陳 早,趙 衡,劉進(jìn)才
·前沿進(jìn)展·
糖尿病患者無癥狀性低糖血癥的神經(jīng)影像學(xué)研究進(jìn)展
陳 早,趙 衡,劉進(jìn)才
低糖血癥是糖尿病常見并發(fā)癥之一,無癥狀性低糖血癥是指患者無典型低糖血癥癥狀但血糖≤3.9 mmol/L,其在老年2型糖尿病患者中較為常見,如處理不及時(shí)則會(huì)危及患者生命安全。腦功能成像技術(shù)通過觀察局部腦灌注、葡萄糖攝取或代謝率等而反映腦局部活動(dòng)變化,有助于分析無癥狀性低糖血癥患者大腦功能特性及其對腦皮質(zhì)功能的影響,進(jìn)而指導(dǎo)臨床治療等。本文對糖尿病患者無癥狀性低糖血癥的神經(jīng)影像學(xué)研究進(jìn)展進(jìn)行綜述。
糖尿病并發(fā)癥;低血糖癥;無癥狀疾??;正電子發(fā)射斷層顯像術(shù);磁共振成像
大腦是一個(gè)高度活躍的器官,而維持腦代謝的能量幾乎完全來源于葡萄糖[1-2]。低糖血癥是糖尿病常見并發(fā)癥之一,其不僅會(huì)導(dǎo)致腦代謝變化,還會(huì)導(dǎo)致認(rèn)知功能下降[3]。無癥狀性低糖血癥是指患者無典型低糖血癥癥狀但血糖≤3.9 mmol/L,在老年2型糖尿病患者中較為常見,但由于其起病隱匿、不利于及時(shí)采取有效措施,因此可導(dǎo)致糖尿病患者嚴(yán)重低糖血癥發(fā)生風(fēng)險(xiǎn)升高。腦功能成像技術(shù)可通過觀察局部腦灌注、葡萄糖攝取或代謝率等而反映腦局部活動(dòng)變化,有助于分析無癥狀性低糖血癥患者大腦功能特性及其對腦皮質(zhì)功能、大腦能量代謝、代謝調(diào)控中央通路等的影響,進(jìn)而為臨床采取有效干預(yù)措施提供指導(dǎo)。本文對糖尿病患者無癥狀性低糖血癥的神經(jīng)影像學(xué)研究進(jìn)展進(jìn)行綜述如下。
1.1 低血糖反應(yīng) 低血糖反應(yīng)是糖尿病患者降糖治療過程中常見并發(fā)癥之一。監(jiān)測血糖的傳感器主要位于大腦,并通過下丘腦-垂體軸引發(fā)應(yīng)激反應(yīng),血糖開始下降時(shí)內(nèi)源性胰島素停止分泌,腸高血糖素釋放增多,血糖持續(xù)下降則可誘發(fā)應(yīng)激反應(yīng),導(dǎo)致交感神經(jīng)系統(tǒng)激活并促進(jìn)兒茶酚胺、皮質(zhì)醇及生長激素的釋放[4-6],這一系列反應(yīng)最終導(dǎo)致內(nèi)源性葡萄糖生成增多及外周血葡萄糖利用減少,即低血糖反應(yīng)[2]。此外,腦循環(huán)血流量增加需要更多的葡萄糖[7-8],但由于糖尿病患者部分相鄰的胰島功能性β細(xì)胞與α細(xì)胞間連接程度降低,分泌內(nèi)源性胰島素的能力下降,因此導(dǎo)致患者對抗血糖反應(yīng)的能力減退,最終導(dǎo)致腸高血糖素釋放不足及低糖血癥。
1.2 低糖血癥癥狀 低糖血癥患者主觀癥狀與其應(yīng)激反應(yīng)相關(guān),可分為自主神經(jīng)相關(guān)癥狀(與腎上腺素自主應(yīng)激反應(yīng)相關(guān),如出汗、心悸、震顫等)、神經(jīng)低糖血癥癥狀(如意識(shí)模糊、注意力不集中、嗜睡、頭暈等)和其他癥狀(如視力模糊、饑餓等)[9-11]。由于多數(shù)糖尿病患者存在負(fù)反饋調(diào)節(jié)機(jī)制障礙,因此機(jī)體對低血糖事件的敏感性降低,一般常在出現(xiàn)嚴(yán)重低糖血癥時(shí)才會(huì)意識(shí)到。此外,較長時(shí)間的輕度低糖血癥(如血糖3 mmol/L持續(xù)2 h)也可誘發(fā)負(fù)反饋調(diào)節(jié)機(jī)制障礙,極易誘發(fā)無癥狀性低糖血癥[12-13]。
