朱媛媛,崔毓桂,冒韻東*
(1.南京醫(yī)科大學,南京 210029;2.南京醫(yī)科大學第一附屬醫(yī)院臨床生殖醫(yī)學中心,南京 210029)
·綜述·
HIF-1α在子宮內(nèi)膜異位癥中的研究進展
朱媛媛1,崔毓桂2,冒韻東2*
(1.南京醫(yī)科大學,南京 210029;2.南京醫(yī)科大學第一附屬醫(yī)院臨床生殖醫(yī)學中心,南京 210029)
子宮內(nèi)膜異位癥(Endometriosis,EMs)是育齡婦女的常見病,但其發(fā)病機制至今仍不清楚。越來越多的證據(jù)表明,低氧與EMs發(fā)生發(fā)展有密切的聯(lián)系。在EMs異位組織中低氧誘導因子-1α(HIF-1α)的表達明顯增高;HIF-1α通過調(diào)節(jié)雌激素產(chǎn)生、血管生成、細胞增殖和炎癥等相關(guān)基因,促進EMs發(fā)展;HIF-1α是EMs有氧糖酵解過程中關(guān)鍵的調(diào)節(jié)因子;抑制HIF-1α的表達有助于抑制EMs的發(fā)生發(fā)展,表明HIF-1α在EMs的病理形成中的作用。本文介紹HIF-1α的研究進展,著重論述其在EMs中的作用。
子宮內(nèi)膜異位癥; 低氧誘導因子-1α; 雌激素; 血管生成; 有氧糖酵解
(JReprodMed2017,26(4):377-381)
子宮內(nèi)膜異位癥(Endometriosis,EMs)是一種復雜的雌激素依賴性疾病,指功能性的子宮腺體和內(nèi)膜出現(xiàn)在子宮腔以外的部位,如卵巢、盆腔腹膜、直腸陰道隔等,并種植生長而產(chǎn)生病變,主要表現(xiàn)為慢性盆腔痛、不孕、痛經(jīng)和性交痛。EMs患者中不孕癥的發(fā)病率是非EMs人群的20倍,是導致不孕的主要因素之一。EMs發(fā)病機制至今尚未完全闡明,主要有經(jīng)血逆流、體腔上皮化生、淋巴及靜脈播散、免疫內(nèi)分泌、遺傳等學說[1]。研究表明,雌激素介導的抗細胞凋亡、促細胞增殖以及增強傷害感受等,可能是EMs形成的一個主要機制[2]。孕激素受體的低表達也能夠抑制細胞凋亡,因此阻斷孕激素受體可能成為EMs的治療靶點[3]。此外,環(huán)氧合酶2(COX-2)、血管生成相關(guān)基因和前列腺素(PG)的高表達與EMs的發(fā)生發(fā)展密切相關(guān)。炎癥、免疫和遺傳易感性等相關(guān)因子在EMs的進展中起著主導作用。由此可見,EMs發(fā)病機理非常復雜,許多未知有待深入研究。
低氧和低氧誘導因子-1α(Hypoxia inducible factor-1α,HIF-1α)在EMs病理形成中的作用,成為當前的研究熱點之一[4]。與正常及在位基質(zhì)細胞相比,異位子宮內(nèi)膜基質(zhì)細胞中HIF-1α的表達明顯增高,而高表達HIF-1α則促進了EMs中血管生成相關(guān)基因的表達。體內(nèi)試驗亦證實,低氧處理可以增加內(nèi)異囊腫的血管生成,從而促進EMs囊腫的生長,抑制HIF-1α的表達,可能有助于治療EMs[5]。本文綜述HIF-1α在EMs發(fā)生發(fā)展中的作用。
研究證實,細胞在低氧的應激作用下,通過改變其轉(zhuǎn)錄活性調(diào)節(jié)細胞的糖酵解、增殖、凋亡和侵襲等過程[6-7]。其中,低氧誘導因子(HIFs)是最關(guān)鍵的調(diào)節(jié)因素。HIFs是由α和β亞基構(gòu)成的異質(zhì)二聚體[8]。HIFs中最具代表性的因子是HIF-1,幾乎各種細胞均有表達。HIF-1由HIF-1α和HIF-1β兩個亞基組成,β亞基不受氧的影響,穩(wěn)定表達于細胞中,參與一系列轉(zhuǎn)錄調(diào)控;α亞基受氧濃度的影響較大,因此HIF-1的活性主要依賴于HIF-1α亞基的活性。
