国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水平井螺旋射孔參數(shù)對(duì)近井筒裂縫形態(tài)影響規(guī)律

2017-04-05 07:05:31單清林金衍韓玲張儒鑫
石油科學(xué)通報(bào) 2017年1期
關(guān)鍵詞:孔眼射孔井筒

單清林,金衍*,韓玲,張儒鑫

1 中國(guó)石油大學(xué)(北京)石油工程學(xué)院, 北京 102249

2 油氣資源與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 102249

3 中國(guó)石油化工股份有限公司江漢油田分公司石油工程技術(shù)研究院, 武漢 430000

水平井螺旋射孔參數(shù)對(duì)近井筒裂縫形態(tài)影響規(guī)律

單清林1,2,金衍1,2*,韓玲3,張儒鑫1,2

1 中國(guó)石油大學(xué)(北京)石油工程學(xué)院, 北京 102249

2 油氣資源與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 102249

3 中國(guó)石油化工股份有限公司江漢油田分公司石油工程技術(shù)研究院, 武漢 430000

射孔井壓裂施工中,射孔參數(shù)選擇不當(dāng)易造成水力裂縫無(wú)法溝通盡量多的射孔孔眼或造成多縫起裂,引起近井筒復(fù)雜裂縫狀態(tài),從而降低井筒與水力裂縫的溝通性,影響后續(xù)支撐劑填加作業(yè),導(dǎo)致壓裂失敗。射孔參數(shù)優(yōu)化對(duì)降低破裂壓力以及避免近井筒裂縫復(fù)雜性具有重要意義。前人多采用數(shù)值模擬與室內(nèi)物理模擬方法針對(duì)直井或斜井條件下的0°或180°相位射孔參數(shù)進(jìn)行優(yōu)化,所研究的裂縫形態(tài)多為沿井眼軸向擴(kuò)展的水力裂縫,而對(duì)于水平井螺旋射孔條件下橫向水力裂縫的擴(kuò)展規(guī)律以及相應(yīng)射孔參數(shù)優(yōu)化方面的研究較少。本文采用數(shù)值計(jì)算與物理模擬相結(jié)合的方法研究水平井螺旋射孔參數(shù)對(duì)近井筒裂縫形態(tài)的影響規(guī)律,建立實(shí)驗(yàn)室尺寸的三維水平井螺旋射孔有限元模型,分析了不同孔眼處起裂壓力的分布規(guī)律,并基于最小起裂壓力原則,得到能有效降低模型起裂壓力的最小孔徑與孔密參數(shù)。在此射孔參數(shù)組合基礎(chǔ)上,為研究繼續(xù)增加孔密或孔徑對(duì)水平井水力裂縫形態(tài)的影響,也為驗(yàn)證有限元方法在水平井螺旋射孔參數(shù)優(yōu)化方面的有效性,設(shè)計(jì)了不同螺旋射孔參數(shù)的混凝土試樣進(jìn)行真三軸水力壓裂物理模擬。實(shí)驗(yàn)結(jié)果顯示,采用傳統(tǒng)有限元方法對(duì)水平井螺旋射孔參數(shù)進(jìn)行優(yōu)化具有局限性,其優(yōu)化參數(shù)條件下,孔眼間水力裂縫連接性較差,從單個(gè)孔眼起裂的水力裂縫傾向獨(dú)立擴(kuò)展,無(wú)法形成溝通多個(gè)孔眼的主裂縫面以增強(qiáng)水力裂縫與井筒的連通性;在有限元優(yōu)化結(jié)果基礎(chǔ)上增加射孔孔徑,一定程度上增強(qiáng)了孔眼間水力裂縫的連接,但整體依然存在裂縫重疊區(qū)域,且破裂壓力也較高;相比于增加孔徑,增加射孔密度更能促進(jìn)射孔間水力裂縫的相互連接,形成溝通多個(gè)孔眼的主裂縫面,在保證破裂壓力較低的情況下降低了近井筒裂縫的復(fù)雜性。研究成果可為現(xiàn)場(chǎng)作業(yè)提供指導(dǎo),由于射孔孔徑與射孔密度均會(huì)對(duì)套管強(qiáng)度產(chǎn)生影響,現(xiàn)場(chǎng)進(jìn)行射孔參數(shù)優(yōu)化時(shí),在確保套管強(qiáng)度條件下,應(yīng)優(yōu)先考慮增加射孔密度以降低近井筒裂縫復(fù)雜性,便于后續(xù)填加支撐劑作業(yè)。

