張露,朱世城,鄭好,沈祺達(dá),王世貴,唐斌
(杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,杭州 310036)
褐飛虱海藻糖酶基因在表皮幾丁質(zhì)代謝中的調(diào)控作用
張露,朱世城,鄭好,沈祺達(dá),王世貴,唐斌
(杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,杭州 310036)
【目的】昆蟲海藻糖酶能夠調(diào)控幾丁質(zhì)代謝并控制蛻皮過程。本研究通過 TRE表達(dá)被抑制后,檢測褐飛虱(Nilaparvata lugens)蛻皮狀況、幾丁質(zhì)含量及幾丁質(zhì)合成酶(chitin synthase,CHS)和幾丁質(zhì)酶(chitinase,Cht)基因表達(dá)情況,探究不同的海藻糖酶(trehalase,TRE)在褐飛虱表皮中對幾丁質(zhì)代謝的調(diào)控作用。【方法】采用RNAi技術(shù),以實驗室飼養(yǎng)種群褐飛虱為材料,通過向其體內(nèi)注射雙鏈RNA(dsRNA)分別抑制單個海藻糖酶基因或同時抑制多個海藻糖酶基因,注射48 h后通過Trizol法提取褐飛虱總RNA,反轉(zhuǎn)錄試劑盒合成第一鏈DNA后采用實時熒光定量PCR(qRT-PCR)技術(shù)檢測該基因的表達(dá)情況,確定RNAi效果。氫氧化鉀法測定48 h褐飛虱整體幾丁質(zhì)含量變化并對蛻皮困難蟲體進(jìn)行拍照;最后采用qRT-PCR檢測褐飛虱CHS和Cht在mRNA水平上的相對表達(dá)量變化,分析TRE在調(diào)控幾丁質(zhì)代謝中的作用?!窘Y(jié)果】與注射dsGFP相比較,其余各注射組褐飛虱整體幾丁質(zhì)含量顯著下降,其中dsTRE1混合注射組與Validamycin注射組呈極顯著下降,同時褐飛虱出現(xiàn)蛻皮困難等現(xiàn)象。qRT-PCR檢測結(jié)果顯示單個TRE的dsRNA注射后該基因的表達(dá)被抑制,但是部分TRE的表達(dá)有互補性上升。其中TRE1-2和TRE2在各注射組處理下表達(dá)均下降,dsTRE1s對TRE2的表達(dá)也有抑制效果,整體上dsTRE1混合注射組和海藻糖酶抑制劑Validamycin抑制效果明顯;dsTRE注射組抑制CHS表達(dá)效果不明顯,Validamycin能夠顯著降低CHS1和CHS1a在表皮中的表達(dá),且2種dsTRE1注射后CHS1表達(dá)在上升,dsTRE1-2注射后表皮中的CHS1a的表達(dá)上升;Cht1和Cht8在dsTRE各注射組及Validamycin處理中表達(dá)下降或顯著下降,dsTRE1-1注射后Cht2和Cht5表達(dá)顯著上升;dsTRE1-2注射后Cht1、Cht6和Cht8表達(dá)下降,Cht2和Cht4表達(dá)顯著上升;dsTRE2處理組中Cht1、Cht8和Cht10表達(dá)下降而Cht9表達(dá)顯著上升;dsTRE1s注射后,Cht1和Cht5表達(dá)顯著下降,而Cht9表達(dá)顯著上升;Validamycin注射組中10個幾丁質(zhì)酶基因表達(dá)都顯著或者極顯著下降?!窘Y(jié)論】TRE能夠通過調(diào)控褐飛虱幾丁質(zhì)代謝途徑來控制幾丁質(zhì)的合成,結(jié)果可為開展和篩選有效的海藻糖酶抑制劑控制褐飛虱等害蟲提供理論依據(jù)。
褐飛虱;RNAi;海藻糖酶;表皮;幾丁質(zhì)代謝;實時熒光定量PCR
【研究意義】水稻(Oryza sativa)是中國首要的糧食作物,保障水稻的穩(wěn)產(chǎn)、高產(chǎn)對糧食安全生產(chǎn)具有重要意義,其生產(chǎn)和儲存階段經(jīng)常受到各種害蟲的威脅,據(jù)報道害蟲總數(shù)達(dá)到800種以上[1]。2000—2010年期間,中國水稻因蟲害導(dǎo)致?lián)p失達(dá)291.35萬噸[2]。其中褐飛虱(Nilaparvata lugens)為水稻上危害最為嚴(yán)重的害蟲,其為水稻的單食性害蟲,具有繁殖速度快、生命周期短、內(nèi)稟增長率高、環(huán)境適應(yīng)性強等特點[3-6]。更為關(guān)鍵的是,褐飛虱為一種遷飛性的害蟲,每年都從東南亞地區(qū)遷飛到中國危害,其危害范圍廣,防治難度大[7]?!厩叭搜芯窟M(jìn)展】昆蟲的外骨骼均由幾丁質(zhì)構(gòu)成,不僅昆蟲的表皮由幾丁質(zhì)組成,而且氣管及中腸圍食膜等結(jié)構(gòu)的重要組成部分也由幾丁質(zhì)構(gòu)成[8],其幼蟲每生長到一定的階段都需要蛻掉舊的表皮,形成新的表皮,而這個過程由幾丁質(zhì)合成通路及幾丁質(zhì)降解途徑共同完成[9-10]。幾丁質(zhì)合成酶(chitin synthase,CHS)、幾丁質(zhì)酶(chitinase,Cht)和β-N-乙酰氨基葡萄糖苷酶(β-N-acetylglucosaminidases, NAGs)分別是合成和降解幾丁質(zhì)的關(guān)鍵酶類[11-12],它們的表達(dá)在蛻皮激素和保幼激素的調(diào)控作用下使昆蟲體內(nèi)的幾丁質(zhì)處于一個動態(tài)平衡。