HIF-1α是1995年由Semenza首次定義的,屬于basic helix-loop-helix(bHLH)/Per-Arnt-Sim(PAS)家族蛋白[9]。在常氧條件下,HIF-1α極易降解。脯氨酸羥化酶(PHD)和HIF抑制因子(FIH)最先被氧激活。PHD是一種氧依賴性酶,可以使HIF-1α上ODDD區(qū)域內(nèi)的564位和402位脯氨酸殘基被羥基化,羥化的HIF-1α與腫瘤抑制蛋白(von Hippel-Lindau,pVHL)結(jié)合,募集RBX1、cullin 2、elongin B和elongin C等多種泛素蛋白,共同組成泛素連接蛋白酶復合體,使HIF-1α亞基泛素化,并經(jīng)泛素連接蛋白酶復合體途徑降解[10]。FIH也是氧依賴的酶,可將HIF-1α C端反式激活域TAD-C內(nèi)803位的天冬氨酸殘基羥基化,阻止HIF-1α與轉(zhuǎn)錄輔助激活因子P300/CBP(CREB-binding protein)結(jié)合,從而抑制HIF-1α的轉(zhuǎn)錄激活功能[11];同時,F(xiàn)IH也能與pVHL結(jié)合,募集組蛋白去乙?;?HDACs),進一步抑制HIF-1α的轉(zhuǎn)錄激活功能[12]。在低氧的條件下,PHD和FIH的活性被抑制,HIF-1α不易被降解,導致細胞質(zhì)內(nèi)HIF-1α積聚。HIF-1α C-末端的核定位序列(NLS)輔助胞質(zhì)中HIF-1α蛋白快速與核孔蛋白結(jié)合,介導HIF-1α進入細胞核內(nèi);HIF-1α N-末端的激活域與HIF-1β結(jié)合,形成二聚體后與P300/CBP結(jié)合啟動靶基因的轉(zhuǎn)錄[13]。
HIF-1α能激活多種靶基因的轉(zhuǎn)錄,如血管生成因子、血管表皮生長因子(VEGFA)、糖酵解基因、抑癌基因p53等。細胞增殖相關(guān)的信號通路,如PI3K/AKT/mTOR信號通路,通過調(diào)節(jié)HIF-1α的活性促進腫瘤的發(fā)展,阻斷PI3K/AKT信號通路可以抑制HIF-1α的表達[14]。體外實驗證實,Ras/Raf/MAPK信號通路促使HIF-1α發(fā)生磷酸化作用,通過調(diào)節(jié)p300的活性,促進HIF-1α-p300復合物的形成,進而激活HIF-1α[15]。此外,表觀遺傳修飾,包括microRNAs、DNA甲基化和組蛋白修飾等在HIF-1α的調(diào)控中亦發(fā)揮著一定作用[16]。低氧條件下,表觀遺傳修飾直接抑制了HIF-1α表達,而常氧條件下,通過負性調(diào)節(jié)VHL和PHD維持HIF-1α的活性。
在整個月經(jīng)周期的子宮內(nèi)膜組織中,存在低氧的狀況。子宮內(nèi)膜功能層的腺細胞和基質(zhì)細胞中,分泌期HIF-1α表達開始升高,到月經(jīng)期達最高值[17]。與正常人相比,EMs患者的子宮內(nèi)膜中HIF-1α表達升高,說明HIF-1α在EMs發(fā)生發(fā)展中存在某種作用。對23例(14例EMs,9例卵巢囊腫和子宮肌瘤)患者的子宮內(nèi)膜組織進行免疫組化研究發(fā)現(xiàn),與卵巢囊腫和子宮肌瘤患者相比,EMs患者的異位病灶中HIF-1α的表達顯著升高;與正常人相比,卵巢囊腫和子宮肌瘤患者子宮內(nèi)膜組織中HIF-1α的表達并未明顯增加[18]。EMs患者的在位內(nèi)膜與正常人的內(nèi)膜相比,HIF-1α的表達并無顯著差別。Kato等[19]人發(fā)現(xiàn),細胞核和細胞質(zhì)中的HIF-1α表達與EMs正相關(guān),且在EMs相關(guān)的卵巢透明細胞癌(CCAs)中顯著升高,表明HIF-1α很可能促使EMs發(fā)展成為CCAs。這些研究結(jié)果提示,HIF-1α在EMs發(fā)生發(fā)展中起基礎(chǔ)性作用。