水平井;螺旋射孔參數(shù);有限元;水力壓裂物理模擬;裂縫形態(tài);破裂壓力

0 引言

水平井分段壓裂技術(shù)是開發(fā)非常規(guī)油氣藏的常用手段。理想情況下,水平井眼多沿最小水平地應(yīng)力方向鉆進(jìn),采用分段壓裂形成多段橫切裂縫面,以增加儲(chǔ)層的改造體積。由于儲(chǔ)層地應(yīng)力情況難以預(yù)測(cè)準(zhǔn)確,判斷最優(yōu)射孔方向存在困難,因此現(xiàn)場(chǎng)多采用螺旋射孔方式以增加孔眼與最優(yōu)射孔方向吻合的概率。但在特定地應(yīng)力以及壓裂施工條件下,如果射孔參數(shù)選擇不當(dāng),將會(huì)引起近井筒水力裂縫的復(fù)雜裂縫形態(tài),影響水力裂縫與井筒的有效溝通,造成填加支撐劑施工困難[1]。

前人通過(guò)對(duì)斜井水力裂縫復(fù)雜性的研究[2-6],總結(jié)出影響水力裂縫與井筒連通性的兩個(gè)原因:一是相鄰孔眼間水力裂縫連接能力差,單條水力裂縫起裂后沒(méi)有溝通更多的射孔孔眼,造成孔眼處較大的摩阻損失;二是近井筒多裂縫的同時(shí)起裂造成裂縫重疊,降低了相鄰裂縫的有效寬度。因此要降低近井筒裂縫復(fù)雜性,需要對(duì)射孔參數(shù)進(jìn)行優(yōu)化,以增加孔眼間水力裂縫的連接性,并避免近井筒裂縫重疊的情況,該原則對(duì)水平井應(yīng)同樣適用。

前人針對(duì)射孔參數(shù)優(yōu)化進(jìn)行了相關(guān)理論、實(shí)驗(yàn)以及數(shù)值模擬方面的研究。理論方面多集中于研究射孔參數(shù)對(duì)破裂壓力以及裂縫連接性的影響,Hossain將井筒與射孔簡(jiǎn)化為兩個(gè)正交的圓柱,通過(guò)分析射孔根部切向應(yīng)力表達(dá)式,建立了射孔斜井的破裂模型,實(shí)現(xiàn)對(duì)不同井斜,井眼走向和射孔角度條件下地層破裂壓力的計(jì)算[7];Fallahzadeh分析得到了套管射孔斜井的孔眼周圍的應(yīng)力分布,并對(duì)鉆井方位和射孔角度進(jìn)行優(yōu)化,以降低裂縫復(fù)雜程度[8];Yew采用斷裂力學(xué)理論,建立了判斷裂縫能否發(fā)生連接的最小射孔間距的模型[9]。實(shí)驗(yàn)方面,室內(nèi)真三軸水力壓裂物理模擬相比理論模型,可提供更加直觀的實(shí)驗(yàn)結(jié)果,被廣泛應(yīng)用于水力裂縫擴(kuò)展規(guī)律[10-12],以及裂縫復(fù)雜性[13-14]分析研究中,在射孔井壓裂模擬方面,Veeken采用實(shí)驗(yàn)方法研究了斜井180°相位射孔條件下,水力裂縫與井筒的有限溝通問(wèn)題(Limited Communication),總結(jié)了造成近井筒裂縫寬度過(guò)小的原因,并從井眼走向、射孔方位以及泵注速率三方面對(duì)現(xiàn)場(chǎng)施工提供了優(yōu)化方案[15]。Behrmann采用室內(nèi)實(shí)驗(yàn)研究了直井180°相位射孔方式條件下,巖石孔壓、射孔方位、壓裂液性質(zhì)、以及壓裂液泵入速率對(duì)裂縫起裂規(guī)律的影響[16];Van Ketterij針對(duì)套管射孔斜井采用實(shí)驗(yàn)的方法,研究了不同應(yīng)力場(chǎng),不同射孔方式(180°和90°相位),以及壓裂液排量和黏度對(duì)裂縫連接效果的影響[6];姜滸采用了物理模擬實(shí)驗(yàn)研究了直井180°相位射孔方位角、水平應(yīng)力差、微環(huán)隙對(duì)裂縫破裂壓力及形態(tài)的影響[17]。數(shù)值模擬能夠消除理論計(jì)算中簡(jiǎn)化處理帶來(lái)的誤差,也能解決實(shí)驗(yàn)方法帶來(lái)的尺寸效應(yīng)的問(wèn)題,Papanastasiou采用3D邊界元方法研究了射孔井孔眼周圍的應(yīng)力集中狀況,在此基礎(chǔ)上對(duì)不同射孔相位的破裂壓力和出砂風(fēng)險(xiǎn)進(jìn)行了分析[18];張廣清等采用3D有限元方法研究了垂直井定向射孔的射孔密度、射孔方位、以及孔徑、孔長(zhǎng)等對(duì)地層破裂壓力的影響[19];彪仿俊采用3D有限元方法考慮了套管和水泥環(huán)存在條件下,射孔相位、方位和密度等參數(shù)對(duì)螺旋射孔井起裂壓力的影響[20];Alekseenko采用3D邊界元方法研究了180°相位射孔方式下,射孔方位、孔徑、孔長(zhǎng)以及射孔的形狀對(duì)起裂壓力以及起裂點(diǎn)位置的影響[21]。