1.3 無癥狀性低糖血癥 研究表明,無癥狀性低糖血癥可發(fā)生于糖尿病病程的任意階段,糖尿病病程達(dá)15年的1型糖尿病患者更易發(fā)生無癥狀性低糖血癥[14]。無癥狀性低糖血癥患者自身應(yīng)對能力不足,嚴(yán)重低糖血癥、癲癇及昏迷發(fā)生風(fēng)險(xiǎn)增加約6倍[13,15];此外,雖然合理使用胰島素可降低無癥狀性低糖血癥患者嚴(yán)重低糖血癥發(fā)生風(fēng)險(xiǎn),但僅有約1/2的患者治療后能恢復(fù)對低糖血癥的感知[16-17]。
2.1 正電子發(fā)射斷層顯像(PET) PET利用正電子核素標(biāo)記葡萄糖及其類似物等,通過觀察病灶對標(biāo)記物的攝取而反映其代謝變化,從而為臨床提供診斷疾病的生物代謝信息。大腦對葡萄糖的攝取率和代謝率可反映神經(jīng)元活性,通過計(jì)算標(biāo)記物的分布和含量等可生成全腦或局部腦活動(dòng)的PET圖像。大腦活動(dòng)時(shí)神經(jīng)元或膠質(zhì)細(xì)胞常攝取葡萄糖及其類似物,進(jìn)而透過血-腦脊液屏障進(jìn)入腦內(nèi)并發(fā)生磷酸化,但由于其不能進(jìn)一步代謝,因此會(huì)滯留于腦細(xì)胞內(nèi)[1,18-19]。PET標(biāo)記的葡萄糖類似物包括18F標(biāo)記的2-脫氧葡萄糖(18F-FDG)和11甲基-D-葡萄糖(CMG),不同神經(jīng)元受體與轉(zhuǎn)運(yùn)蛋白或神經(jīng)遞質(zhì)前體的放射性標(biāo)記配體結(jié)合會(huì)生成不同神經(jīng)元通路的PET圖像,PET主要通過顯示滯留于腦細(xì)胞內(nèi)的上述標(biāo)記物而獲取大腦細(xì)胞代謝及活動(dòng)信息[20-21]。同時(shí),由于神經(jīng)血管耦合,因此神經(jīng)元和/或星形膠質(zhì)細(xì)胞代謝變化所致全腦或局部腦組織灌注變化可間接反映神經(jīng)元活動(dòng)區(qū)域變化。18F-FDG-PET數(shù)據(jù)采集時(shí)間需要1 h左右,而15O標(biāo)記水的t1/2及PET成像時(shí)間均較短,能更方便地觀察神經(jīng)元活動(dòng)時(shí)腦組織灌注變化,因此全腦或局部腦組織灌注PET成像常采用15O標(biāo)記水[22-23]。值得注意的是,PET輻射性較大,一般不宜用于系列研究、妊娠期婦女或兒童。
2.2 功能磁共振成像(fMRI) 與PET相比,fMRI無輻射,是一種非侵入性活體腦功能檢測技術(shù),已成為研究人腦高級(jí)活動(dòng)的重要影像學(xué)檢查技術(shù)。廣義的fMRI包括彌散加權(quán)成像(DWI)、灌注加權(quán)成像(PWI)、血氧水平依賴性磁共振功能成像(BOLD-fMRI)及磁共振波譜成像(MRS)等,其中BOLD-fMRI主要根據(jù)氧血紅蛋白和去氧血紅蛋白磁場效應(yīng)來反映局部神經(jīng)元活動(dòng),能夠無創(chuàng)、實(shí)時(shí)地呈現(xiàn)人腦在各種神經(jīng)活動(dòng)狀態(tài)下的功能圖像,包括靜息態(tài)和任務(wù)態(tài)[24-25]。在有關(guān)腦代謝的研究中,fMRI也常用于觀察全腦或局部腦組織灌注變化,與采用15O標(biāo)記水的PET相比,fMRI不需要靜脈注射放射標(biāo)記示蹤劑或?qū)Ρ葎鐒?dòng)脈自旋標(biāo)記(ASL)磁共振成像技術(shù)主要利用反轉(zhuǎn)脈沖標(biāo)記上游動(dòng)脈血中質(zhì)子,繼而在下游動(dòng)脈血中捕獲標(biāo)記質(zhì)子并成像(包括連續(xù)法和脈沖法),繼而通過減影技術(shù)獲取相關(guān)血流量信息,較PET簡單、易行[26]。