1.HIF-1α與雌激素水平:EMs是一種雌激素依賴性疾病,臨床治療應用促性腺激素釋放激素激動劑(GnRHa)、芳香化酶抑制劑等雌激素合成抑制藥物,或者通過口服避孕藥反饋抑制內(nèi)源性雌激素合成,可有效減輕患者癥狀。EMs異位病灶表現(xiàn)了芳香化酶(P450arom)活性增高及17β-羥類固醇脫氫酶2(17β-HSD2)低表達,使局部雌激素濃度升高,刺激異位病灶前列腺素E2(PGE2)的分泌[20]。如此,PGE2-P450arom-E2之間的自分泌方式的正反饋循環(huán)促進了高濃度雌激素微環(huán)境的形成,有利于異位內(nèi)膜種植生長。
在EMs患者中,高水平的PGE2被認為與EMs引起的慢性盆腔痛有關(guān)[21]。低氧條件下PGE2促進子宮內(nèi)膜的血管生成;PGE2的活化使子宮內(nèi)膜基質(zhì)細胞中雌激素的水平異常升高。研究發(fā)現(xiàn),低氧下的子宮內(nèi)膜基質(zhì)細胞可以誘導ERβ的表達,而HIF-1α的表達下調(diào)則抑制了低氧誘導的ERβ表達,并增加ERα表達,說明EMs中HIF-1α通過不同的ER表達調(diào)節(jié)雌激素水平[22]。膜聯(lián)蛋白A2(ANXA2)是一種雌激素反應蛋白,在EMs中表達增高,過表達的ANXA2通過活化HIF-1α/VEGFA途徑促進EMs的發(fā)展[23]。
2.HIF-1α與血管生成:EMs與血管生成密切相關(guān)。異位組織內(nèi)的新生血管形成,為內(nèi)膜腺體和間質(zhì)種植發(fā)展的基礎(chǔ),并受到多種因素的調(diào)控,其中VEGF增高為主要調(diào)節(jié)因素。有文獻報道,HIF-1α與血管生成因子的表達密切相關(guān),與良性婦科疾病的患者相比,EMs患者的異位組織中VEGF和HIF-1α的表達顯著升高,同時微血管密度(MVD)顯著升高[24]。其中,EMs異位囊腫的外層(由纖維層的成纖維細胞和血管組成)HIF-1α的表達比內(nèi)層(由子宮內(nèi)膜腺體、基質(zhì)細胞和血管組成)更高;與基質(zhì)細胞相比,外層的成纖維細胞中HIF-1α、促血管生成因子和氮氧合酶復合體1(iNOS,eNOS)的表達是增高的,說明異位組織的血管再生主要在卵巢異位囊腫的外層進行[25]。在EMs和卵巢癌中,HIF-1α可以調(diào)節(jié)葡萄糖轉(zhuǎn)運體(Glut1)的表達[26]。研究發(fā)現(xiàn),在EMs和EMs相關(guān)的CCAs中,p-mTOR、Glut1和HIF-1α的表達均升高[19]。EMs中鐵過量和慢性炎癥能夠誘導氧化應激和Akt/MAPK信號通路的激活,進一步促進p-mTOR、HIF-1α及其靶基因Glut1的表達[25]。