現(xiàn)已發(fā)現(xiàn)昆蟲幾丁質(zhì)酶存在于體壁(蛻皮液)、中腸、脂肪體和毒腺等組織中,參與昆蟲的蛻皮、圍食膜降解和防御等重要生命活動。幾丁質(zhì)酶基因是一個多基因家族,并且在表達(dá)過程中有組織特異性,其包含幾丁質(zhì)酶和類似幾丁質(zhì)酶(chitinase-like),可以分為5個不同的家族[5]。而海藻糖酶(trehalase,TRE)是昆蟲體內(nèi)幾丁質(zhì)合成通路的第一個酶[13-14],其包含可溶性海藻糖酶(soluble trehalase,TRE1)和膜結(jié)合型海藻糖酶(membranebound trehalase,TRE2)兩種類型,并且已在昆蟲中克隆和發(fā)現(xiàn)多條不同的由TRE1編碼的基因,這些基因間含有較高的序列相似性[13],在幾丁質(zhì)合成通路中有著重要的調(diào)控功能[15-17],前期研究發(fā)現(xiàn)褐飛虱中擁有兩條可溶性海藻糖酶,即TRE1-1和TRE1-2[9,17]。海藻糖是昆蟲的“血糖”[18],當(dāng)海藻糖代謝的平衡被打破,昆蟲的蛻皮與發(fā)育過程均會受到影響,而且相關(guān)研究結(jié)果表明海藻糖的合成和降解都能通過控制幾丁質(zhì)合成通路從而影響昆蟲發(fā)育[13,15-16]。在甜菜夜蛾(Spodoptera exigua)等眾多昆蟲體內(nèi)均發(fā)現(xiàn)兩種幾丁質(zhì)合成酶,即CHS1(或CHSA)和CHS2(或CHSB),且CHS1包含了可變外顯子兩種可變剪接體[19]。CHS1和CHS2在昆蟲不同組織中的表達(dá)情況各異,控制不同組織內(nèi)的幾丁質(zhì)合成[9-10]。【本研究切入點】隨著近幾年基因組測序的快速發(fā)展,褐飛虱基因組測序完成,3個TRE在褐飛虱體內(nèi)被發(fā)現(xiàn),分別為TRE1-1、TRE1-2和TRE2。TRE1主要影響或者調(diào)節(jié)CHS1的表達(dá)來控制表皮中幾丁質(zhì)的合成,TRE2則影響CHS2的表達(dá)來控制中腸中幾丁質(zhì)的表達(dá)。幾丁質(zhì)合成受阻使得昆蟲不能順利完成蛻皮過程,最終導(dǎo)致昆蟲因蛻皮困難和發(fā)育受阻而死亡。有關(guān)TRE調(diào)控不同幾丁質(zhì)酶的表達(dá)研究較少,褐飛虱僅存在CHS1,并無CHS2存在[20],但是其擁有10個幾丁質(zhì)酶[21]。對于不同的TRE如何調(diào)控褐飛虱的幾丁質(zhì)合成與降解鮮見報道[17]?!緮M解決的關(guān)鍵問題】研究TRE調(diào)控褐飛虱表皮中幾丁質(zhì)合成和降解通路中CHS和Cht等基因的功能,評估TRE作為害蟲控制的靶標(biāo)的潛力,為控制水稻褐飛虱等害蟲的生物農(nóng)藥的開發(fā)提供理論依據(jù)。
試驗于2016年在杭州師范大學(xué)完成。
1.1 試驗蟲源
褐飛虱采集于中國水稻研究所,為杭州師范大學(xué)動物適應(yīng)與進(jìn)化重點實驗室飼養(yǎng)種群,水稻品種全部采用感蟲水稻TN1。水稻和褐飛虱均放在人工氣候箱或者人工氣候室中培育或者飼養(yǎng),溫度(25±1)℃、相對濕度(70±5)%、光周期 14L﹕10D。用于RNAi顯微注射的褐飛虱為TN1水稻上飼養(yǎng)的種群,待褐飛虱長到5齡若蟲后,用于后期注射試驗。
1.2 儀器與試劑
1.2.1 主要儀器 -80℃冰箱(艾本德 U410-86)、常規(guī)冰箱(西門子 KK25V61TI)、高壓蒸汽滅菌鍋(ZEALWAY GR60DA)、恒溫水浴鍋(上海精宏DK-8D)、臺式低溫離心機(jī)(Eppendorf)、臺式高速離心機(jī)(Eppendorf和Sigma1-14)、實時熒光定量PCR儀(Bio-RAD CFX96)、無菌超凈工作臺(ESCO)、電子分析天平(梅特勒-托利多AL204)和微量測定分光光度計(NanoDropTM2000)。
1.2.2 主要試劑 DNA Marker DL2000等、6×Loading buffer、pMD18-T、AMV反轉(zhuǎn)錄試劑盒及實時熒光定量PCR試劑等購自大連TaKaRa公司;總RNA提取采用 Trizol試劑盒購自 Lifetech Scientific Corporation;PCR引物由上海英濰捷基有限公司合成;dsRNA合成試劑盒為T7 RiboMax Express RNAi System(Promega,Madison,USA);實時熒光定量PCR八連管等耗材購自美國Bio-RAD公司;氯仿、異丙醇、無水乙醇、EDTA等常規(guī)試劑均購自國藥集團(tuán)化學(xué)試劑有限公司;瓊脂糖購自西班牙Elisa公司。
1.3 試驗方法
1.3.1 總RNA的抽提及cDNA的合成 褐飛虱蟲體及組織的總RNA抽提采用Trizol試劑盒并按照產(chǎn)品說明進(jìn)行提取。提取后用1%的瓊脂糖檢測總RNA的質(zhì)量,然后用NanoDrop 2000分光光度計測定提取RNA的濃度及純度。使用Prime Script?RT reagent Kit With gDNA Eraser試劑盒配置體系,進(jìn)行第一鏈cDNA的合成。