3.1 葡萄糖感應(yīng)機(jī)制及應(yīng)答反應(yīng) 尋找中腦和丘腦中葡萄糖的潛在傳感器是當(dāng)前無癥狀性低糖血癥神經(jīng)影像學(xué)研究的熱點(diǎn)之一。PAGE等[27]通過對健康志愿者注射胰島素而誘發(fā)無癥狀性低糖血癥,經(jīng)ASL磁共振成像發(fā)現(xiàn)下丘腦灌注增加先于反調(diào)節(jié)激素的釋放。MUSEN等[28]采用BOLD-fMRI進(jìn)行研究發(fā)現(xiàn),與血糖相似的無糖尿病者相比,糖尿病并無癥狀性低糖血癥患者下丘腦信號(hào)變化最大,下丘腦活動(dòng)程度明顯增強(qiáng),且近期血糖較高者活動(dòng)程度增加幅度較大。
TEH等[8]采用15O標(biāo)記水的PET分別觀察健康志愿者在血糖持續(xù)正常、低糖血癥及血糖恢復(fù)期的應(yīng)答反應(yīng),發(fā)現(xiàn)大部分志愿者在相同皮質(zhì)區(qū)域出現(xiàn)灌注改變,低糖血癥早期可見參與內(nèi)感受和自主神經(jīng)應(yīng)激反應(yīng)的前扣帶皮質(zhì)(ACC)和丘腦枕區(qū)灌注增加,且其與兒茶酚胺分泌增多相關(guān);隨著低糖血癥持續(xù)進(jìn)展,可以觀察到腹側(cè)紋狀體、前額和島狀皮質(zhì)區(qū)(參與反饋通路、味覺和食欲控制)灌注增加;血糖恢復(fù)期由于皮質(zhì)醇、生長激素分泌持續(xù)增多,ACC灌注持續(xù)增加,而丘腦枕區(qū)和杏仁核區(qū)灌注開始降低[8]。研究表明,無癥狀性低糖血癥患者腦垂體、下丘腦區(qū)灌注改變與皮質(zhì)醇及生長激素分泌增多有關(guān),杏仁核區(qū)(對應(yīng)激反應(yīng)表現(xiàn)為覺醒和警惕的相關(guān)區(qū)域)灌注增加,而參與記憶功能的海馬旁回及海馬區(qū)灌注降低,使記憶形成或鞏固受阻[29-30]。因此,PET可觀察血糖對參與下丘腦-垂體軸反應(yīng)的不同腦區(qū)灌注變化的影響,而無癥狀性低糖血癥所致腦區(qū)灌注變化有利于激活負(fù)反饋調(diào)節(jié)機(jī)制,其中ACC灌注變化可能是參與主觀意識(shí)交感神經(jīng)系統(tǒng)反應(yīng)的結(jié)果。
3.2 血糖監(jiān)測 無癥狀性低糖血癥所致應(yīng)激反應(yīng)可發(fā)生于慢性高糖血癥患者血糖正?;蜓禽^高時(shí)[31],但在相關(guān)神經(jīng)影像學(xué)研究中還沒有發(fā)現(xiàn)有關(guān)糖尿病患者腦葡萄糖轉(zhuǎn)運(yùn)下調(diào)的證據(jù)[32]。SEGEL[33]分別對健康志愿者在未發(fā)生低糖血癥時(shí)及誘發(fā)低糖血癥24 h后采用11C標(biāo)記葡萄糖進(jìn)行PET檢查,結(jié)果發(fā)現(xiàn)其未發(fā)生低糖血癥時(shí)與誘發(fā)低糖血癥24 h后腦葡萄糖攝取量并無明顯變化。BINGHAM[34]在糖尿病患者急性低糖血癥發(fā)作1 h內(nèi)控制低糖血癥癥狀并使其恢復(fù)至正?;蜓恰? mmol/L時(shí)行CMG-PET檢查,結(jié)果發(fā)現(xiàn)有癥狀患者與無癥狀患者大腦血糖含量均降低,而有癥狀患者腦葡萄糖代謝率高于無癥狀患者,而由于腦葡萄糖代謝率能夠在一定程度上反映腦活動(dòng)變化,因此推測無癥狀性低糖血癥患者大腦皮質(zhì)活動(dòng)度較低,可能存在皮質(zhì)功能障礙。
3.3 無癥狀性低糖血癥相關(guān)腦區(qū)變化 CRANSTON等[35]采用18F-FDG-PET對禁食的血糖正常的1型糖尿病患者進(jìn)行研究發(fā)現(xiàn),其全腦對葡萄糖的攝取減少。雖然無癥狀性低糖血癥患者的腦葡萄糖攝取率不能通過18F-FDG-PET進(jìn)行精確計(jì)算,但直接測量攝取18F-FDG示蹤劑的結(jié)果表明,無癥狀性低糖血癥患者下丘腦及腦干區(qū)域18F-FDG攝取率降低,與BOLD-fMRI顯示的該區(qū)域腦活動(dòng)度降低結(jié)果相一致[35-36]。