徐龍華,方國臻,王碩
(天津科技大學(xué)食品工程與生物技術(shù)學(xué)院食品營養(yǎng)與安全教育部重點(diǎn)實(shí)驗(yàn)室,天津300457)
碳點(diǎn)熒光探針在食品檢測中的應(yīng)用
徐龍華,方國臻,王碩*
(天津科技大學(xué)食品工程與生物技術(shù)學(xué)院食品營養(yǎng)與安全教育部重點(diǎn)實(shí)驗(yàn)室,天津300457)
碳點(diǎn)作為一種新興的碳納米材料,由于其獨(dú)特的光電學(xué)特性、量子尺寸效應(yīng)、低毒性、良好的生物相容性,一經(jīng)發(fā)現(xiàn)便引起了人們的廣泛關(guān)注,并成為材料物理及化學(xué)界的研究熱點(diǎn),在傳感、成像、分析檢測、催化等領(lǐng)域表現(xiàn)出很好的應(yīng)用潛力。概述了碳點(diǎn)的研究進(jìn)展,介紹了其光學(xué)特性及在食品檢測中的應(yīng)用,總結(jié)了其發(fā)展過程中存在的問題,并對其未來發(fā)展前景進(jìn)行了展望。
碳點(diǎn);熒光;食品檢測
20世紀(jì)末,隨著納米科學(xué)的發(fā)展,各種新型的碳納米材料不斷涌現(xiàn),繼零維的富勒烯、一維碳納米管、二維的石墨烯之后,2004年南卡羅萊納大學(xué)Xu等[1]在用電泳法純化單壁碳納米管時(shí)偶然間發(fā)現(xiàn)了一種能在紫外燈照射下發(fā)光的碳納米顆粒,通過進(jìn)一步分離得到了可以發(fā)射不同顏色(藍(lán)綠色、黃色和橙色)熒光的納米粒子。此后,2006年克萊蒙森大學(xué)的Sun等[2]第一次用激光刻蝕碳靶的方法制備出碳納米顆粒,后經(jīng)酸氧化或表面鈍化制備出可以發(fā)熒光的碳納米粒子,并首次命名為“碳點(diǎn)”。碳點(diǎn)以其獨(dú)特的光電學(xué)特性、低毒性、生物相容性,引起了化學(xué)、材料學(xué)、生物學(xué)等領(lǐng)域科學(xué)家的極大研究興趣。經(jīng)過短短十幾年的發(fā)展,碳點(diǎn)從合成方法到應(yīng)用都取得了不菲的成績,本文就碳點(diǎn)的發(fā)光性能及其作為熒光探針在傳感檢測中的應(yīng)用及發(fā)展趨勢進(jìn)行綜述。
碳點(diǎn)(Carbondots,簡稱CDs),是指尺寸小于10nm,具有準(zhǔn)球形的微觀結(jié)構(gòu),能穩(wěn)定發(fā)光的一類碳納米顆粒[3]。碳點(diǎn)由中心的碳質(zhì)核心和表面鈍化基團(tuán)兩部分組成。碳質(zhì)核心是由sp2或sp3雜化碳構(gòu)成的具有單層或多層的石墨晶結(jié)構(gòu)或是由無定型碳構(gòu)成的具有類似聚合物類的聚集顆粒。根據(jù)碳質(zhì)核心的組成不同,碳點(diǎn)又分為石墨烯量子點(diǎn)、碳納米點(diǎn)及聚合物點(diǎn)3類。碳點(diǎn),其粒徑非常小,比表面積非常大,表面相原子常出現(xiàn)配位不足,從而導(dǎo)致不飽和鍵和懸鍵增多,碳點(diǎn)表面原子具有很高的活性,極不穩(wěn)定,容易與其它原子或基團(tuán)相連接。因此,如果實(shí)驗(yàn)中不額外引入其他修飾劑/鈍化劑的情況下,直接制備的碳點(diǎn)表面修飾基團(tuán)主要有羧基、羥基。
光致發(fā)光是碳點(diǎn)最迷人的特性之一,它具有如下特點(diǎn):
1)發(fā)光具有激發(fā)波長和尺寸依賴性,即發(fā)射波長的位置及強(qiáng)度會(huì)隨著激發(fā)波長的變化而變化,一般隨著激發(fā)波長的增加,最大發(fā)射波長會(huì)出現(xiàn)紅移,且伴隨著半峰寬增大,熒光強(qiáng)度降低,這與量子效應(yīng)和表面能量陷阱有關(guān)[4]。
2)激發(fā)光譜寬且連續(xù),與傳統(tǒng)的有機(jī)熒光試劑相對很窄的激發(fā)不同,碳點(diǎn)的激發(fā)光譜可以從紫外-可見一直延伸到近紅外區(qū),易于實(shí)現(xiàn)多色檢測,同時(shí)還具有一元激發(fā)、多元發(fā)射的優(yōu)點(diǎn)。
3)光穩(wěn)定性高、具有抗光漂白能力同時(shí)無光閃爍現(xiàn)象[5-7]。即使在持續(xù)激發(fā)光照射下或是連續(xù)激發(fā)幾個(gè)小時(shí)后,碳點(diǎn)的熒光強(qiáng)度也基本不會(huì)發(fā)生明顯變化,然而其他熒光材料(如聚苯乙烯納米微球)照射幾分鐘便可發(fā)生光漂白,碳點(diǎn)在激光共聚焦顯微鏡下觀察其熒光發(fā)射沒有光閃爍現(xiàn)象,很好的克服了有機(jī)染料熒光不穩(wěn)定、有光漂白和光衰減較快的缺點(diǎn),同時(shí)避免了半導(dǎo)體量子點(diǎn)發(fā)射熒光的閃爍現(xiàn)象,因此碳點(diǎn)有望成為替代熒光染料和傳統(tǒng)半導(dǎo)體量子點(diǎn)的理想熒光材料,可適用于熒光檢測、長期實(shí)時(shí)熒光成像及單分子跟蹤等。