在EMs動物模型中發(fā)現(xiàn),異位灶中HIF-1α表達升高促進瘦素的水平,后者促進基質(zhì)細胞增殖和EMs發(fā)展;當在位子宮內(nèi)膜基質(zhì)細胞處于低氧環(huán)境或加入去鐵敏(DFO,化學性低氧)進行培養(yǎng)時,隨著時間的延長細胞中的瘦素表達逐漸增高[18]。異位灶組織的腺上皮和基質(zhì)中環(huán)氧酶2(COX-2)是過度表達的,并與非月經(jīng)期EMs患者的慢性盆腔痛相關(guān),抑制COX-2的表達可以預防EMs的發(fā)生,降低異位病灶的范圍和嚴重程度以及抑制血管再生[27]。研究發(fā)現(xiàn),EMs中HIF-1α能夠通過不同的途徑調(diào)節(jié)COX-2的表達:① HIF-1α引起的孤兒核受體SHP加速可以升高尾型轉(zhuǎn)錄因子1(CDX1)的水平,導致COX-2的表達增高;同時激活了NF-kB信號通路,調(diào)節(jié)EMs的炎癥反應,促進EMs的發(fā)生發(fā)展。② HIF-1α通過上調(diào)miR-20a的水平抑制DUSP2的表達,加強細胞外信號調(diào)節(jié)激酶(ERK)和p38 MAPK的活化作用,增加COX-2的表達,進而促進IL-8調(diào)節(jié)的血管生成,加快EMs的發(fā)生發(fā)展[28]。
3.HIF-1α與有氧糖酵解:EMs具有侵襲行為和易于復發(fā)的特點,類似于腫瘤細胞,故又稱為具有惡性行為的“良性疾病”。與正常細胞相比,惡性腫瘤細胞具有獨特的能量代謝特點,稱為“Warburg效應”[29],又稱有氧糖酵解,其定義為:即使在氧充足的條件下,惡性腫瘤細胞也由有氧磷酸化供能轉(zhuǎn)換為糖酵解作為供能途徑,表現(xiàn)為葡萄糖消耗增加和乳酸產(chǎn)量增多。這一效應為細胞的生長提供了生物需求,從而促進了惡性腫瘤細胞的快速增殖。有研究表明,HIF-1α在此效應中發(fā)揮重要作用。低氧環(huán)境下HIF-1α不斷累積并向核內(nèi)轉(zhuǎn)移,與HIF-1β構(gòu)成異源二聚體,通過與靶基因啟動子序列上的低氧反應元件(Hypoxia response element,HRE)結(jié)合,最終導致下游的靶基因轉(zhuǎn)錄[30]。這些基因可以上調(diào)腫瘤細胞中葡萄糖轉(zhuǎn)運體蛋白(GLUTs)的表達,高表達的GLUT促進更多的葡萄糖進入細胞內(nèi),進一步促進細胞的糖酵解過程。此外,HIF-1α升高會引起糖酵解酶升高[31],增加的糖酵解可以產(chǎn)生很多的丙酮酸,在HIF-1α誘導下通過乳酸脫氫酶(Dehydrogenase A,LDHA)轉(zhuǎn)化為乳酸[32]。而在線粒體內(nèi),由于依賴HIF-1的PDK1的誘導,進入的三羧酸(Tricarboxylic acid,TCA)循環(huán)的丙酮酸大大減少,阻斷了線粒體三羧酸循環(huán)及氧化磷酸化,減少了活性氧的生成,利于細胞的生存。最近的研究顯示,HIF-1α的激活還能影響磷酸戊糖途徑[33],這條途徑能將糖酵解的中間產(chǎn)物轉(zhuǎn)化為合成核苷酸的重要原料5-磷酸核糖。因此,HIF-1α依賴的代謝通路的轉(zhuǎn)換,能促進細胞在低氧下存活,而且HIF-1α將葡萄糖代謝轉(zhuǎn)換成RNA和DNA合成所需的一個步驟,這對于低氧腫瘤細胞的存活和生長有重要意義。Young等[34]發(fā)現(xiàn),在EMs的異位組織中也存在著“Warburg效應”。與常氧相比,低氧條件下內(nèi)異囊腫的HIF-1α表達水平明顯升高,表明HIF-1α在EMs有氧糖酵解中也起同樣的作用。
HIF-1α作為EMs發(fā)生發(fā)展中最重要的調(diào)節(jié)因子之一,通過調(diào)控VEGF的表達和血管生成促進疾病的發(fā)展,因而HIF-1α被認為是治療EMs的潛在新靶點[35]。有研究表明,抑制HIF-1α的表達可以阻滯EMs的發(fā)展。在EMs的小鼠模型中,血管生成抑制劑2-甲氧雌二醇(2-ME)可以抑制HIF-1α及其靶基因的表達,如磷酸甘油酸激酶、Glut1和VEGF。同時,2-ME亦能抑制VEGF誘導的血管滲透性和類似EMs病灶的生長[26]。