綜上,大多數(shù)實(shí)驗(yàn)研究集中于對(duì)直井或斜井180°相位射孔或定向射孔的模擬,研究對(duì)象為垂直裂縫或縱向裂縫的破裂壓力及裂縫復(fù)雜性問(wèn)題,而對(duì)于水平井螺旋射孔條件下所產(chǎn)生橫向裂縫的破裂規(guī)律研究較少。傳統(tǒng)數(shù)值模擬方法則多單一地采用最小起裂壓力原則優(yōu)化射孔參數(shù)[17,20],忽視了射孔參數(shù)對(duì)近井筒裂縫復(fù)雜性的影響,并且對(duì)影響因素的研究存在孤立性,忽視了影響因素之間的優(yōu)先級(jí)差異,降低了分析結(jié)果的應(yīng)用性。本文基于前人的研究成果,篩選出射孔密度和射孔孔徑兩個(gè)影響因素(主要考慮了二者對(duì)套管強(qiáng)度的影響[22-23]),首先采用有限元數(shù)值模擬方法研究螺旋射孔參數(shù)對(duì)起裂壓力的影響,后采用室內(nèi)真三軸水力壓裂物理模擬研究不同射孔參數(shù)條件下近井筒水力裂縫的復(fù)雜情況。綜合分析螺旋射孔參數(shù)對(duì)近井筒裂縫形態(tài)的影響規(guī)律,以便為現(xiàn)場(chǎng)施工提供指導(dǎo)。

1 有限元模擬螺旋射孔參數(shù)對(duì)起裂壓力的影響

為方便與后續(xù)物理模擬實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比分析,建立了與實(shí)驗(yàn)室尺度一致的有限元模型,施加與實(shí)驗(yàn)所用載荷一致的邊界條件,并考慮了流固耦合因素對(duì)應(yīng)力分布的影響以提高計(jì)算結(jié)果的準(zhǔn)確性,有限元計(jì)算中控制方程與連續(xù)性方程如式(1)所示[24]。

式中:σ′為有效應(yīng)力張量,Pa;α為Biot系數(shù);I為單位張量;b為巖石體力向量,Pa;p為孔隙壓力,Pa;ε為應(yīng)變張量;k為滲透率,m2;γw為流體重度,N/m3;bw為流體體力向量,Pa;m= [1, 1, 1, 0, 0, 0]。

圖1所示為有限元幾何模型以及加載模式,模型大小及井筒尺寸參照物見(jiàn)圖7。將螺旋射孔相位角設(shè)定為現(xiàn)場(chǎng)常用的60°,一簇6孔眼。為消除射孔角度對(duì)計(jì)算結(jié)果的影響,設(shè)置6個(gè)孔眼中的一對(duì)孔眼與上覆主地應(yīng)力σV方向一致。為區(qū)分各孔眼位置,對(duì)孔眼進(jìn)行編號(hào)。模型材料性質(zhì)設(shè)置參照表1所示試件材料參數(shù)。所施加三向地應(yīng)力載荷分別為σV=28 MPa ,σH=22 MPa,σh=19 MPa,并參照實(shí)驗(yàn)泵壓曲線,在井筒和射孔壁面施加隨時(shí)間增加的面力以及孔壓邊界。試件破裂前,井筒內(nèi)部為憋壓過(guò)程。鑒于混凝土滲透率低,憋壓過(guò)程壓裂液流動(dòng)緩慢,本模型忽略了由于流體在井筒和射孔中流動(dòng)所造成的壓力損失,將射孔壁面的孔壓和液壓設(shè)置為與井筒壁面液壓相等。

為了使數(shù)值模擬的結(jié)果很好地反映現(xiàn)場(chǎng)實(shí)際情況,采用等比例縮小的原則對(duì)模型射孔參數(shù)進(jìn)行設(shè)置(這里取1:10),如1 孔/cm代表現(xiàn)場(chǎng)10 孔/m的射孔密度,屬于比較稀疏的射孔密度,而1.6 孔/cm代表現(xiàn)場(chǎng)16 孔/m的射孔密度,屬于較高密度的射孔參數(shù)。以最大拉應(yīng)力準(zhǔn)則作為起裂判據(jù)(取水泥巖樣抗拉強(qiáng)度1.53 MPa),計(jì)算不同射孔孔徑與射孔密度條件下模型的起裂壓力。圖2所示為部分計(jì)算模型起裂時(shí)最大主應(yīng)力分布云圖,起裂位置多分布于孔眼中部。