研究表明,與有低血糖癥狀的糖尿病患者相比,BOLD-fMRI顯示的糖尿病并無癥狀性低糖血癥患者腹側(cè)紋狀體和應(yīng)激反應(yīng)相關(guān)腦區(qū)(杏仁核和腦干)活動(dòng)度降低,這可能與負(fù)反饋調(diào)節(jié)激素反應(yīng)及低血糖癥狀減輕有關(guān);此外,BOLD-fMRI還顯示,有低血糖癥狀的糖尿病患者參與特征感知的眶額皮質(zhì)和前額葉皮質(zhì)活動(dòng)度降低,而糖尿病并無癥狀性低糖血癥患者眶額皮質(zhì)和前額葉皮質(zhì)活動(dòng)度輕度增加[37-38]。筆者據(jù)此推斷,糖尿病并無癥狀性低糖血癥患者葡萄糖感應(yīng)機(jī)制和應(yīng)答反應(yīng)相關(guān)腦區(qū)活動(dòng)度降低。
3.4 無癥狀性低糖血癥相關(guān)認(rèn)知功能 目前,神經(jīng)影像學(xué)檢查技術(shù)不僅應(yīng)用于無癥狀性低糖血癥患者感知障礙的病因及發(fā)病機(jī)制研究,還用于觀察患者執(zhí)行任務(wù)期間無癥狀性低糖血癥對局部腦區(qū)活動(dòng)度的影響。BOLO等[39]采用BOLD-fMRI進(jìn)行的研究發(fā)現(xiàn),無癥狀性低糖血癥患者在執(zhí)行數(shù)字工作記憶任務(wù)時(shí)額葉及頂葉皮質(zhì)、島葉、丘腦、小腦活動(dòng)度增加,提示相應(yīng)腦區(qū)皮質(zhì)功能的評定須同時(shí)進(jìn)行;無癥狀性低糖血癥患者在執(zhí)行工作記憶任務(wù)期間額葉和頂葉皮質(zhì)、島葉、丘腦、小腦活動(dòng)度降低,記憶任務(wù)難易程度相似時(shí)糖尿病患者腦區(qū)活動(dòng)度較非糖尿病患者明顯降低。大量研究表明,低糖血癥可導(dǎo)致糖尿病患者認(rèn)知功能進(jìn)行性減退及癡呆發(fā)生風(fēng)險(xiǎn)增高[40-43],分析其可能的原因包括以下幾個(gè)方面:(1)低糖血癥可導(dǎo)致神經(jīng)元凋亡,且多數(shù)糖尿病患者為老年人,自身神經(jīng)元可塑能力有限;(2)低糖血癥會(huì)促進(jìn)血小板聚集及纖維蛋白原形成,導(dǎo)致微血管疾病發(fā)生風(fēng)險(xiǎn)升高;(3)低糖血癥會(huì)導(dǎo)致與學(xué)習(xí)及記憶功能有關(guān)的腦區(qū)損傷[44]。但目前低糖血癥相關(guān)認(rèn)知功能障礙的具體機(jī)制尚不明確,有待于進(jìn)一步研究。
3.5 低糖血癥癥狀喪失 動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),低糖血癥發(fā)作時(shí)血漿葡萄糖含量降低,通過上調(diào)位于內(nèi)皮細(xì)胞的葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT1)和位于神經(jīng)元的葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT3)可提高腦葡萄糖轉(zhuǎn)運(yùn)以維持腦組織葡萄糖代謝需求,有利于抑制應(yīng)激反應(yīng)及負(fù)反饋調(diào)節(jié)[45-47]。理論上講,為維持腦組織正常葡萄糖代謝,全腦血容量會(huì)反應(yīng)性增加以便在出現(xiàn)低血糖反應(yīng)時(shí)能夠維持腦功能,但通過腦電圖或認(rèn)知功能檢查發(fā)現(xiàn),血糖相似的有低糖血癥病史的志愿者與伴或不伴有無癥狀性低糖血癥的糖尿病患者均會(huì)出現(xiàn)神經(jīng)元功能障礙,且血糖降至3.0 mmol/L左右時(shí),不論有或無癥狀者多項(xiàng)選擇反應(yīng)試驗(yàn)均出現(xiàn)劣化[38]。