1.3.2 dsRNA的合成 設(shè)計適合3個海藻糖酶基因dsRNA特異性片段并合成的特異性引物進(jìn)行 PCR擴(kuò)增,產(chǎn)物進(jìn)行T克隆,具體引物序列見表1。隨后用帶T7啟動子的引物進(jìn)行交叉PCR反應(yīng),根據(jù)T7RiboMAXTMExpress RNAi System試劑盒的說明進(jìn)行dsRNA合成,待dsRNA合成后,采用NanoDropTM2000測定合成dsRNA的濃度,同時以GFP作為對照組,采用同樣方法合成GFP的dsRNA[17]。用于顯微注射的材料分為dsTRE1-1(451 bp)、dsTRE1-2(321 bp)、dsTRE2(440 bp)和dsTRE1s(dsTRE1-1與dsTRE1-2混合注射組)以及作為對照的dsGFP(688 bp)和海藻糖酶抑制劑(Validamycin:10 μg·μL-1)。
表1 褐飛虱3個海藻糖酶及GFP dsRNA合成引物序列Table 1 The primers of 3 trehalases in N. lugens and GFP for dsRNA synthesis
1.3.3 褐飛虱的顯微注射 在注射前用標(biāo)準(zhǔn)毛細(xì)管定量顯微注射器每次泵出dsRNA的體積,并根據(jù)需要注射的量,通過調(diào)整氮氣壓來調(diào)整dsRNA的體積使其泵出體積符合注射量。將5齡褐飛虱用CO2麻醉后放置于制備有瓊脂膠板的一次性培養(yǎng)皿中,使蟲體腹部朝上,注射第一對足中間偏下較軟部位,注射量均為200 ng/頭(海藻糖酶抑制劑也注射200 ng/頭),注射后將其放置裝有新鮮水稻的試管中,分別于注射后48 h解剖表皮組織用于定量分析,整體的褐飛虱用于幾丁質(zhì)含量測定試驗。
1.3.4 RNAi后褐飛虱組織中海藻糖酶及幾丁質(zhì)代謝途徑關(guān)鍵基因表達(dá)量測定 褐飛虱顯微注射后48 h解剖組織材料用于熒光定量PCR的檢測,PCR引物見表2。每次取樣時取褐飛虱表皮材料分裝于3個平行管中,即每個樣品得到3管平行cDNA,放置于-80℃保存待用。試驗時,每管cDNA做3個定量復(fù)孔,確保數(shù)據(jù)重復(fù)性好,3管平行cDNA可以得到9個數(shù)據(jù),即每個樣品為平均值±標(biāo)準(zhǔn)誤,保證數(shù)據(jù)的可靠性。配置以下體系進(jìn)行反應(yīng):Mix 10 μL、primer F(10 pmol)1 μL、primer R(10 pmol)1 μL、模板DNA 1 μL、RNase Free ddH2O 7 μL。反應(yīng)程序為95℃預(yù)變性3 min;95℃變性5 s,55—62.5℃退火延伸25 s(循環(huán)40次);最后繪制65—95℃熔解曲線。
表2 褐飛虱海藻糖酶、幾丁質(zhì)酶及幾丁質(zhì)合成酶實時熒光定量PCR檢測引物序列Table 2 The primers of trehalase, chitinase and chitin synthase in N. lugens for qRT-PCR detection
1.3.5 幾丁質(zhì)含量的測定 (1)自制消化管:取試管一根,配以橡皮塞,在橡皮塞上鉆上5 mm孔,插上玻璃管,橡皮塞外端的玻璃管上再連接一根橡皮管,長30—50 cm,橡皮管的另一端再接一根玻璃管,并將開口的玻璃管通入水槽內(nèi),以防加熱時堿液濺出;(2)將30頭褐飛虱用清水沖洗干凈,置于濾紙上,50℃烘箱內(nèi)烘干,約4 d;(3)將烘干的褐飛虱研磨成粉末,在電子分析天平上稱重,記為W1;(4)將已知質(zhì)量的褐飛虱粉末倒入消化管中,加入5 mL飽和氫氧化鉀,160℃甘油浴15—20 min;(5)用濾紙過濾殘渣,然后用緩慢的流水沖洗干凈;(6)將殘渣置于50℃烘箱中烘1 h,在分析天平稱重,計為W2;(7)按照如下公式計算幾丁質(zhì)的相對含量。幾丁質(zhì)的相對含量。式中[22-23],W1為消化前褐飛虱質(zhì)量(mg);W2為消化后褐飛虱質(zhì)量(mg);1.26為轉(zhuǎn)換系數(shù),轉(zhuǎn)換系數(shù)=乙酰胺基葡萄糖相對分子質(zhì)量/胺基葡萄糖相對分子質(zhì)量。
1.3.6 數(shù)據(jù)統(tǒng)計分析 通過定量 PCR測定出 6個基因的CT值,每管樣品的3個重復(fù)孔取平均值用于計算(數(shù)值相差在0.5以內(nèi)可用,3個數(shù)值中有2個或3個接近,數(shù)值可用,否則重做)。每次樣品有3組數(shù)值,即最后得到的數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤。再通過2-△△CT法進(jìn)行計算,對照組為褐飛虱dsGFP注射組的 CT值。最后將換算出的值再進(jìn)行具體分析。2-△△CT計算公式[24]:
采用SPSS和One-Way ANOVA數(shù)據(jù)分析軟件進(jìn)行差異顯著性分析。
2.1 RNAi后海藻糖酶基因在表皮組織中的表達(dá)
RNAi抑制3個海藻糖酶基因表達(dá)后,結(jié)果顯示單個海藻糖酶基因的 dsRNA注射后都能夠有效地抑制該基因在表皮中的表達(dá)。TRE1-1、TRE1-2和TRE2分別在dsTRE1-1、dsTRE1-2和dsTRE2注射后48 h顯著下降;TRE1-2和TRE2在所有的處理組,包括3種單個dsTRE注射、dsTRE1s及海藻糖酶抑制劑Validamycin注射后,其mRNA水平相對于dsGFP注射組都在下降;dsTRE1s不僅能夠顯著降低TRE1-1和TRE1-2的表達(dá),也能夠降低TRE2的表達(dá);Validamycin能夠顯著降低 TRE1-1和TRE1-2的表達(dá),而不能顯著降低TRE2在表皮中的表達(dá)(圖1)。