圖3所示為單個(gè)模型的不同射孔起裂壓力的柱狀圖(這里僅顯示具有代表性的部分模型結(jié)果),起裂位置集中于射孔簇中部的3、4號(hào)孔眼位置。說(shuō)明與最大水平主地應(yīng)力夾角越小,越靠近射孔簇中部越有利于孔眼起裂,與Hossain理論模型結(jié)果一致[7]。此外,對(duì)比圖3中的起裂壓力數(shù)據(jù),孔徑相同條件下,增加射孔密度會(huì)減小射孔孔眼間起裂壓力的差異;而在射孔密度相同的條件下,增大射孔孔徑則會(huì)使射孔間起裂壓力差異性增大。

圖1 模型幾何的三視圖(左)、正視圖(右)以及射孔編號(hào)Fig. 1 Model geometry, loading scheme and the numbered perforations

圖2 孔徑4 mm+孔密1 孔/cm模型(左),孔徑2 mm+孔密1.6 孔/cm模型(右)最大主應(yīng)力分布云圖Fig. 2 The maximum principle stress distributions of the left model (diameter: 4 mm and perforation density: 1 shot/cm) and the right model ( perforation diameter: 2 mm and perforation density: 1.6 shots/cm)

模擬得到了射孔孔徑為2 mm時(shí),射孔密度對(duì)起裂壓力影響規(guī)律(圖4),以及射孔密度為1 孔/cm時(shí),射孔密度與射孔孔徑對(duì)起裂壓力的影響規(guī)律(圖5)。由圖4,在射孔孔徑不變的條件下,當(dāng)孔密從0.5 孔/cm增至1 孔/cm時(shí),起裂壓力降低明顯,后趨于穩(wěn)定。由圖5,在射孔密度相同的條件下,孔徑從1 mm增大到2 mm時(shí),起裂壓力降低明顯,后變化較小。采用傳統(tǒng)起裂壓力最小原則對(duì)射孔參數(shù)進(jìn)行優(yōu)化,可得到射孔參數(shù)的初步優(yōu)化結(jié)果:射孔密度不小于1 孔/cm,射孔孔徑不小于2 mm。

2 物理模擬螺旋射孔參數(shù)對(duì)裂縫擴(kuò)展規(guī)律的影響

基于有限元數(shù)值模擬的優(yōu)化結(jié)果,采用真三軸水力壓裂模擬考察繼續(xù)增大孔密或孔徑對(duì)水平井水力裂縫形態(tài)的影響。

2.1 實(shí)驗(yàn)參數(shù)設(shè)置

實(shí)驗(yàn)采用中國(guó)石油大學(xué)(北京)巖石力學(xué)實(shí)驗(yàn)室設(shè)計(jì)組建的一套大尺寸真三軸模擬試驗(yàn)系統(tǒng)。模擬壓裂試驗(yàn)系統(tǒng)由大尺寸真三軸試驗(yàn)架、MTS伺服增壓泵、穩(wěn)壓源、油水隔離器及其他輔助裝置組成。其整體結(jié)構(gòu)如圖6所示[25]。根據(jù)相似理論[26],實(shí)驗(yàn)試件性質(zhì)參數(shù)和三向應(yīng)力加載條件可模擬正斷層地應(yīng)力條件下埋深為3 500 m左右的均質(zhì)致密砂巖儲(chǔ)層。實(shí)驗(yàn)所用的混凝土試件尺寸為300×300×300 mm。采用325水泥與石英砂按質(zhì)量比1:1澆筑凝固而成,表1所示為試件基本參數(shù)。采用外徑14 mm,內(nèi)徑10 mm的鋼管模擬井筒,在井筒上鉆孔并塞入紙軸以模擬射孔,如圖7所示為井筒與模具組合裝置。為消除射孔角度對(duì)起裂壓力的影響,盡量保持6個(gè)孔眼中的一對(duì)孔眼射孔方向與垂向地應(yīng)力σv方向一致。井筒方向與最小水平主地應(yīng)力σh方向一致,整體地應(yīng)力加載方式與圖1一致,地應(yīng)力參數(shù)見(jiàn)表2。

圖3 同一模型不同射孔位置起裂壓力分布規(guī)律Fig. 3 The FIP distribution among different perforations in the same model

圖4 射孔孔徑2 mm時(shí),射孔密度對(duì)起裂壓力的影響Fig. 4 The in fl uence of perforation density on the FIP as the perforation diameter is 2 mm

圖5 射孔密度為1 孔/mm時(shí),射孔孔徑對(duì)起裂壓力的影響Fig. 5 The in fl uence of perforation diameter on the FIP as perforation density is 1 shot/mm

實(shí)驗(yàn)參數(shù)如表2所示。參照有限元分析結(jié)果,以實(shí)驗(yàn)1為基準(zhǔn)實(shí)驗(yàn)(孔徑2 mm+孔密1 孔/cm),實(shí)驗(yàn)2、3分別增大射孔孔徑和射孔密度。每組實(shí)驗(yàn)重復(fù)兩次。壓裂液中混入適量熒光粉,以便觀察和分析實(shí)驗(yàn)后的裂縫面。