在EMs的大鼠模型中,抑癌基因WXT通過抑制HIF-1α、VEGF及其受體Flk-1的表達,從而有效地減少異位病灶的范圍,抑制子宮內(nèi)膜細胞的增殖[36]。此外,表觀遺傳學亦參與調(diào)節(jié)EMs中HIF-1α表達。在人子宮內(nèi)膜異位的上皮細胞系中,組蛋白去乙?;?HDAC)通過使HIF-1α降解從而降調(diào)節(jié)VEGF的表達[37]。低氧條件下,miR-199a抑制了HIF-1α/VEGF通路,從而減弱了異位子宮內(nèi)膜基質(zhì)細胞的血管生成能力。
EMs機制中血管生成標記基因與HIF-1α密切相關(guān),而HIF-1α是通過調(diào)節(jié)雌激素產(chǎn)生、血管生成、細胞增殖和炎癥等相關(guān)基因,如ERβ、VEGF、Glut、COX-2和NF-kB,進而促進EMs的發(fā)展。此外,細胞增殖信號通路,如PI3K/AKT和ERK/MAKP信號通路,在HIF-1α誘導的EMs中起著至關(guān)重要的作用。由HIF-1α調(diào)節(jié)的免疫因子IL-8在EMs中也起著重要的作用[38]。
綜上所述,HIF-1α在多種疾病中均起著重要的作用,抑制HIF-1α的這種治療策略已廣泛適用于臨床治療上。最近的研究闡明HIF-1α通過調(diào)節(jié)雌激素產(chǎn)生、血管生成、細胞增殖和炎癥等相關(guān)基因,進而促進EMs發(fā)展。此外,EMs中HIF-1α相關(guān)的治療方法也在探索中,如2-ME,HDAC抑制劑等,主要有助于抑制血管生成。然而,HIF-1α與EMs間具體的作用機制仍是不明確的,抑制HIF-1α的治療策略亦有一定的限制性,進一步探索出EMs中HIF-1α的作用有助于創(chuàng)新EMs的生物學治療。
[1] Augoulea A,Alexandrou A,Creatsa M,et al. Pathogenesis of endometriosis:the role of genetics,inflammation and oxidative stress[J].Arch Gynecol Obstet,2012,286:99-103.
[2] Shao R,Cao S,Wang X,et al. The elusive and controversial roles of estrogen and progesterone receptors in human endometriosis[J].Am J Transl Res,2014,6:104-113.
[3] Bedaiwy MA,Dahoud W,Skomorovska-Prokvolit Y,et al. Abundance and localization of progesterone receptor isoforms in endometrium in women with and without endometriosis and in peritoneal and ovarian endometriotic implants[J].Reprod Sci,2015,22:1153-1161.
[4] Imesch P,Samartzis EP,Schneider M,et al. Inhibition of transcription,expression,and secretion of the vascular epithelial growth factor in human epithelial endometriotic cells by romidepsin[J].Fertil Steril,2011,95:1579-1583.