2.2 RNAi抑制海藻糖酶基因表達(dá)后幾丁質(zhì)含量及蛻皮情況變化
與對照組相比較,3個 TRE單基因的 dsRNA注射后 48 h幾丁質(zhì)含量顯著下降(P<0.05),而dsTRE1s與Validamycin注射后48 h幾丁質(zhì)含量極顯著下降(P<0.01,圖2-A)。幾丁質(zhì)含量下降的幅度達(dá)到1/3—1/2。同時,與對照注射dsGFP組相比,這5種處理中部分褐飛虱都出現(xiàn)蛻皮困難等現(xiàn)象(圖2-B)。
2.3 TRE基因RNAi后幾丁質(zhì)合成酶及可變轉(zhuǎn)錄子表達(dá)變化
在mRNA水平上對褐飛虱幾丁質(zhì)合成酶CHS1及其兩個不同轉(zhuǎn)錄子CHS1a和CHS1b的表達(dá)進(jìn)行了檢測,結(jié)果顯示Validamycin注射后能夠有效地降低CHS1和CHS1a的表達(dá)(圖3-A、3-B),單個dsTRE及dsTRE1s注射后48 h,褐飛虱表皮中CHS1及其兩個不同轉(zhuǎn)錄子CHS1a和CHS1b的表達(dá)與dsGFP組相比較無顯著差異(圖3)。且兩種dsTRE1注射后CHS1表達(dá)在上升,dsTRE1-2注射后表皮中CHS1a的表達(dá)上升。
圖1 褐飛虱3個海藻糖酶基因在RNAi后mRNA相對表達(dá)水平Fig. 1 The relative expression levels of 3 trehalase genes of N. lugens after RNAi
圖2 褐飛虱3個海藻糖酶基因表達(dá)被抑制后幾丁質(zhì)含量檢測及蛻皮情況Fig. 2 The chitin content detected and moulting changes after 3 trehalase genes expression inhibited by the way of RNAi
圖3 褐飛虱3個海藻糖酶基因RNAi后幾丁質(zhì)合成酶及可變轉(zhuǎn)錄子在mRNA相對表達(dá)水平Fig. 3 The relative expression level of chitin synthase and its splicing variants of N. lugens after 3 trehalase genes RNAi
2.4 TRE基因RNAi后幾丁質(zhì)酶基因表達(dá)變化
dsTRE1-1注射后48 h,Cht1、Cht3、Cht8和Cht10表達(dá)下降,其中與注射dsGFP組相比較僅Cht8表達(dá)顯著下降,其余6個Cht表達(dá)上升,且Cht2和Cht5顯著上升;dsTRE1-2注射組中,Cht1、Cht6和Cht8表達(dá)下降,Cht2和Cht4表達(dá)顯著上升;dsTRE2處理組中,Cht1、Cht8和Cht10表達(dá)下降,而Cht9表達(dá)顯著上升;dsTRE1s注射后,Cht1和Cht5表達(dá)顯著下降,而 Cht9表達(dá)顯著上升;海藻糖酶抑制劑Validamycin注射組中所有的10個幾丁質(zhì)酶基因表達(dá)都顯著或極顯著下降。進(jìn)一步分析發(fā)現(xiàn)在4個TRE的dsRNA注射組中,Cht1和Cht8的表達(dá)下降,但并不是所有的處理組都顯著下降(圖4)。
RNAi是基因功能研究的有效工具,主要通過注射dsRNA或siRNA抑制基因的表達(dá)[25]。目前,RNAi技術(shù)已經(jīng)廣泛用于探索和研究昆蟲的相關(guān)基因功能,相關(guān)研究結(jié)果顯示當(dāng)昆蟲發(fā)育的關(guān)鍵基因被沉默后,經(jīng)常會在不同的組織表型上顯示出來[5-6,26-29]。前期研究中,注射單個基因的dsTRE后,48 h和72 h褐飛虱整體中該基因的表達(dá)都能有效地被抑制[17]。本研究中,單個和混合TRE基因RNAi后,表皮中該基因的表達(dá)也都下降(圖1),這與TRE基因RNAi后整體中本基因的表達(dá)類似。同時,在褐飛虱幾丁質(zhì)合成通路、海藻糖合成酶和海藻糖酶等相關(guān)的基因功能研究中,褐飛虱出現(xiàn)蛻皮困難等現(xiàn)象[5-6,15-16],本試驗結(jié)果顯示單個TRE的dsRNA或者注射混合TRE1的dsRNA均出現(xiàn)了蛻皮困難現(xiàn)象,與幾丁質(zhì)合成或降解受到阻礙的結(jié)果一致(圖2-B),與前期研究也一致[17]。在前期研究中發(fā)現(xiàn)TRE表達(dá)被抑制后,褐飛虱不但蛻皮困難,翅發(fā)育也會受阻,這表明幾丁質(zhì)合成或降解受到嚴(yán)重影響,本試驗進(jìn)一步檢測TRE基因RNAi后幾丁質(zhì)含量情況,結(jié)果顯示與對照組相比較,褐飛虱的幾丁質(zhì)含量顯著下降(圖 2-A),這與采用Validamycin抑制褐飛虱海藻糖酶酶活性后的結(jié)果吻合[22]。