腦功能性神經(jīng)影像學(xué)研究表明,雖然無癥狀性低糖血癥患者腦內(nèi)葡萄糖含量稍低時(shí)部分皮質(zhì)功能保留,但其引起認(rèn)知功能降低的血糖變化程度通常低于誘導(dǎo)應(yīng)激反應(yīng)的血糖變化程度[32,48],無癥狀性低糖血癥雖然是機(jī)體短期緩解低糖血癥而導(dǎo)致腦皮質(zhì)功能下降的保護(hù)性反應(yīng),但同時(shí)也導(dǎo)致了低糖血癥癥狀的喪失,反而會(huì)降低患者對低糖血癥的主觀感知,不利于低糖血癥的及時(shí)發(fā)現(xiàn)及恢復(fù),甚至?xí)觿〉吞茄Y,導(dǎo)致嚴(yán)重低糖血癥及腦皮質(zhì)功能喪失等。
3.6 低糖血癥相關(guān)主觀感知 腦功能性神經(jīng)影像學(xué)研究表明,無癥狀性低糖血癥患者下丘腦、垂體及參與應(yīng)激反應(yīng)或癥狀感知的腦區(qū)(如ACC、杏仁核和腹側(cè)紋狀體區(qū))灌注降低,而背外側(cè)前額葉皮質(zhì)和外側(cè)前額皮質(zhì)對低糖血癥不敏感,進(jìn)而導(dǎo)致患者對低糖血癥所致應(yīng)激反應(yīng)感知障礙及對低糖血癥保護(hù)反應(yīng)障礙[31,49]。缺乏對應(yīng)激反應(yīng)的感知及對低糖血癥的保護(hù)反應(yīng)障礙可能會(huì)導(dǎo)致糖尿病患者主動(dòng)進(jìn)行避免后期低糖血癥相關(guān)健康管理活動(dòng)的積極性降低,患者可能會(huì)由于缺乏進(jìn)行健康管理的動(dòng)力而在日常生活中很難堅(jiān)持糖尿病相關(guān)的健康管理[50]。研究表明,雖然控制血糖相關(guān)健康教育有助于提高糖尿病患者健康管理能力,但其只能使約1/2的無癥狀性低糖血癥患者恢復(fù)感知,其余患者則需通過心理療法及健康管理行為而恢復(fù)感知[17]。因此,在對糖尿病患者進(jìn)行健康管理的同時(shí)還應(yīng)注意采用神經(jīng)影像學(xué)檢查技術(shù)進(jìn)行腦組織灌注變化的監(jiān)測,以便于臨床精準(zhǔn)管理和及時(shí)干預(yù)無癥狀性低糖血癥所致主觀感知障礙。
無癥狀性低糖血癥在老年2型糖尿病患者中較為常見,但由于其起病隱匿,因此不利于臨床及時(shí)采取有效干預(yù)措施,可導(dǎo)致糖尿病患者嚴(yán)重低糖血癥及心腦血管疾病發(fā)生風(fēng)險(xiǎn)升高,甚至危及患者生命安全。PET、fMRI等腦功能成像技術(shù)通過觀察無癥狀性低糖血癥患者下丘腦-垂體軸反應(yīng)及腦區(qū)活動(dòng)度,可準(zhǔn)確分析患者腦功能改變,這為綜合分析糖尿病并無癥狀性低糖血癥患者大腦功能特性及其對腦皮質(zhì)功能的影響等提供了更加豐富的信息,可為臨床采取有效干預(yù)措施提供參考。
[1]LUNDGAARD I,LI B,XIE L,et al.Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism[J].Nat Commun,2015,6:6807-7807.DOI:10.1038/ncomms7807.
[2]CHOI I Y,SEAQUIST E R,GRUETTER R.Effect of hypoglycemia on brain glycogen metabolism in vivo[J].J Neurosci Res,2003,72(1):25-32.
[3]ROOIJACKERS H M,WIEGERS E C,TACK C J,et al.Brain glucose metabolism during hypoglycemia in type 1 diabetes:insights from functional and metabolic neuroimaging studies[J].Cell Mol Life Sci,2016,73(4):705-722.DOI:10.1007/s00018-015-2079-8.