圖6 真三軸壓裂實(shí)驗(yàn)設(shè)備示意圖Fig. 6 Schematic of a tri-axial hydraulic fracturing test system

表1 試件基本參數(shù)Table 1 Basic parameters of the sample

表2 螺旋射孔水力壓裂實(shí)驗(yàn)參數(shù)Table 2 Experiment parameters of hydraulic fracturing experiments

圖7 井筒及模具組合Fig. 7 Assembly of wellbore and cast model

2.2 實(shí)驗(yàn)結(jié)果與分析

實(shí)驗(yàn)結(jié)果總結(jié)如表3所示,實(shí)驗(yàn)裂縫形態(tài)如圖8所示。

表3 實(shí)驗(yàn)結(jié)果Table 3 Experiment results

實(shí)驗(yàn)結(jié)果首先驗(yàn)證了有限元方法應(yīng)力分析的有效性,物理模擬實(shí)驗(yàn)中大多數(shù)起裂孔眼對(duì)應(yīng)于圖1所示3、4號(hào)孔眼位置,如圖8中所示實(shí)驗(yàn)1-1、實(shí)驗(yàn)1-2、實(shí)驗(yàn)2-1和實(shí)驗(yàn)2-2結(jié)果圖,位于射孔簇中部且與最大水平主應(yīng)力偏角較小的孔眼優(yōu)先起裂。

圖8 實(shí)驗(yàn)裂縫形態(tài)Fig. 8 Fracture geometry of the samples

實(shí)驗(yàn)1參數(shù)設(shè)置參照了有限元結(jié)果。由于射孔密度較低不利于孔眼間水力裂縫的連接,裂縫從優(yōu)勢(shì)孔眼起裂后獨(dú)立擴(kuò)展,形成與最小水平主地應(yīng)力方向垂直的平整裂縫面(圖8中實(shí)驗(yàn)1-1結(jié)果)。若多孔起裂,則在近井筒形成裂縫重疊區(qū)域(圖8中實(shí)驗(yàn)1-2結(jié)果),與Van Ketterij物理模擬實(shí)驗(yàn)中,大射孔間距條件下的實(shí)驗(yàn)結(jié)果一致[6]。實(shí)驗(yàn)1結(jié)果還表明傳統(tǒng)有限元方法,基于最小起裂壓力原則對(duì)水平井螺旋射孔參數(shù)進(jìn)行優(yōu)化,不一定能夠有效促進(jìn)井筒與水力裂縫連通性。

實(shí)驗(yàn)2在實(shí)驗(yàn)1基礎(chǔ)上增加孔徑至4 mm,降低了優(yōu)勢(shì)孔眼(3、4號(hào)位置孔眼)的起裂壓力(圖3),但由于孔眼間距離較大,加之優(yōu)勢(shì)孔眼與非優(yōu)勢(shì)孔眼間起裂壓力差異較大(圖3),影響了相鄰孔眼的依次起裂和水力裂縫的有效連接,從而造成近井筒多裂縫起裂或裂縫重疊的復(fù)雜情況。同時(shí),裂縫復(fù)雜導(dǎo)致壓裂液流動(dòng)摩阻增加,使最終的破裂壓力偏高,說(shuō)明破裂壓力的高低并不單純?nèi)Q于有限元方法所確定的模型起裂壓力值,還受裂縫復(fù)雜性的影響,從另一側(cè)面再次說(shuō)明了基于最小起裂壓力原則的有限元方法的局限性。

實(shí)驗(yàn)3在實(shí)驗(yàn)1條件下增加孔密至1.6 孔/cm,形成了溝通多個(gè)孔眼的螺旋式主裂縫面,且近井筒沒(méi)有裂縫重疊區(qū)域。說(shuō)明射孔密度從1 孔/cm增至1.6 孔/cm,明顯改善了射孔間水力裂縫的連接性,加之孔密增加,射孔間的起裂壓力差異性減小(圖4),一處孔眼起裂連帶相鄰孔眼依次起裂,最終形成螺旋式的主裂縫面,且溝通了足夠多的射孔孔眼,為后續(xù)填加支撐劑施工降低了孔眼摩阻。式(2)所示為孔眼摩阻的計(jì)算公式[27]。在上述實(shí)驗(yàn)中,實(shí)驗(yàn)3-1起裂孔眼數(shù)為實(shí)驗(yàn)1-1的5倍,在保持其他條件相同的前提下,其在孔眼處的摩阻損失僅為實(shí)驗(yàn)1的1/25。由于裂縫面的彎曲程度有限,實(shí)驗(yàn)3最終破裂壓力也較低。