4)碳點(diǎn)發(fā)光具有pH依賴性,體系的pH值也會(huì)影響碳點(diǎn)的發(fā)光性能。Pan等[8]人的報(bào)道顯示碳點(diǎn)在堿性條件下熒光強(qiáng)度大,酸性條件熒光幾乎全部淬滅,且在1~13的pH范圍內(nèi)這種變化是可逆的,其原因是制備的碳點(diǎn)為基于邊緣卡賓結(jié)構(gòu)的三重態(tài)發(fā)光,pH值的變化會(huì)使卡賓結(jié)構(gòu)鋸齒點(diǎn)得失質(zhì)子,從而影響其熒光發(fā)射;而Shen等[9]人則報(bào)道了碳點(diǎn)pH依賴行為的另一種表現(xiàn),即熒光強(qiáng)度在pH中性環(huán)境中最強(qiáng),隨著pH的增加或是降低,熒光強(qiáng)度均出現(xiàn)下降。
5)碳點(diǎn)可以發(fā)磷光。近期研究表明與半導(dǎo)體量子點(diǎn)相似,碳點(diǎn)也具有除熒光外的室溫磷光發(fā)射模式。Deng[10]等將制備的水溶性碳點(diǎn)分散在聚乙烯醇中,在室溫條件下用紫外燈激發(fā)后,可以觀察到明亮的磷光,其磷光壽命可以延長至次秒級(jí),初步研究認(rèn)為碳點(diǎn)的磷光來源其表面芳香族羰基的三重激發(fā)態(tài)。而PVA作為基質(zhì),可以通過氫鍵綁定作用固定芳香族基團(tuán),避免其振動(dòng)或是旋轉(zhuǎn)造成三重激發(fā)態(tài)能量的損失,因此要想獲得磷光,選擇合適的背景基質(zhì)是很重要的。
6)碳點(diǎn)具有上轉(zhuǎn)換發(fā)光特性。一般情況下碳點(diǎn)的發(fā)光符合斯托克斯定律,即短波長激發(fā)、長波長發(fā)射,但某些特殊情況下制備得到的碳點(diǎn)會(huì)在長波長激發(fā)而發(fā)射比激發(fā)波長短的熒光,稱為上轉(zhuǎn)換發(fā)光,也稱反斯托克斯發(fā)光。而由于長波長的激發(fā)光(如近紅外區(qū)NIR)組織穿透能力強(qiáng),用于分子成像具有高的空間分辨率、背景干擾低,在生物組織樣品檢測及生物成像等領(lǐng)域有其獨(dú)特的優(yōu)勢[11]。
隨著對研究的廣泛深入,碳點(diǎn)的化學(xué)發(fā)光性質(zhì)和電化學(xué)發(fā)光性質(zhì)也被發(fā)掘,這些優(yōu)異的光學(xué)性能為碳點(diǎn)在分析檢測領(lǐng)域的應(yīng)用奠定了更加堅(jiān)實(shí)的基礎(chǔ)。
碳點(diǎn)熒光穩(wěn)定性高、抗光漂白能力強(qiáng)、發(fā)射光可調(diào)等優(yōu)點(diǎn),通過調(diào)節(jié)表面的功能基團(tuán),可以達(dá)到對特定目標(biāo)物選擇性熒光響應(yīng),另外由于本身為納米材料容易實(shí)現(xiàn)在體系中的分散,因此常被作為熒光探針應(yīng)用于食品中各類金屬離子、陰離子、小分子的傳感檢測,具有選擇性好、靈敏度高的優(yōu)點(diǎn)。
3.1 金屬離子及陰離子傳感
碳點(diǎn)熒光探針已經(jīng)被廣泛應(yīng)用于金屬離子Hg2+[12-13]、Fe3+[14-17]、Cu2+[18-19]、Zn2+[20]、Al3+[21]、Ag+[22-23]、K+[24]、Be2+[25]等的檢測。
汞(II)離子,是一種具有高毒性的重金屬離子,它可以對神經(jīng)中樞系統(tǒng)、消化系統(tǒng)及內(nèi)臟產(chǎn)生毒害作用,因此對汞的檢測具有十分重要的意義。Goncalves等[26]構(gòu)建了碳點(diǎn)光纖傳感器,用于水基質(zhì)中汞離子的檢測。首先用激光刻蝕碳靶得到了沒有熒光發(fā)射的碳納米顆粒,后經(jīng)過聚乙二醇(PEG200)和N-乙酰-L-半胱氨酸(NAC)修飾制備了能發(fā)藍(lán)色熒光的碳點(diǎn),并將其固定在溶膠-凝膠膜中。利用Hg2+可以與碳點(diǎn)相互作用形成穩(wěn)定的非熒光復(fù)合物,從而使碳點(diǎn)的熒光產(chǎn)生靜態(tài)猝滅(猝滅常數(shù)為1.3×105mol/L),實(shí)現(xiàn)對水中Hg2+的熒光傳感檢測,檢出限為μmol/L級(jí),該檢測器可重復(fù)使用,傳感性能穩(wěn)定。為了進(jìn)一步提高檢測的靈敏度,Barman等[27]在熒光探針中摻雜氮元素,N-CDs表面-CN基團(tuán)的存在大大增加了探針與Hg2+離子的相互作用,使該體系的靜態(tài)猝滅猝滅常數(shù)為1.4×107mol/L比之前提高兩個(gè)數(shù)量級(jí),檢測靈敏度提高到nmol/L;在該體系中加入I-,可以和Hg2+形成HgI2,使探針的熒光恢復(fù),構(gòu)建“ON-OFF-ON”型熒光探針,實(shí)現(xiàn)水介質(zhì)中Hg2+和I-離子的檢測。
Cui等[28]開發(fā)能用于復(fù)雜基質(zhì)樣品中Hg2+檢測的方法,用碳點(diǎn)標(biāo)記核苷酸形成能發(fā)熒光的復(fù)合物(ODN-CDs),氧化石墨烯可以與該復(fù)合物之間形成熒光共振能量轉(zhuǎn)移作用從而使體系的熒光猝滅,而Hg2+的存在可以與ODN-CDs結(jié)合形成T-Hg2+-T,從而使ODN-CDs的熒光恢復(fù)。該方法的線性范圍為5nmol/L~200 nmol/L(R2=0.974),檢出限為2.6 nmol/L,并將該方法用于柑橘葉中Hg2+的檢測,檢測結(jié)果與原子熒光光譜結(jié)果相吻合,添加回收率在94.68%~109.8%之間。