[5] Lu Z,Zhang W,Jiang S,et al. Effect of oxygen tensions on the proliferation and angiogenesis of endometriosis heterograft in severe combined immunodeficiency mice[J]. Fertil Steril,2014,101:568-576.
[6] Zhang M,Zhang W,Wu Z,et al. Artemin is hypoxia responsive and promotes oncogenicity and increased tumor initiating capacity in hepatocellular carcinoma[J].Oncotarget,2016,7:3267-3282.
[7] Liu Z,Sun Y,Tan S,et al. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells[J].Tumour Biol,2016,37:6661-6671.
[8] Sch?del J,Grampp S,Maher ER,et al. Hypoxia,hypoxia-inducible transcription factors,and renal cancer[J].Eur Urol,2016,69:646-657.
[9] Wang GL,Jiang BH,Rue EA,et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension[J].Proc Natl Acad Sci U S A,1995,92:5510-5514.
[10] Semenza GL.Regulation of cancer cell metabolism by hypoxia-inducible factor1[J].Semin Cancer Biol,2009,19:12-16.
[11] Hewitson KS,McNeill LA,Riordan MV,et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family[J].J Biol Chem,2002,277:26351-26355.
[12] Mahon PC,Hirota K,Semenza GL. FIH-1:a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity[J].Genes Dev,2001,15:2675-2686.
[13] Lendahl U,Lee KL,Yang H,et al. Generating specificity and diversity in the transcriptional response to hypoxia[J]. Nat Rev Genet,2009,10:821-832.
[14] Miyasaka A,Oda K,Ikeda Y,et al.PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer[J].Gynecol Oncol,2015,138:174-180.
[15] Sang N,Stiehl DP,Bohensky J,et al. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300[J].J Biol Chem,2003,278:14013-14019.
[16] Nangaku M,Inagi R,Mimura I,et al. Epigenetic changes induced by hypoxia-inducible factor:a long way still to go as a target for therapy?[J].J Am Soc Nephrol,2015,26:1478-1480.
[17] Critchley HO,Osei J,Henderson TA,et al. Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2)[J].Endocrinology,2006,147:744-753.
[18] Wu MH,Chen KF,Lin SC,et al. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha[J].Am J Pathol,2007,170:590-598.
[19] Kato M,Yamamoto S,Takano M,et al. Aberrant expression of the mammalian target of rapamycin,hypoxia-inducible factor-1α,and glucose transporter 1 in the development of ovarian clear-cell adenocarcinoma[J].Int J Gynecol Pathol,2012,31:254-263.
[20] Zheng J,Qi XC,Cui YG. Local high estrogen and endometriosis[J]. J Int Reprod Health/Fam Plan,2013,32:132-135.
[21] Wu MH,Lin SC,Hsiao KY,et al. Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression[J].J Pathol,2011,225:390-400.
[22] Wu MH,Lu CW,Chang FM,et al. Estrogen receptor expression affected by hypoxia inducible factor-1α in stromal cells from patients with endometriosis[J].Taiwan J Obstet Gynecol,2012,51:50-54.
[23] Zhou S,Yi T,Liu R,et al. Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis[J].Mol Cell Proteomics,2012,11:M112.017988.
[24] Goteri G,Lucarini G,Montik N,et al. Expression of vascular endothelial growth factor(VEGF),hypoxia inducible factor-1alpha (HIF-1alpha),and microvessel density in endometrial tissue in women with adenomyosis[J].Int J Gynecol Pathol,2009,28:157-163.
[25] Goteri G,Lucarini G,Zizzi A,et al. Proangiogenetic molecules,hypoxia-inducible factor-1alpha and nitric oxide synthase isoforms in ovarian endometriotic cysts[J].Virchows Arch,2010,456:703-710.
[26] Semaan A,Munkarah AR,Arabi H,et al. Expression of GLUT-1 in epithelial ovarian carcinoma:correlation with tumor cell proliferation,angiogenesis,survival and ability to predict optimal cytoreduction[J].Gynecol Oncol,2011,121:181-186.