[4]MANGIA S,TESFAYE N,DE MARTINO F,et al.Hypoglycemia-induced increases in thalamic cerebral blood flow are blunted in subjects with type 1 diabetes and hypoglycemia unawareness[J].J Cereb Blood Flow Metab,2012,32(11):2084-2090.DOI:10.1038/jcbfm.2012.117.
[5]EMERY M,NANCHEN N,PREITNER F,et al.Biological Characterization of Gene Response to Insulin-Induced Hypoglycemia in Mouse Retina[J].PLoS One,2016,11(2):e0150266.DOI:10.1371/journal.pone.0150266.eCollection 2016.
[6]RENO C M,TANOLI T,BREE A,et al.Antecedent glycemic control reduces severe hypoglycemia-induced neuronal damage in diabetic rats[J].Am J Physiol Endocrinol Metab,2013,304(12):E1331-1337.DOI:10.1152/ajpendo.00084.2013.
[8]TEH M M,DUNN J T,CHOUDHARY P,et al.Evolution and resolution of human brain perfusion responses to the stress of induced hypoglycemia[J].Neuroimage,2010,53(2):584-592.DOI:10.1016/j.neuroimage.2010.06.033.
[9]LAVERNIA F,KUSHNER P,TRENCE D,et al.Recognizing and minimizing hypoglycemia:The need for individualized care[J].Postgrad Med,2015,127(8):801-807.DOI:10.1080/00325481.2015.1086628.
[10]FUKUDA M,DOI K,SUGAWARA M,et al.Survey of Hypoglycemia in Elderly People With Type 2 Diabetes Mellitus in Japan[J].J Clin Med Res,2015,7(12):967-978.DOI:10.14740/jocmr2340w.
[11]OLSEN S E,ASVOLD B O,F(xiàn)RIER B M,et al.Hypoglycaemia symptoms and impaired awareness of hypoglycaemia in adults with Type 1 diabetes:the association with diabetes duration[J].Diabet Med,2014,31(10):1210-1217.DOI:10.1111/dme.12496.
[12]LOH T P,MOK S F,KAO S L,et al.Recurrent nocturnal hypoglycemia in a patient with type 1 diabetes mellitus[J].Clin Chem,2014,60(10):1267-1270.DOI:10.1373/clinchem.2013.214676.
[13]FANELLI C,PAMPANELLI S,LALLI C,et al.Long-term intensive therapy of IDDM patients with clinically overt autonomic neuropathy:effects on hypoglycemia awareness and counter-regulation[J].Diabetes,1997,46(7):1172-1181.
[14]GEDDES J,DEARY I J,F(xiàn)RIER B M.Effects of acute insulin-induced hypoglycaemia on psychomotor function:people with type 1 diabetes are less affected than non-diabetic adults[J].Diabetologia,2008,51(10):1814-1821.DOI:10.1007/s00125-008-1112-y.
[15]WEINSTOCK R S,DUBOSE S N,BERGENSTAL R M,et al.Risk Factors Associated With Severe Hypoglycemia in Older Adults With Type 1 Diabetes[J].Diabetes Care,2016,39(4):603-610.DOI:10.2337/dc15-1426.
[17]HOPKINS R O,SUCHYTA M R,F(xiàn)ARRER T J,et al.Improving post-intensive care unit neuropsychiatric outcomes:understanding cognitive effects of physical activity[J].Am J Respir Crit Care Med,2012,186(12):1220-1228.DOI:10.1164/rccm.201206-1022CP.
[18]KUWABARA H,BRUST P,STEINBACH J,et al.Blood-brain transport and metabolic rate of glucose measured with 11 C-O-methyl-D-glucose(OMG)[J].J Nucl Med,1999,40(Suppl):293.
[19]夏黎明,楊秀軍,王明帥,等.應(yīng)用磁共振全身類PET成像技術(shù)進(jìn)行腫瘤普查的研究[J] .實(shí)用心腦肺血管病雜志,2012,20(7):1150-1151.DOI:10.3969/j.issn.1008-5971.2012.07.034.
[20]ALF M F,DUARTE J M,SCHIBLI R,et al.Brain glucose transport and phosphorylation under acute insulin-induced hypoglycemia in mice:an18F-FDG PET study[J].J Nucl Med,2013,54(12):2153-2160.
[21]NAKANISHI H,CRUZ N F,ADACHI K,et al.Influence of glucose supply and demand on determination of brain glucose content with labeled methylglucose[J].J Cereb Blood Flow Metab,1996,16(3):439-449.
[22]GRüNER J M,PAAMAND R,H?JGAARD L,et al.Brain perfusion CT compared with15O-H2O-PET in healthy subjects[J].EJNMMI Res,2011,1(1):28.DOI:10.1186/2191-219X-1-28.