碳點(diǎn)對其他離子傳感檢測過程與Hg2+相似,基于金屬離子對碳點(diǎn)熒光的猝滅行為。Qu等[29]通過水熱法處理多巴胺得到粒徑為3 nm~5 nm、熒光量子產(chǎn)率為6.4%的碳點(diǎn),將此作為熒光探針用于Fe3+離子和多巴胺的免標(biāo)記、高靈敏度、高選擇性檢測。其原理為碳點(diǎn)表面的鄰苯二酚基團(tuán)可以被Fe3+氧化為醌基,使碳點(diǎn)的熒光猝滅,對Fe3+的檢出限為0.32 μmol/L;而在碳點(diǎn)-Fe3+體系中加入多巴胺后,多巴胺與Fe3+的結(jié)合能力強(qiáng)于碳點(diǎn),從而碳點(diǎn)的熒光恢復(fù),形成對多巴胺的“turn-on”型探針,其檢測限為68 nmol/L。該傳感平臺(tái)對Fe3+離子和多巴胺表現(xiàn)出高的選擇性和靈敏度相對于其他金屬離子或是多巴胺的類似物,它為Fe3+離子和多巴胺的快速檢測(10 min)提供了方便的途徑,同時(shí)不需要對碳點(diǎn)進(jìn)行任何化學(xué)改性或修飾,具有操作簡便、檢測成本低、對環(huán)境友好的特點(diǎn)。
Liu等[30]將賴氨酸及牛血清蛋白修飾后的碳點(diǎn)(CDs-BSA-Lys)用于水樣(如自來水)中Cu2+的選擇性傳感檢測。通過利用Cu2+與CDs-BSA-Lys中-COOH和-NH2基團(tuán)的配位反應(yīng)實(shí)現(xiàn)了對Cu2+的高靈敏傳感檢測。為了進(jìn)一步提高分析靈敏度,除了在碳點(diǎn)表面修飾各種有機(jī)聚合物外,還在體系中引入了金屬有機(jī)框架和硅納米顆粒。Lin等[31]將聚乙烯亞胺(BPEI)改性的碳點(diǎn)嵌入ZIF-8金屬框架中合成CD-ZIF-8復(fù)合探針,將碳點(diǎn)強(qiáng)熒光特性與ZIF-8對目標(biāo)物的選擇性富集作用相結(jié)合,實(shí)現(xiàn)了對Cu2+超靈敏檢測,檢出限低至80 pmol/L。
與此同時(shí),各種陰離子熒光探針也被合成,用于PO43-[32]、NO2-[33]、F-[34]、S2-[35]、ClO-[36]、C2O42-[37]、HClO-[38]、CN-[39]、O2-[40]等離子的傳感檢測。與金屬離子檢測不同,大多數(shù)陽離子的檢測是基于其本身對已經(jīng)猝滅的碳點(diǎn)-金屬離子復(fù)合體系的熒光增強(qiáng)(或熒光恢復(fù))來實(shí)現(xiàn)的。例如,Du等[41]基于I-的存在可以使碳點(diǎn)-Hg2+的復(fù)合體系熒光恢復(fù),從而設(shè)計(jì)了可用于I-檢測的“turnon”型熒光探針。
3.2 小分子及藥物傳感
碳點(diǎn)熒光傳感體系以其高靈敏度和對目標(biāo)分析物固有的選擇性,可以應(yīng)用于小分子物質(zhì)及藥物的傳感檢測。
三聚氰胺化學(xué)式C3N3(NH2)3,俗稱蛋白精,是一種三嗪類含氮雜環(huán)有機(jī)化合物,被用作化工原料,由于高的含氮量會(huì)被違法添加到奶及制品,達(dá)到提高虛擬蛋白質(zhì)含量水平。Dai等[42]利用碳點(diǎn)與金納米顆粒之間存在熒光共振能量轉(zhuǎn)移從而能使碳點(diǎn)的熒光猝滅,而三聚氰胺的存在會(huì)與碳點(diǎn)競爭作用,阻止碳點(diǎn)與金納米顆粒之間的能量轉(zhuǎn)移,從而使體系的熒光恢復(fù),構(gòu)建了可用于奶及奶粉中三聚氰胺檢測的熒光探針,該方法的檢出限為36 nmol/L,對兩種樣品在200、400 nmol/L兩個(gè)水平下的添加回收率為90.475%~11.35%,該方法具有較高的穩(wěn)定性和準(zhǔn)確性。
同樣基于熒光共振能量轉(zhuǎn)移原理,Yu等[43]等構(gòu)建了碳點(diǎn)-萘二甲酰亞胺疊氮衍生物比率型熒光探針用于水、血清以及活細(xì)胞內(nèi)H2S的檢測。在此傳感體系內(nèi),熒光探針會(huì)被H2S還原會(huì)成為電子受體(萘二甲酰亞胺–胺),相應(yīng)的會(huì)在425 nm處出現(xiàn)吸收峰,而在526 nm處有熒光發(fā)射峰。將熒光發(fā)射強(qiáng)度比(I526/I425)對H2S濃度作圖來繪制工作曲線。可以看出,在沒有H2S存在時(shí),碳點(diǎn)在340 nm處激發(fā),發(fā)射峰位于425 nm;隨著H2S的加入,碳點(diǎn)在425 nm處的發(fā)射強(qiáng)度逐漸降低,并在526 nm處出現(xiàn)新的發(fā)射峰對應(yīng)萘二甲酰亞胺-胺的熒光。當(dāng)H2S存在時(shí),碳點(diǎn)探針(萘二甲酰亞胺-疊氮化物)被還原為能量受體(萘二甲酰亞胺–胺)熒光比率(I526/I425)隨著H2S濃度的增加而增大。H2S的加入會(huì)使體系的熒光變?yōu)榇渚G色,從而可以實(shí)現(xiàn)肉眼判別。通過調(diào)節(jié)探針濃度,該方法的檢出限低至10 nmol/L,是目前所有H2S熒光探針中檢出限最低的。