[27] Kim KH,Kim HY,Kim HH,et al. Hypoxia induces expression of COX-2 through the homeodomain transcription factor CDX1 and orphan nuclear receptor SHP in human endometrial cells[J].Mol Hum Reprod,2011,17:710-719.
[28] Hsiao KY,Chang N,Lin SC,et al. Inhibition of dual specificity phosphatase-2 by hypoxia promotes interleukin-8-mediated angiogenesis in endometriosis[J].Hum Reprod,2014,29:2747-2755.
[29] Vander Heiden MG,Cantley LC,Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J].Science,2009,324:1029-1033.
[30] Courtnay R,Ngo DC,Malik N,et al. Cancer metabolism and the Warburg effect:the role of HIF-1 and PI3K[J]. Mol Biol Rep,2015,42:841-851.
[31] Kim JW,Tchernyshyov I,Semenza GL,et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase:a metabolic switch required for cellular adaptation to hypoxia[J].Cell Metab,2006,3:177-185.
[32] Denko NC. Hypoxia,HIF1 and glucose metabolism in the solid tumour[J].Nat Rev Cancer,2008,8:705-713.
[33] Zhao F,Mancuso A,Bui TV,et al. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming[J].Oncogene,2010,29:2962-2972.
[34] Young VJ,Brown JK,Maybin J,et al. Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis[J]. J Clin Endocrinol Metab,2014,99:3450-3459.
[35] Masoud GN,Wang J,Chen J,et al. Design,synthesis and biological evaluation of novel HIF1α inhibitors[J].Anticancer Res,2015,35:3849-3859.
[36] Zhang ZZ,Hu CP,Tang WW,et al. Wenshen Xiaozheng Tang suppresses the growth of endometriosis with an antiangiogenic effect [J]. Climacteric,2013,16:700-708.
[37] Imesch P,Samartzis EP,Schneider M,et al. Inhibition of transcription,expression,and secretion of the vascular epithelial growth factor in human epithelial endometriotic cells by romidepsin[J].Fertil Steril,2011,95:1579-1583.
[38] Luo XZ,Zhou WJ,Tao Y,et al.TLR4 activation promotes the secretion of IL-8 which enhances the invasion and proliferation of endometrial stromal cells in an autocrine manner via the FAK signal pathway[J].Am J Reprod Immunol,2015,74:467-479.
[編輯:辛玲]
Research progress of HIF-1α in endometriosis
ZHUYuan-yuan1,CUIYu-gui2,MAOYun-dong2*
1.NanjingMedicalUniversity,Nanjing210029 2.ClinicalCenterofReproductiveMedicine,theFirstAffiliatedHospitalofNanjingMedicalUniversity,Nanjing210029
Endometriosis (EMs) is a common gynecologic disorder affecting 10-15% of women in reproductive age. However,the underlying etiology of the disease is still poorly understood. In recent years,a growing body of evidence validated that hypoxia developed a close relationship with EMs,and the expression of hypoxia inducible factor-1alpha (HIF-1α) was significantly increased in development of EMs. HIF-1α contributed to endometriosis by regulating the genes which were essential to estrogen production,angiogenesis,proliferation and inflammation. In addition,HIF-1α is a key regulator in the process of aerobic glycolysis in EMs. Furthermore,inhibition of the expression of HIF-1α contributed to suppress EMs progression,suggesting HIF-1α plays a critical function in EMs. This paper reviews the research progress of HIF-1α and its role in endometriosis.
Endometriosis; HIF-1α; Estrogen; Angiogenesis; Aerobic glycolysis
10.3969/j.issn.1004-3845.2017.04.018
2016-07-31;
2016-09-18
國家自然科學基金(81200424);江蘇省衛(wèi)生廳婦幼保健重點學科(FXK201221);江蘇省婦幼保健重點人才(FRC201215);江蘇省科技廳臨床醫(yī)學科技專項(BL2012009)
朱媛媛,女,江蘇鹽城人,碩士,生殖醫(yī)學專業(yè).(*
,Email:drmaoyd@aliyun.com)