昆蟲擁有可溶性和膜結(jié)合型兩種類型海藻糖酶,其在多數(shù)昆蟲組織中都有表達(dá)[13]。近年來,借助于轉(zhuǎn)錄組等研究發(fā)現(xiàn)昆蟲TRE1不止一條編碼基因存在,如褐飛虱包含TRE1-1和TRE1-2兩條[17],赤擬谷盜(Tribolium castaneum)擁有4條可溶性海藻糖酶基因[30],異色瓢蟲(Harmonia axyridis)中至少存在 3條或3條以上的TRE1[31-32]。不同可溶性海藻糖酶可能存在著功能差異。TRE1主要在中腸中表達(dá),負(fù)責(zé)內(nèi)源性海藻糖的分解,在血淋巴、中腸和馬氏管中高表達(dá)[33];而TRE2主要負(fù)責(zé)外源性海藻糖酶的吸收和同化,在脂肪體、中腸和馬氏管中高表達(dá)[9,15,34-37]。表皮作為昆蟲幾丁質(zhì)最主要的部分,幾丁質(zhì)含量比例高,本研究發(fā)現(xiàn)與dsGFP注射組幾丁質(zhì)含量(21%)相比較,Validamycin注射組幾丁質(zhì)含量顯著降低至9%的水平,而4個dsTRE處理組中幾丁質(zhì)含量在12%—14%,表明TRE1和TRE2都能夠控制褐飛虱幾丁質(zhì)的合成。但是,采用海藻糖酶抑制 Validamycin能夠非常有效降低兩類TRE酶活[22],從而控制褐飛虱幾丁質(zhì)的代謝,降低幾丁質(zhì)含量,提高褐飛虱的死亡率和畸形率。
近年來,對赤擬谷盜、甜菜夜蛾、褐飛虱等昆蟲海藻糖酶-幾丁質(zhì)調(diào)控通路的研究較多,結(jié)果均表明 TRE對幾丁質(zhì)的合成與分解存在一定的調(diào)控作用[15-16,38-39],而飛蝗(Locusta migratoria)海藻糖酶基因表達(dá)干擾后,測定幾丁質(zhì)合成關(guān)鍵基因——UDP-N-乙酰氨基葡萄糖焦磷酸化酶1 基因(LmUAP1)和幾丁質(zhì)合成酶1基因(LmCHS1)的表達(dá),發(fā)現(xiàn)并未對表達(dá)量產(chǎn)生影響,5齡若蟲可正常蛻皮至成蟲[14]。因此,不同生物體內(nèi)TRE功能存在一些差別,但大多數(shù)研究表明TRE1與TRE2影響不同部位的幾丁質(zhì)合成[9]。研究表明褐飛虱體中可能缺乏CHS2,分別向褐飛虱注射dsCHS1、dsCHS1a和dsCHS1b,發(fā)現(xiàn)CHS1和CHS1a的基因干擾會導(dǎo)致褐飛虱翅畸形、細(xì)腰、表皮皺縮并最終死亡[20]。本試驗中,注射單個dsTRE或者混合的dsTRE1s后48 h,表皮中CHS1、CHS1a和CHS1b表達(dá)無顯著差異(圖3),而在前期試驗中發(fā)現(xiàn)當(dāng)TRE1和TRE2的表達(dá)被抑制后,褐飛虱整體中的CHS1a和CHS1b表達(dá)都會降低或顯著降低[17],表明2個TRE1基因在褐飛虱不同組織的幾丁質(zhì)合成酶中的功能不同,TRE1可能在調(diào)控褐飛虱其他組織CHS表達(dá)上更為明顯。
同樣,采用RNAi方法抑制褐飛虱任何一個TRE的表達(dá)后,Cht3和Cht10在48 h的表達(dá)都顯著下降,而有些Cht的表達(dá)會顯著上升,但是在dsTRE注射后72 h大多數(shù)的Cht表達(dá)都顯著下降或極顯著下降[17]。對dsTRE注射后48 h Cht的表達(dá)情況進(jìn)行研究,發(fā)現(xiàn)dsTRE1-1注射后表皮中 Cht8的表達(dá)顯著下降,dsTRE1s注射后Cht1和Cht5表達(dá)顯著下降,而多數(shù)情況下不同Cht的表達(dá)無顯著差異或者上升(圖4)。推測當(dāng)2個TRE1同時表達(dá)抑制后主要通過降低Cht5的表達(dá)來調(diào)控幾丁質(zhì)合成,且Cht5本身在昆蟲表皮合成中具有重要作用[5]。更為重要的是當(dāng)TRE的表達(dá)被抑制后,褐飛虱幾丁質(zhì)代謝平衡被打破,昆蟲出現(xiàn)發(fā)育畸形、體重減輕、幾丁質(zhì)合成減少、生長受阻、飛行減少甚至死亡的現(xiàn)象[39]。干擾TRE后出現(xiàn)了蛻皮困難等現(xiàn)象,這與幾丁質(zhì)合成酶[19-20,40-41]、幾丁質(zhì)酶[5]、幾丁質(zhì)脫乙酰酶[21,42]、β-N-乙酰乙糖胺酶[6]等幾丁質(zhì)合成和降解通路中相關(guān)酶被 RNA干擾后的現(xiàn)象一致。綜上所述,無論是抑制了TRE還是幾丁質(zhì)代謝路徑中的其他酶,幾丁質(zhì)含量減少是導(dǎo)致蛻皮困難最重要的原因。
dsTRE注射到褐飛虱體內(nèi),能夠有效降低表皮中靶標(biāo)基因的表達(dá);褐飛虱體內(nèi)海藻糖代謝被打破后,可導(dǎo)致昆蟲蛻皮困難,翅畸形等表型;海藻糖酶基因表達(dá)被抑制后,可導(dǎo)致褐飛虱體內(nèi)幾丁質(zhì)代謝的紊亂,進(jìn)一步導(dǎo)致死亡。
[1] BARRION A T, LITSINGER J A. Taxonomy of rice insect pests and their arthropod parasites and predators//HEINRICHS E A. Biology and Management of Rice Insects. Wiley Eastern Ltd., India and IRRI, Manila, Philippines, 1994.