碳點(diǎn)熒光探針還可用于四環(huán)素[44]、過氧化氫[45]、2,2-二硝基苯酚[46]、三硝基苯酚[47]、阿莫西林[48]等小分子物質(zhì)的傳感檢測。
此外,碳點(diǎn)的電化學(xué)發(fā)光特性也可用于小分子物質(zhì)的傳感檢測。Yang等[49]基于S2O82-作為共反應(yīng)劑存在時(shí),碳點(diǎn)和分析物五氯酚之間的電化學(xué)發(fā)光行為,引入具有超高電子傳遞速率的石墨烯,構(gòu)建了可用五氯酚檢測的超靈敏度探針,該方法靈敏度可以達(dá)到1.0× 10-12mol/L,線性范圍為1.0×10-12mol/L~1.0×10-8mol/L,應(yīng)用于實(shí)際水樣的檢測具有較高的回收率,且該傳感器對環(huán)境友好、可重復(fù)使用。
碳點(diǎn),作為新型的碳納米材料,具有熒光穩(wěn)定性高、抗光漂白能力強(qiáng)、生物相容性好、化學(xué)穩(wěn)定性高、易于制備等優(yōu)點(diǎn),有望作為半導(dǎo)體量子點(diǎn)的優(yōu)良替代品應(yīng)用于更廣闊的領(lǐng)域。然而,與半導(dǎo)體量子點(diǎn)相比較,碳點(diǎn)的熒光量子產(chǎn)率還較低,碳點(diǎn)的發(fā)光機(jī)理還有待更深入的研究。碳點(diǎn)在熒光檢測中的靈敏度和抗干擾能力有待進(jìn)一步提升。在未來工作中,可以開發(fā)具有上轉(zhuǎn)換特性的碳點(diǎn),滿足生物組織樣品檢測的需求;可以通過引入其他材料,如金屬有機(jī)框架、分子印跡聚合物,進(jìn)一步提高熒光探針的選擇性和靈敏度。
[1]Xu X,Ray R,Gu Y,et al.Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J].Journal of the American Chemical Society,2004,126(40):12736-12737
[2]Sun Y P,Zhou B,Lin Y,et al.Quantum-sized carbon dots for bright and colorful photoluminescence[J].Journal of the American Chemical Society,2006,128(24):7756-7757
[3]羅培輝.碳量子點(diǎn)的化學(xué)修飾及功能化研究[D].北京:清華大學(xué), 2013
[4]Cao L,Meziani M J,Sahu S,et al.Photoluminescence properties of graphene versus other carbon nanomaterials[J].Accounts of Chemical Research,2013,46(1):171-180
[5]Peng H,Travas-Sejdic J.Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J].Chemistry of Materials, 2009,21(23):5563-5565
[6]Li H,He X,Kang Z,et al.Water-soluble fluorescent carbon quantum dots and photocatalyst design[J].Angewandte Chemie,2010,49 (26):4430-4434
[7]Wu X,Tian F,Wang W,et al.Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing[J].Journal of Materials Chemistry C,2013,1 (31):4676-4684
[8]Pan D,Zhang J,Li Z,et al.Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J].Advanced Materials,2010,22(6):734-738
[9]Deng Y,Zhao D,Chen X,et al.Long lifetime pure organic phosphorescence based on water soluble carbon dots[J].Chemical Communications,2013,49(51):5751-5753
[10]Shen J,Zhu Y,Chen C,et al.Facile preparation and upconversion luminescence of graphene quantum dots[J].Chemical Communications,2011,47(9):2580-2582
[11]Cao L,Wang X,Meziani MJ,et al.Carbon dots for multiphoton bioimaging[J].Journal of the American Chemical Society,2007,129 (37):11318-11319