[23]FINNEMA S J,BANG-ANDERSEN B,WIKSTR?M H V,et al.Current state of agonist radioligands for imaging of brain dopamine D2/D3 receptors in vivo with positron emission tomography[J].Curr Top Med Chem,2010,10(15):1477-1498.
[24]BOSCOLO GALAZZO I,STORTI S F,F(xiàn)ORMAGGIO E,et al.Investigation of brain hemodynamic changes induced by active and passive movements:a combined arterial spin labeling-BOLD fMRI study[J].J Magn Reson Imaging,2014,40(4):937-948.DOI:10.1002/jmri.24432.
[25]賀倩,劉曉虎,方維東,等.枕部腫瘤患者視中樞功能RS-fMRI研究[J].重慶醫(yī)科大學(xué)學(xué)報(bào),2015,40(5):703-707.
[26]DAI W,GARCIA D,DE Bazelaire C.Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields[J].Magn Reson Med,2008,60(6):1488-1497.DOI:10.1002/mrm.21790.
[27]PAGE K A,ARORA J,QIU M,et al.Small decrements in systemic glucose provoke increases in hypothalamic blood flow prior to the release of counter-regulatory hormones[J].Diabetes,2009,58(2):448-452.DOI:10.2337/db08-1224.
[28]MUSEN G,SIMONSON D C,BOLO N R,et al.Regional brain activation during hypoglycemia in type 1 diabetes[J].J Clin Endocrinol Metab,2008,93(4):1450-1457.DOI:10.1210/jc.2007-2007.
[29]JAUCH-CHARA K,HALLSCHMID M,GAIS S,et al.Hypoglycemia during sleep impairs consolidation of declarative memory in type 1 diabetes and healthy humans[J].Diabetes Care,2007,30(8):2040-2045.
[30]WARREN R E,ZAMMITT N N,DEARY I J,et al.The effects of acute hypoglycaemia on memory acquisition and recall and prospective memory in type 1 diabetes[J].Diabetologia,2007,50(1):178-185.
[31]SPYER G,HATTERSLEY A T,MACDONALD I A,et al.Hypoglycaemic counter-regulation at normal blood glucose concentrations in patients with well controlled type 2 diabetes[J].Lancet,2000,356(9246):1970-1974.
[32]FANELLI C G,PARAMORE D S,HERSHEY T,et al.Impact of nocturnal hypoglycemia on hypoglycaemic cognitive dysfunction in type 1 diabetes[J].Diabetes,1998,47(12):1920-1927.
[33]SEGEL S A.Blood-to-brain glucose transport,cerebral glucose metabolism,and cerebral blood flow are not increased after hypoglycemia[J].Diabetes,2001,50(8):1911-1917.
[34]BINGHAM E M.Differential changes in brain glucose metabolism during hypoglycaemia accompany loss of hypoglycaemia awareness in men with type 1 diabetes mellitus.An11C-3-O-methyl-D-glucose PET study[J].Diabetologia,2005,48(10):2080-2089.
[35]CRANSTON I,REED L J,MARSDEN P K,et al.Changes in regional brain18F-fluorodeoxyglucose uptake at hypoglycemia in type 1 diabetic men associated with hypoglycemia unawareness and counter-regulatory failure[J].Diabetes,2001,50(10):2329-2336.
[36]ANDERSON A W,HEPTULLA R A,DRIESEN N,et al.Effects of hypoglycemia on human brain activation measured with fMRI[J].Magn Reson Imaging,2006,24(6):693-697.
[37]DUNN J T,CRANSTON I,MARSDEN P K,et al.Attenuation of amygdala and frontal cortical responses to low blood glucose concentration in asymptomatic hypoglycemia in type 1 diabetes:a new player in hypoglycemia unawareness?[J].Diabetes,2007,56(11):2766-2773.
[38]MARAN A,LOMAS J,MACDONALD I A,et al.Lack of preservation of higher brain function during hypoglycaemia in patients with intensively-treated IDDM[J].Diabetologia,1995,38(12):1412-1418.
[39]BOLO N R,MUSEN G,JACOBSON A M,et al.Brain activation during working memory is altered in patients with type 1 diabetes during hypoglycemia[J].Diabetes,2011,60(12):3256-3264.DOI:10.2337/db11-0506.
[40]ROSENTHAL M J,SMITH D,YAGUEZ L,et al.Caffeine restores regional brain activation in acute hypoglycaemia in healthy volunteers[J].Diabet Med,2007,24(7):720-727.