式中:Q為泵排量,m3/min;ρ為壓裂液密度,kg/m3;D為孔眼直徑,m;Cp為排出系數(shù)(取0.5~0.6);n為有效孔眼個(gè)數(shù);Pef為孔眼摩阻,MPa。

3 結(jié)論與認(rèn)識(shí)

采用有限元數(shù)值模擬和室內(nèi)真三軸物理模擬實(shí)驗(yàn)相結(jié)合的方法,研究了射孔孔徑和射孔密度對(duì)水力裂縫形態(tài)及破裂壓力的影響規(guī)律,得到以下結(jié)論:

(1)基于有限元優(yōu)化的射孔參數(shù),設(shè)計(jì)了物理模擬實(shí)驗(yàn),由實(shí)驗(yàn)1可知有限元方法的優(yōu)化結(jié)果不能保證有效促進(jìn)水力裂縫與井筒的連通性。原因是傳統(tǒng)有限元方法基于最小起裂壓力原則優(yōu)化射孔參數(shù),無(wú)法實(shí)現(xiàn)對(duì)近井裂縫形態(tài)的模擬預(yù)測(cè),導(dǎo)致其對(duì)水平井螺旋射孔參數(shù)進(jìn)行優(yōu)化具有局限性。

(2)由物理模擬實(shí)驗(yàn)2與實(shí)驗(yàn)3可知,在有限元優(yōu)化參數(shù)的基礎(chǔ)上增加射孔密度相比增加射孔孔徑能夠更加有效地增強(qiáng)孔眼間水力裂縫的連接性,形成能夠溝通多個(gè)孔眼的主裂縫面,同時(shí)破裂壓力也較低。

(3)現(xiàn)場(chǎng)進(jìn)行射孔參數(shù)優(yōu)化時(shí),在保證套管強(qiáng)度的條件下,應(yīng)優(yōu)先考慮增加射孔密度,以降低近井筒裂縫的復(fù)雜,為后續(xù)填加支撐劑作業(yè)打好基礎(chǔ)。

[1] ABASS H H, HEDAYATI S, MEADOWS D L, et al. Nonplanar fracture propagation from a horizontal wellbore: Experimental study[J]. SPE Production & Facilities, 1996, 11(03): 133-137.

[2] ABASS H H, BRUMLEY J L, VENDITTO J J, et al. Oriented perforations-a rock mechanics view[C]. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1994.

[3] DANESHY A A. True and apparent direction of hydraulic fractures[C]. Drilling and Rock Mechanics Conference, Society of Petroleum Engineers, 1971.

[4] DANESHY A A. A study of inclined hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1973, 13(02): 61-68.

[5] HALLAM S D, LAST N C. Geometry of hydraulic fractures from modestly deviated wellbores[J]. Journal of Petroleum Technology, 1991, 43(06): 742-748.

[6] KETTERIJ R G, PATER C J D. Impact of perforations on hydraulic fracture tortuosity[J]. SPE Production & Facilities, 1999, 14(02): 117-130.

[7] HOSSAIN M M, RAHMAN M K, RAHMAN S S. Hydraulic fracture initiation and propagation: Roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering, 2000, 27(3): 129-149.

[8] FALLAHZADEH S A H, SHADIZADEH R S, POURAFSHARY P, et al. Dealing with the challenges of hydraulic fracture initiation indeviated-cased perforated boreholes[C]. Trinidad and Tobago Energy Resources Conference, Society of Petroleum Engineers, 2010.

[9] YEW C H, SCHMIDT J H, LI Y, et al. On fracture design of deviated wells[C]. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1989.

[10] HOU B, CHEN M, CHENG W, et al. Investigation of hydraulic fracture networks in shale gas reservoirs with random fractures[J]. Arabian Journal for Science and Engineering, 2015: 1-11.

[11] HOU B, CHEN M, LI Z, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 833-838.

[12] 侯冰, 陳勉, 張保衛(wèi), 等. 裂縫性頁(yè)巖儲(chǔ)層多級(jí)水力裂縫擴(kuò)展規(guī)律研究[J]. 巖土工程學(xué)報(bào). 2015, 37(06): 1041-1046.[HOU B, CHEN M, ZHANG B W, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(06): 1041-1046.]

[13] 陳勉, 周健, 金衍, 等. 隨機(jī)裂縫性儲(chǔ)層壓裂特征實(shí)驗(yàn)研究[J]. 石油學(xué)報(bào). 2008, 29(03): 431-434. [CHEN M, ZHOU J, JIN Y, et al. Experimental study on fracturing features in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2008, 29(03): 431-434.]

[14] 侯冰, 程萬(wàn), 陳勉, 等. 裂縫性頁(yè)巖儲(chǔ)層水力裂縫非平面擴(kuò)展實(shí)驗(yàn)[J]. 天然氣工業(yè). 2014, 34(12): 81-86. [HOU B, CHENG W, CHEN M, et al. Experiments on the non-planar extension of hydraulic fractures[J]. Natural Gas Industry, 2014, 34(12): 81-86.]