[12]Zhang R,Chen W.Nitrogen-doped carbon quantum dots:facile synthesis and application as a“turn-off”fluorescent probe for detection of Hg2+ions[J].Biosensors and Bioelectronic,2014,55:83-90
[13]Guo Y,Wang Z,Shao H,et al.Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions[J].Carbon,2013,52:583-589
[14]Liu Y,Xiao N,Gong N,et al.One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes[J]. Carbon,2014,68:258-264
[15]Yang X,Zhuo Y,Zhu S,et al.Novel and green synthesis of highfluorescent carbon dots originated from honey for sensing and imaging[J].Biosensors and Bioelectronics,2014,60:292-298
[16]Qu S,Chen H,Zheng X,et al.Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities[J].Nanoscale,2013,5(12):5514-5518
[17]Zhu S,Meng Q,Wang L,et al.Highly photoluminescent carbon dots for multicolor patterning,sensors,and bioimaging[J].Angewandte Chemie,2013,52(14):3953-3957
[18]Zhao A,Zhao C,Li M,et al.Ionic liquids as precursors for highly luminescent,surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+and cell imaging[J].Analytica Chimica Acta,2014,809:128-133
[19]Liu Y,Zhao Y,Zhang Y.One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II)ion detection[J]. Sensors and Actuators B:Chemical,2014,196:647-652
[20]Dong Y,Wang R,Li H,et al.Polyamine-functionalized carbon quantum dots for chemical sensing[J].Carbon,2012,50(8):2810-2815
[21]Zou Y,Yan F,Dai L,et al.High photoluminescent carbon nanodots and quercetin-Al3+construct a ratiometric fluorescent sensing system[J].Carbon,2014,77:1148-1156
[22]Shen L,Chen M,Hu L,et al.Growth and stabilization of silver nanoparticles on carbon dots and sensing application[J].Langmuir, 2013,29(52):16135-16140
[23]Algarra M,Campos B B,RadotiK,et al.Luminescent carbon nanoparticles:effects of chemical functionalization,and evaluation of Ag+sensing properties[J].Journal of Materials Chemistry A,2014, 2(22):8342-8351
[24]Wei W,Xu C,Ren J,et al.Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene[J].Chemical Communications,2012,48 (9):1284-1286
[25]Li X,Zhang S,Kulinich S A,et al.Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+detection[J].Scientific Reports,2014, 4:4976-4981
[26]Goncalves H M,Duarte A J,Esteves da Silva J C.Optical fiber sensor for Hg(II)based on carbon dots[J].Biosensors and Bioelectronics,2010,26(4):1302-1306