[41]WHITMER R A,KARTER A J,YAFFE K,et al.Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus[J].JAMA,2009,301(15):1565-1572.DOI:10.1001/jama.2009.460.
[42]YAFFE K,F(xiàn)ALVEY C M,HAMILTON N,et al.Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus[J].JAMA Intern Med,2013,173(14):1300-1306.DOI:10.1001/jamainternmed.2013.6176.
[43]LIN C H,SHEU W H.Hypoglycaemic episodes and risk of dementia in diabetes mellitus:7-year follow-up study[J].J Intern Med,2013,273(1):102-110.DOI:10.1111/joim.12000.
[44]MENEILLY G S,TESSIER D M.Diabetes,Dementia and Hypoglycemia[J].Can J Diabetes,2016,40(1):73-76.DOI:10.1016/j.jcjd.2015.09.006.
[45]PATCHING S G.Glucose Transporters at the Blood-Brain Barrier:Function,Regulation and Gateways for Drug Delivery[J].Mol Neurobiol,2016.DOI:10.1007/s12035-015-9672-6.
[46]RUSSO V C,KOBAYASHI K,NAJDOVSKA S,et al.Neuronal protection from glucose deprivation via modulation of glucose transport and inhibition of apoptosis:a role for the insulin-like growth factor system[J].Brain Res,2004,1009(1/2):40-53.
[47]KORGUN E T,DEMIR R,SEDLMAYR P,et al.Sustained hypoglycemia affects glucose transporter expression of human blood leukocytes[J].Blood Cells Mol Dis,2002,28(2):152-159.
[48]OVALLE F.Brief twice-weekly episodes of hypoglycemia reduce detection of clinical hypoglycemia in type 1 diabetes mellitus[J].Diabetes,1998,47(9):1472-1479.
[49]ROSENTHAL J M,AMIEL S A,YGüEZ L,et al.The effect of acute hypoglycemia on brain function and activation:a functional magnetic resonance imaging study[J].Diabetes,2001,50(7):1618-1626.
[50]ROGERS H A,DE ZOYSA N,AMIEL S.Patient experience of hypoglycaemia unawareness in type 1 diabetes:are patients appropriately concerned?[J].Diabet Med,2012,29(3):321-327.DOI:10.1111/j.1464-5491.2011.03444.x.
(本文編輯:鹿飛飛)
Progress on Neurological Imaging Examination for Diabetic Asymptomatic Hypoglycemia
CHENZao,ZHAOHeng,LIUJin-cai
DepartmentofRadiology,theFirstAffiliatedHospitalofSouthChinaUniversity,Hengyang421001,ChinaCorrespondingauthor:LIUJin-cai,E-mail:liujincai6353@sina.com
Hypoglycemia is one of common complications of diabetes,asymptomatic hypoglycemia means blood glucose equal or less than 3.9 mmol/L without typical hypoglycemia symptoms;asymptomatic hypoglycemia is common in elderly patients with type 2 diabetes mellitus,which will endanger the patients′life without timely intervention.Brain functional imaging technology can reflect the changes of local brain activity by observing local cerebral perfusion,glucose uptake rate or glucose metabolic rate,is helpful to analyze the brain functional characteristics and the impact on cortex function in diabetes patients complicated with asymptomatic hypoglycemia,and then provide reference for the clinical treatment.This paper reviewed the progress on neurological imaging examination for diabetic asymptomatic hypoglycemia.
Diabetes complications;Hypoglycemia;Asymptomatic diseases;Positron-emission tomography;Magnetic resonance imaging
湖南省自然科學(xué)基金資助項(xiàng)目(14JJ2086);衡陽市科學(xué)技術(shù)發(fā)展計(jì)劃項(xiàng)目(2013KJ52);湖南省高等學(xué)??茖W(xué)研究重點(diǎn)項(xiàng)目(14A126)
劉進(jìn)才,E-mail:liujincai6353@sina.com
R 587.2
A
10.3969/j.issn.1008-5971.2017.02.003
2016-12-10;
2017-02-18)
陳早,趙衡,劉進(jìn)才.糖尿病患者無癥狀性低糖血癥的神經(jīng)影像學(xué)研究進(jìn)展[J].實(shí)用心腦肺血管病雜志,2017,25(2):8-12.[www.syxnf.net]
CHEN Z,ZHAO H, LIU J C.Progress on neurological imaging examination for diabetic asymptomatic hypoglycemia[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease,2017,25(2):8-12.
421001湖南省衡陽市,南華大學(xué)附屬第一醫(yī)院放射科