[15] VEEKEN C, DAVIES D R, WALTERS J V, et al. Limited communication between hydraulic fracture and (deviated) wellbore[C]. Low Permeability Reservoirs Symposium, Society of Petroleum Engineers, 1989.

[16] BEHRMANN L A, ELBEL J L. Effect of perforations on fracture initiation[J]. Journal of Petroleum Technology, 1991, 43(05): 608-615.

[17] 姜滸, 陳勉, 張廣清, 等. 定向射孔對(duì)水力裂縫起裂與延伸的影響[J]. 巖石力學(xué)與工程學(xué)報(bào). 2009, 28(07): 1321-1326.[JIANG H, CHEN M, ZHANG G Q, et al. Impact of oriented perforation on hydraulic fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(07): 1321-1326.]

[18] PAPANASTASIOU P, ZERVOS A. Three-dimensional stress analysis of a wellbore with perforations and a fracture[C]. SPE/ISRM Rock Mechanics in Petroleum Engineering, Society of Petroleum Engineers, 1998.

[19] 張廣清, 殷有泉, 陳勉, 等. 射孔對(duì)地層破裂壓力的影響研究[J]. 巖石力學(xué)與工程學(xué)報(bào). 2003, 22(01): 40-44.[ZHANG G Q, YIN Y Q, CHEN M, et al. Study on in fl uence of perforation on formation fracturing pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(01): 40-44.]

[20] 彪仿俊, 劉合, 張勁, 等. 螺旋射孔條件下地層破裂壓力的數(shù)值模擬研究[J]. 中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào). 2011, 41(03).[BIAO F J, LIU H, ZHANG J, et al. A numerical study of fracture initiation pressure under helical perforation conditions[J]. Journal of University of Science and Technology of China, 2011, 41(03): 219-226.]

[21] ALEKSEENKO O, POTAPENKO D, CHERNY S, et al. 3D modeling of fracture initiation from perforated noncemented wellbore[J]. SPE Journal, 2012, 18(03): 589-600.

[22] 董平川, 牛彥良, 李莉, 等. 螺旋布孔射孔對(duì)套管強(qiáng)度的影響[J]. 大慶石油地質(zhì)與開發(fā). 2007, 26(02): 91-95.[DONG P C, NIU Y L, LI L, et al. Effect of helix distributing perforation on casing strength[J]. 2007, 26(02): 91-95.]

[23] 王旱祥, 顏廷杰, 李增亮. 射孔對(duì)套管強(qiáng)度的影響[J]. 石油機(jī)械. 2000, 28(05): 42-45.[WANG H X, YAN T J, LI Z L. In fl uence of perforation on casing strength[J]. China Petroleum Machinery, 2000, 28(05): 42-45.]

[24] XU B, WONG R C K. A 3D finite element model for history matching hydraulic fracturing in unconsolidated sands formation[J]. Journal of Canadian Petroleum Technology, 2010, 49(04): 58-66.

[25] 陳勉, 龐飛, 金衍. 大尺寸真三軸水力壓裂模擬與分析[J]. 巖石力學(xué)與工程學(xué)報(bào). 2000, 19(S1): 868-872.[CHEN M, PANG F, JIN Y. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 868-872.]

[26] 柳貢慧, 龐飛, 陳治喜. 水力壓裂模擬實(shí)驗(yàn)中的相似準(zhǔn)則[J]. 石油大學(xué)學(xué)報(bào)(自然科學(xué)版). 2000, 24(05): 45-48.[LIU G H, PANG F, CHEN Z X. Development of scaling laws for hydraulic fracture simulation tests[J]. Journal of the University of Petroleum , China ( Edition of Natural Science), 2000, 24(05): 45-48.]

[27] WILLINGHAM J D, TAN H C, NORMAN L R, et al. Perforation friction pressure of fracturing fl uid slurries[C]. Low Permeability Reservoirs Symposium, Society of Petroleum Engineers, 1993.

Influence of spiral perforation parameters on fracture geometry near horizontal wellbores

SHAN Qinglin1,2, JIN Yan1,2, HAN Ling3, ZHANG Ruxin1,2
1 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
2 State Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China
3 Petroleum Engineering Technology Research Institute, SINOPEC Jianghan Oil fi eld Company, Wuhan 430000, China