[27]Barman S,Sadhukhana M.Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media[J].Journal of Materials Chemistry,2012,22,21832-21837
[28]Cui X,Zhu L,Wu J,et al.A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury(II)detection[J].Biosensors and Bioelectronics,2015,63:506-512
[29]Qu K,Wang J,Ren J,et al.Carbon dots prepared by hydrothermaltreatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III)ions and dopamine[J].Chemistry,2013,19(22):7243-7249
[30]Liu JM,Lin L,Wang XX,et al.Highly selective and sensitive detection of Cu2+with lysine enhancing bovine serum albumin modifiedcarbon dots fluorescent probe[J].Analyst,2012,137,2637-2642
[31]Lin X,Gao G,Zheng L,et al.Encapsulation of strongly fluorescent carbon quantum dots in metal–organic frameworks for enhancing chemical sensing[J].Analytical Chemistry,2014,86(2):1223-1228
[32]Zhao H X,Liu L Q,Liu Z D,et al.Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots[J].Chemical Communications,2011,47:2604-2606
[33]Lin Z,Xue W,Chen H,et al.Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing[J].Analytical Chemistry,2011,83(21):8245-8251
[34]Liu J M,Lin L,Wang X X,et al.Zr(H2O)2EDTA modulated luminescent carbon dots as fluorescent probes for fluoride detection[J].Analyst,2013,138:278-283
[35]Hou X,Zeng F,Du F,et al.Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells[J].Nanotechnology,2013,24:335502-335510
[36]Yin B,Deng J,Peng X,et al.Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay[J].Analyst,2013,138:6551-6557
[37]Zhang S,Wang Q,Tian G,et al.A fluorescent turn-off/on method for detection of Cu2+and oxalate using carbon dots as fluorescent probes in aqueous solution[J].Materials Letters,2014,115:233-236
[38]Huang Z,Lin F,Hu M,et al.Carbon dots with tunable emission, controllable size and their application for sensing hypochlorous acid [J].Journal of Luminescence,2014,151:100-105
[39]Dong Y,Wang R,Tian W,et al.“Turn-on”fluorescent detection of cyanide based on polyamine-functionalized carbon quantum dots[J]. RSC Advances,2014,4:3701-3705
[40]Gao X,Ding C,Zhu A,et al.Carbon-dot-based ratiometric fluorescent probe for imaging and biosensing of superoxide anion in live cells[J].Analytical Chemistry,2014,86(14):7071-7078
[41]Du F,Zeng F,Ming Y,et al.Carbon dots-based fluorescent probes for sensitive and selective detection of iodide[J].Microchimica Acta, 2013,180(5/6):453-460