[2] 趙夢, 歐陽芳, 張永生, 李魏, 曹婧, 戈峰. 2000-2010年我國水稻病蟲害發(fā)生為害特征分析. 生物災(zāi)害科學(xué), 2014, 37(4): 275-280.
ZHAO M, OUYANG F, ZHANG Y S, LI W, CAO J, GE F. Characteristics of occurrence and damage from diseases and insect pests in rice production in China during 2000-2010. Biology Disaster Science, 2014, 37(4): 275-280. (in Chinese)
[3] 趙穎, 黃鳳寬, 童曉立, 龐雄飛. 水稻品種對褐飛虱不同生物型抗性的HPLC分析. 華南農(nóng)業(yè)大學(xué)學(xué)報, 2005, 26(2): 52-55.
ZHAO Y, HUANG F K, DONG X L, PANG X F. HPLC analysis of rice variety resistance to different biotypes of Nilaparvata lugens. Journal of South China Agricultural University, 2005, 26(2): 52-55. (in Chinese)
[4] WANG Y C, TANG M, HAO P Y, YANG Z F, ZHU L L, HE G C. Penetration into rice tissues by brown plant hopper and fine structure of the salivary sheaths. Entomologia Experimentalis et Applicata, 2008, 129(3): 295-307.
[5] XI Y, PAN P L, YE Y X, YU B, XU H J, ZHANG C X. Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015, 24(1): 29-40.
[6] XI Y, PAN P L, ZHANG C X. The β-N-acetylhexosaminidase gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015, 24(6): 601-610.
[7] GHAFFAR M B, PRITCHARD H, FORD L B. Brown planthopper (N. lugens St?l) feeding behavior on rice germplasm as an indicator of resistance. PLoS ONE, 2011, 6(7): e22137.
[8] 張建珍. 昆蟲幾丁質(zhì)代謝與植物保護(hù). 中國農(nóng)業(yè)科學(xué), 2014, 47(7): 1301-1302.
ZHANG J Z. Insect chitin metabolism and plant protection. Scientia Agricultura Sinica, 2014, 47(7): 1301-1302. (in Chinese)
[9] 張文慶, 陳曉菲, 唐斌, 田宏剛, 陳潔, 姚瓊. 昆蟲幾丁質(zhì)合成及其調(diào)控研究前沿. 應(yīng)用昆蟲學(xué)報, 2011, 48(3): 475-479.
ZHANG W Q, CHEN X F, TANG B, TIAN H G, CHEN J, YAO Q. Insect chitin biosynthesis and its regulation. Chinese Journal of Applied Entomology, 2011, 48(3): 475-479. (in Chinese)
[10] ZHU K Y, MERZENDORFER H, ZHANG W Q, ZHANG J Z, MUTHUKRISHNAN S. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology, 2016, 61: 177-196.
[11] 屈明博, 劉田, 陳磊, 陳琦, 楊青. 昆蟲糖基水解酶20家族β-N-乙酰己糖胺酶研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2014, 47(7): 1303-1312.
QU M B, LIU T, CHEN L, CHEN Q, YANG Q. Research progresses in insect glycosyl hydrolyase family 20 β-N-acetylhexosamindase. Scientia Agricultura Sinica, 2014, 47(7): 1303-1312. (in Chinese)
[12] 宋慧芳, 李應(yīng)龍, 馬恩波, 張建珍. 飛蝗 β-N-乙酰氨基葡萄糖苷酶基因的表達(dá)及酶學(xué)特性分析. 中國農(nóng)業(yè)科學(xué), 2016, 49(21): 4140-4148.
SONG H F, LI Y L, MA E B, ZHANG J Z. The heterogenous expression and enzymatic characteristics of β-N-acetylglucosaminidase from Locusta migratoria. Scientia Agricultura Sinica, 2016, 49(21): 4140-4148. (in Chinese)
[13] 唐斌, 魏蘋, 陳潔, 王世貴, 張文慶. 昆蟲海藻糖酶的基因特性及功能研究進(jìn)展. 昆蟲學(xué)報, 2012, 55(11): 1315-1321.