During the hydraulic fracturing stimulation of a perforated well, an improper perforation policy may cause limited communication between the well and the hydraulic fractures, such as a fracture initiating from one perforation might fail to linkup with adjacent perforations or multiple fractures might initiate from one perforation or adjacent perforations. Because the complexity of near-wellbore fractures may cause a premature screen-out, leading to a failing treatment, an optimized perforation policy is required to reduce the risk of limited communication. Many numerical and experimental studies have been conducted to optimize the perforation policy of the vertical or deviated wellbores with phasing angle of 0° or 90°, and the expected fracture geometry in these studies is longitudinal fractures that grow along the axis of the wellbore. However, fewer studies have been carried out on how the perforation policy in fl uences the geometry of transverse vertical fractures from a cased and perforated horizontal well. In this work, a combined numerical and experimental study has been carried out to investigate the sensitivity of near-well fracture geometry of spiral-perforated horizontal wellbores. First, a laboratory-scale fi nite element model is built to give a stress distribution near the wellbore and perforations to obtain some understanding as to which perforations act as initiation sites. Following the principle of minimum fracture initiation pressure (FIP), the minimum perforation diameter and density value have been obtained to maintain a low FIP. Based on such parameter combinations, a series of physical simulation tests for concrete samples of different perforation parameters are conducted to study the in fl uence of increasing perforation diameter or perforation density on the fracture geometry near wellbore. This also provides a way to test the effectiveness of traditional numerical methods on the optimization of perforation policy of the spiral-perforated horizontal wellbore. The results of the tests show that the traditional fi nite element method (FEM) has limited applicability. For the optimized parameter combination obtained by the FEM, the large spacing of adjacent perforations leads to low probability of link-up of starter fractures. A fracture initiating from one perforation tends to propagate neglecting other perforations and fails in forming a main fracture passing through enough perforations. Hence the perforation policy optimized by traditional FEM may not enhance the continuity between the wellbore and fractures. Based on the optimization results of FEM, increasing the perforation diameter contributes to the linkup of hydraulic fractures initiating from adjacent perforations to some extent. But still there is area near wellbore where fractures overlap, and the breakdown pressure is relatively higher than that of other tests. Compared with increasing the perforation diameter, increasing perforation density can lead to much easier link-up of starter fractures and foster a main fracture passing through enough perforations. The results of this study can be used as a guide for in site execution. For both perforation diameter and perforation density in fl uence the strength of casing. Increasing the perforation density should be fi rst considered to reduce the complexity of near-wellbore fractures while maintaining the enough strength of the casing, leading to a successful proppant addition.

horizontal wells; spiral perforation policy; finite element method; hydraulic fracturing physics tests; fracture geometry; fracture breakdown pressure

10.3969/j.issn.2096-1693.2017.01.005

(編輯 馬桂霞)

*通信作者: jinyancup@163.com

2016-08-05

國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(51234006)、國(guó)家杰出青年科學(xué)基金項(xiàng)目(51325402)和國(guó)家自然科學(xué)基金重大項(xiàng)目(51490651)聯(lián)合資助

單清林, 金衍, 韓玲, 張儒鑫. 水平井螺旋射孔參數(shù)對(duì)近井筒裂縫形態(tài)影響規(guī)律. 石油科學(xué)通報(bào), 2017, 01: 44-52

SHAN Qinglin, JIN Yan, HAN Ling, ZHANG Ruxin. In fl uence of spiral perforation parameters on fracture geometry near horizontal wellbores. Petroleum Science Bulletin, 2017, 01: 44-52. doi: 10.3969/j.issn.2096-1693.2017.01.005

猜你喜歡
孔眼射孔井筒
強(qiáng)沖蝕不規(guī)則孔眼封堵規(guī)律實(shí)驗(yàn)研究
淺層頁(yè)巖氣投球轉(zhuǎn)向壓裂工藝及應(yīng)用
考慮射孔孔眼磨蝕對(duì)多裂縫擴(kuò)展的影響規(guī)律
基于射孔成像監(jiān)測(cè)的多簇裂縫均勻起裂程度分析
——以準(zhǔn)噶爾盆地瑪湖凹陷致密礫巖為例
PFC和2315XA進(jìn)行電纜射孔下橋塞
化工管理(2021年7期)2021-05-13 00:45:20
電纜輸送射孔的優(yōu)缺點(diǎn)分析
礦井井筒煤柱開采技術(shù)措施
煤峪口礦西三井筒提升中心的測(cè)定
射孔井水力壓裂模擬實(shí)驗(yàn)相似準(zhǔn)則推導(dǎo)
復(fù)雜地段副斜井井筒施工方法的選擇
人間(2015年21期)2015-03-11 15:24:48
开江县| 化州市| 嫩江县| 湖州市| 阳泉市| 宾阳县| 滦南县| 崇州市| 巩留县| 吉木乃县| 台安县| 灵山县| 翼城县| 丹阳市| 深圳市| 宽甸| 鸡泽县| 永宁县| 城固县| 会宁县| 观塘区| 通化县| 满城县| 桑日县| 江津市| 镇赉县| 昌都县| 横峰县| 隆林| 贞丰县| 西乌珠穆沁旗| 镇巴县| 嘉定区| 定安县| 定边县| 东丰县| 威远县| 石泉县| 浦县| 永修县| 逊克县|