[42]Dai H C,Shi Y,Wang YL,et al.A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer[J]. Sensors and Actuators B:Chemical,2014,202:201-208
[43]Yu C,Li X,Zeng F,et al Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells[J].Chemical Communications,2013,49:403-405
[44]Yang X,Luo Y,Zhu S,et al.One-pot synthesis of high fluorescent carbon nanoparticles and their applications as probes for detection of tetracyclines[J].Biosensors and Bioelectronics,2014,56:6-11
[45]Song Y,Zhu S,Xiang S,et al.Investigation into the fluorescence quenching behaviors and applications of carbon dots[J].Nanoscale, 2014,6(9):4676-4682
[46]Cayuela A,Soriano M L,Valcárcel M.Strong luminescence of carbon dots induced by acetone passivation:efficient sensor for a rapid analysis of two different pollutants[J].Analytica Chimica Acta,2013, 804:246-251
[47]Sk MP,Chattopadhyay A.Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor[J].RSC Advances,2014,4(60):31994-31999
[48]Niu J,Gao H.Synthesis and drug detection performance of nitrogendoped carbon dots[J].Journal of Luminescence,2014,149:159-162
[49]Yang S,Liang J,Luo S,et al.Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene[J].Analytical Chemistry,2013,85(16):7720-7725
Applications of Fluorescent Carbon Dots Probes in Food Detection
XU Long-hua,F(xiàn)ANG Guo-zhen,WANG Shuo*
(Key Laboratory of Food Nutrition and Safety,Ministry of Education,College of Food Engineering and Biotechnology,Tianjin University of Science&Technology,Tianjin 300457,China)
Carbon dots as an emerging carbon nanomaterials,due to its special optical and electronic properties,quantum size effect,low toxicity and good biocompatibility,since their initial discovery,have attracted considerable attention,became a hotspot of the materials,physics and chemistry,and showed good potential application in many areas such as sensing,imaging,analysis,catalysis.In this review,we described the recent progress in the field of carbon dots,introduced their optical property and applications in food detection,summarized the exiting problems in the development,and looked forward their prospect in the future.
carbondots;fluorescence;fooddetection
10.3969/j.issn.1005-6521.2017.12.042
2016-09-14
國家自然科學(xué)基金(31225021)
徐龍華(1988—),女(漢),博士研究生,研究方向:食品安全檢測。
*通信作者:王碩(1969—),教授,博士生導(dǎo)師,研究方向:食品科學(xué)。