TANG B, WEI P, CHEN J, WANG S G, ZHANG W Q. Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica, 2012, 55(11): 1315-1321. (in Chinese)
[14] 劉曉健, 孫亞文, 崔淼, 馬恩波, 張建珍. 飛蝗海藻糖酶基因的分子特性及功能. 中國農(nóng)業(yè)科學(xué), 2016, 49(22): 4375-4386.
LIU X J, SUN Y W, CUI M, MA E B, ZHANG J Z. Molecular characteristics and functional analysis of trehalase genes in Locusta migratoria. Scientia Agricultura Sinica, 2016, 49(22): 4375-4386. (in Chinese)
[15] CHEN J, TANG B, CHEN H X, YAO Q, HUANG X F, CHEN J, ZHANG D W, ZHANG W Q. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA Interference. PLoS ONE, 2010, 5(4): e10133.
[16] YANG M M, ZHAO L N, SHEN Q D, XIE G Q, WANG S G, TANG B. Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the rice brown planthopper Nilaparvata lugens. Pest Management Science, 2017, 73(1): 206-216.
[17] ZHAO L N, YANG M M, SHEN Q D, SHI Z K, WANG S G, TANG B. Knockdown of three trehalases regulating trehalose and chitin metabolism in the rice brown planthopper Nilaparvata lugens. Science Reports, 2016, 6: 27841.
[18] 于彩虹, 盧丹, 林榮華, 王曉軍, 姜輝, 趙飛. 海藻糖——昆蟲的血糖. 昆蟲知識, 2008, 45(5): 832-837.
YU C H, LU D, LIN R H, WANG X J, JIANG H, ZHAO F. Trehalose—the blood sugar in insects. Chinese Bulletin of Entomology, 2008, 45(5): 832-837. (in Chinese)
[19] CHEN X F, TIAN H G, ZOU L Z, TANG B, HU J, ZHANG W Q. Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bulletin of Entomological Research, 2008, 98(6): 613-619.
[20] WANG Y, FAN H W, HUANG H J, XUE J, WU W J, BAO Y Y, XU H J, ZHU Z R, CHENG J A, ZHANG C X. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology, 2012, 42(9): 637-646.
[21] 席羽. 褐飛虱幾丁質(zhì)降解酶系基因家族分析[D]. 杭州: 浙江大學(xué), 2014.
XI Y. Analyses of chitinolytic enzyme gene families in Nilaparata lugens[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[22] TANG B, YANG M M, SHEN Q D, XU Y X, WANG H J, WANG S G. Suppressing the activity of trehalase with Validamycin disrupts the trehalose and chitin biosynthesis pathways in rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 2016, doi:10.1016/j.pestbp.2016.10.003.
[23] 曹傳旺, 高彩球. 昆蟲生化與分子生物學(xué)實驗技術(shù). 哈爾濱: 東北林業(yè)大學(xué)出版社, 2009: 24-26.
CAO C W, GAO C Q. Experimental Technology of Insect Biochemistry and Molecular Biology. Harbin: Northeast Forestry University Press, 2009: 24-26. (in Chinese)
[24] LIVAKA K J, SCHMITTGENB T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-CT△△method. Methods, 2001, 25(4): 402-408.
[25] FIRE A, XU S, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
[26] ZHU Q S, ARAKANE Y, BEEMAN R W, KRAMER K J, MUTHUKRISHNAN S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(18): 6650-6655.
[27] BELLES X. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annual Review of Entomology, 2010, 55: 111-128.
[28] SCOTT J G, MICHEL K, BARTHOLOMAY L C, SIEGFRIED B D, HUNTER W B, SMAGGHE G, ZHU K Y, DOUGLAS A E. Towards the elements of successful insect RNAi. Journal of Insect Physiology, 2013, 59(12): 1212-1221.
[29] FU K Y, LI Q, ZHOU L T, MENG Q W, Lü F G, GUO W C, LI G Q. Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. Pest Management Science, 2016, 72(6): 1231-1241.
[30] TANG B, WEI P, ZHAO L N, GUO H S, WANG S G. Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathways in Tribolium castaneum. BMC Biotechnology, 2016, 16(1): 67.
[31] TANG B, QIN Z, SHI Z K, WANG S, GUO X J, WANG S G,ZHANG F. Trehalase in Harmonia axyridis (Coleoptera: Coccinellidae): effects on beetle locomotory activity and the correlation with trehalose metabolism under starvation conditions. Applied Entomology and Zoology, 2014, 49(2): 255-264.
[32] SHI Z K, LIU X J, XU Q Y, QIN Z, WANG S, ZHANG F, WANG S G, TANG B. Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2016, 198: 10-18.
[33] TAKIGUCHI M, NIIMI T, SU Z H, YAGINUMA T. Trehalase from male accessory gland of an insect, Tenebrio molitor. cDNA sequencing and developmental profile of the gene expression. The Biochemical Journal, 1992, 288(1): 19-22.
[34] BECKER A, SCHL?DER P, STEELE J E, WEGENER G. The regulation of trehalose metabolism in insects. Experientia, 1996, 52(5): 433-439.
[35] SILVA M C, TERRA W R, FERREIRA C. The role of carboxyl, guanidine and imidazole groups in catalysis by a midgut trehalase purified from an insect larvae. Insect Biochemistry and Molecular Biology, 2004, 34(10): 1089-1099.
[36] MITSUMASU K, AZUMA M, NIIMI T, YAMASHITA O, YAGINUMA T. Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Molecular Biology, 2005, 14(5): 501-508.
