained from eight cDNA libraries.Denovoassembly of the clean reads generated 108 307 unigenes with an average length of 796 bp. A high level of correlation was found between the RNA-Seq and qRT-PCR for the 26 randomly selected DEGs. Among these unigenes, 51 953 (47.97%) had at least one significant match with a gene sequence in one of the public protein and nucleotide databases. A total of 4 709 and 9 802 DEGs were identified in XYvs.CY and XHvs.CH, respectively. 11 commonly DEGs and transcription factors associated with plant hormone signal and transduction (such asPYL,SNRK2,EIN3 etc.) as well as genes encoding methyltransferase (e.g.MET1 andCOMT1) were assumed to involve in sex determination inG.biloba.【Conclusion】 The transcriptome resources generated allowed us to identify diverse functional genes that may be associated with sex determination inG.biloba. Our results laid a solid foundation for fully exploring the mechanism of sex determination inG.biloba.

Ginkgobiloba; sex determination; genes; RNA-Seq

10.11707/j.1001-7488.20170209

2016-01-29;

2016-04-12。

中國博士后科學(xué)基金面上項目(2015M582124)。

S718.46

A

1001-7488(2017)02-0076-07

* 邢世巖為通訊作者。

猜你喜歡
葉球信號轉(zhuǎn)導(dǎo)花芽
??导t豆杉性別分化過程中大小孢子葉球和內(nèi)源激素的變化分析
朱頂紅花芽發(fā)育研究
石河子科技(2022年5期)2023-01-07 14:06:36
秋月梨枝梢生長發(fā)育影響花芽形成
適宜慈溪市種植的紫甘藍(lán)品種篩選試驗初報
2021年山西省果樹花芽期病蟲預(yù)報
Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
蘋果花芽期如何防凍害
36個結(jié)球甘藍(lán)農(nóng)藝性狀的相關(guān)性及聚類分析
長江蔬菜(2021年2期)2021-03-15 08:58:44
HGF/c—Met信號轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
甘藍(lán)裂球的防治方法
迁西县| 龙江县| 六安市| 鹿邑县| 绥中县| 福泉市| 大同县| 赫章县| 黄骅市| 宜昌市| 黑水县| 明光市| 北碚区| 黄龙县| 阜新市| 台前县| 靖边县| 陆良县| 邛崃市| 洞口县| 建始县| 定南县| 芦溪县| 张家川| 营山县| 白城市| 叶城县| 登封市| 克拉玛依市| 尉犁县| 安化县| 盐城市| 广安市| 于田县| 柳州市| 清河县| 宿松县| 长泰县| 芜湖县| 肥乡县| 聂荣县|