[37] TANG B, CHEN X F, LIU Y, TIAN H G, LIU J, HU J, XU W H, ZHANG W Q. Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua. BMC Molecular Biology, 2008, 9: 51.
[38] 張倩, 魯鼎浩, 蒲建, 吳敏, 韓召軍. 灰飛虱海藻糖酶基因的克隆及RNA干擾效應(yīng). 昆蟲學(xué)報, 2012, 55(8): 911-920.
ZHANG Q, LU D H, PU J, WU M, HAN Z J. Cloning and RNA interference effects of trehalase genes in Laodelphax striatellus (Homoptera: Delphacidae). Acta Entomologica Sinica, 2012, 55(8): 911-920. (in Chinese)
[39] SHUKLA E, THORAT L J, NATH B B, GAIKWAD S M. Insect trehalase: physiological significance and potential applications. Glycobiology, 2015, 25(4): 357-367.
[40] ARAKANE Y, SPECHT C A, KRAMER K J, MUTHUKRISHNAN S, BEEMAN R W. Chitin synthases are required for survival, fecundity and egg hatch in the red four beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2008, 38(10): 959-962.
[41] TIAN H G, PENG H, YAO Q, CHEN H X, XIE Q, TANG B, ZHANG W Q. Developmental regulation of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE, 2009, 4(7): e6225.
[42] ARAKANE Y, DIXIT R, BEGUM K, PARK Y, SPECHT C A, MERZENDORFER H, KRAMER K J, MUTHUKRISHNAN S, BEEMAN R W. Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2009, 39(5/6): 355-365.
(責(zé)任編輯 岳梅)
Regulatory Function of Trehalase Genes on Chitin Metabolism in the Cuticle of Nilaparvata lugens
ZHANG Lu, ZHU ShiCheng, ZHENG Hao, SHEN QiDa, WANG ShiGui, TANG Bin
(College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036)
【Objective】The previous research results showed that insect trehalase (TRE) can regulate chitin metabolism and control the molting process. In this study, the brown planthopper (Nilaparvata lugens) molting process, the changes of the expression of chitin content and chitin synthase (CHS) and chtinase (Cht) genes were detected when TRE genes were knocked down by the way of RNAi, in order to explore the roles of different trehalase genes in the regulation of chitin metabolism in the epidermis.【Method】N. lugens fed in the lab was chosen as the experimental material, and RNAi technology was used to inhibit the single or two TRE genes’ expression by injection of double stranded RNA. The total RNA was extracted from the cuticle of N. lugens using the TRIzol?reagent as instructed by manufacturer. First-stand cDNA was synthesized using the PrimeScriptTMRT reagent Kit with gDNA Eraser following the manufacturer’s instructions. And the effect of RNAi was firstly determined after 48 h of injection by quantitative real-time PCR (qRT-PCR). Secondly, the chitin content of N. lugens whole body was determined at 48 h using potassium hydroxide method qRT-PCR, and photos of the insects with molting difficulties were taken in the same time. In the last, the relative expression levels of CHS and Cht of N. lugens were detected by qRT-PCR, and the regulatory function on chitin metabolism of TRE was analyzed at the same time. 【Result】Compared with the injection of dsGFP which was used as a control group, the results showed that in other groups injected with dsRNA the chitin content of N. lugens was decreased significantly, in which the dsTRE1 mixed injection group and the Validamycin injection group showed a significant decrease, meanwhile its molting problems appeared at the same time. qRT-PCR results showed that the gene expression of individual TRE was inhibited at 48 h after one TRE dsRNA injection, and the other TRE expression was increased and indicated it has a complementary function. The expressions of TRE1-2 and TRE2 were decreased in all groups, and dsTRE1s also inhibited the expression of TRE2. Secondly, the obvious effects could be found when mixed dsTRE1 trehalase inhibitor Validamycin injected into N. lugens and TRE genes were decreased significantly. The expression level of CHS and its splicing variants had no obvious effect when every TRE genes’ expression was knocked down, while CHS1 and CHS1a expressions were significantly decreased at 48 h after Validamycin injection. The expression of CHS1 in the cuticle increased after dsTRE1-2 injection and the expression of CHS1a increased after injection of dsTRE1-2. Thirdly, the expression levels of Cht1 and Cht8 decreased or decreased significantly after four dsTRE and Validamycin injection. The expression levels of Cht2 and Cht5 increased significantly when dsTRE1 was injected, as well as Cht2 and Cht4 increased significantly while Cht1, Cht6 and Cht8 decreased after dsTRE1-2 injection and Cht2 expressed increased significantly while the expression of Cht1, Cht8 and Cht10 decreased at 48 h when TRE2 knocked down. In the same time, the expressions of Cht1 and Cht5 decreased significantly while Cht9 increased significantly at 48 h after dsTRE1s injection. In the last, about all of 10 chitinase genes’ expression decreased significantly or extremely significantly after Validamycin injection.【Conclusion】TRE can control the synthesis of chitin through the regulation of chitin metabolic pathways in N. lugens. The results of this study will provide a theoretical basis for developing and screening effective trehalase inhibitors to control N. lugens.
Nilaparvata lugens; RNA interference; trehalase; cuticle; chitin metabolism; quantitative real-time PCR (qRT-PCR)
2016-12-13;接受日期:2017-01-16
國家自然科學(xué)基金(31371996,31672081)、杭州市科技局計劃(20140432B01)
聯(lián)系方式:張露,E-mail:zhanglu_1140@163.com。通信作者唐斌,Tel:0571-28865680;E-mail:tbzm611@163.com