李超 孫克克 陳斌
摘要:遼東地區(qū)保存有較為完好的古元古代地質(zhì)記錄。對位于遼東營口—遼陽地區(qū)古元古代花崗巖(建一花崗巖)和變質(zhì)基性巖(隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖)進行了鋯石UPb定年、地球化學和巖石成因?qū)W研究。結(jié)果表明:建一花崗巖形成于(2 322±18)Ma,隆昌變質(zhì)輝綠巖形成于(2 335±21)Ma,蒜盤峪變質(zhì)輝長巖形成于(2 353±22)Ma;建一花崗巖源自太古宙古老地殼部分熔融,屬于準鋁質(zhì)鈣堿性I型花崗巖,富集Rb、Ba、U等大離子親石元素,虧損Nb、Ta、Zr、Hf等高場強元素,具有俯沖帶巖漿特征;隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖均具有富集型洋中脊玄武巖(EMORB)特點,并顯示島弧地球化學特征;隆昌變質(zhì)輝綠巖源自新太古代富集程度不高的地幔部分熔融,并在上升過程中受到年輕地殼的改造,蒜盤峪變質(zhì)輝長巖是古太古代—中太古代富集地幔部分熔融的產(chǎn)物;古元古代早期,遼吉地區(qū)處于大陸弧后盆地構(gòu)造環(huán)境,弧后伸展作用導致大陸巖石圈部分熔融產(chǎn)生花崗巖和基性巖,在后期的地體拼貼過程中,兩者遭受到不同程度的變質(zhì)變形,進而形成了條痕狀花崗巖和變質(zhì)基性巖。
關(guān)鍵詞:花崗巖;基性巖;古元古代;鋯石UPb年齡;地球化學;弧后盆地;膠遼吉帶;華北克拉通
中圖分類號:P588.12文獻標志碼:A
Paleoproterozoic Granites and Metamafic Rocks from YingkouLiaoyang
Area of the Eastern Liaoning and Their Significance
LI Chao1, SUN Keke1, CHEN Bin1,2
(1. School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2. School of Resources
and Environmental Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
)
Abstract: Paleoproterozoic geological records are well preserved in the eastern Liaoning. The zircon UPb dating, geochemical and petrogenesis of Paleoproterozoic granites (Jianyi granite) and metamafic rocks (Longchang metadiabase and Suanpanyu metagabbro) in YingkouLiaoyang area of the eastern Liaoning were studied. The results show that LAICPMS zircon UPb ages of Jianyi granite, Longchang metadiabase and Suanpanyu metagabbro are (2 322±18), (2 335±21), (2 353±22)Ma, respectively; Jianyi Granite forms from partial melting of Archean crust, and belongs to metaluminouscalcalkaline Itype granite, and is enriched in large ion lithophile element (LILE), and is depleted in high field strength element (HFSE), showing the characteristics of magma in subduction zones; Longchang metadiabase and Suanpanyu metagabbro belong to enriched midocean ridge basalts (EMORB) and have the geochemical characteristics of island arc; Longchang metadiabase is generated from partial melting of Neoarchean mantle which is not very enriched, and the diabase is contaminated by juvenile crust during upwelling; Suanpanyu metagabbro is produced from partial melting of PaleoarcheanMesoarchean enriched mantle; LiaoningJilin region is a continental backarc basin in Early Paleoproterozoic, and the strong extension in the backarc region results in partial melting of continental lithosphere, which generates the granites and metamafic rocks; these rocks are later metamorphosed, deformed and pushed together in later processes of terrane amalgamation.
Key words: granite; mafic rock; Paleoproterozoic; zircon UPb age; geochemistry; backarc basin; JiaoLiaoJi Belt; North China Craton
0引言
華北克拉通具有38 Ga的演化歷史,豐富的太古宙—古元古代地質(zhì)記錄使其成為研究早期地殼演化這一重大科學問題的天然實驗室[110]。華北克拉通被中部造山帶劃分為東部陸塊和西部陸塊,膠遼吉帶將東部陸塊進一步劃分為龍崗陸塊和狼林陸塊,孔茲巖帶將西部陸塊進一步劃分為陰山陸塊和鄂爾多斯陸塊[1114]。
膠遼吉帶內(nèi)古元古代巖石保存較為完好,出露有一套具有條帶狀、片麻狀特征,被稱為條痕狀花崗巖(遼吉花崗巖)的古元古代二長花崗片麻巖[15]。學術(shù)界對其來源、成因、類型及構(gòu)造環(huán)境等一直爭論不休:劉光啟將該花崗巖識別為層狀混合巖,認為其原巖是沉積變質(zhì)巖[16];趙鳳順等認為該花崗巖以火山沉積巖重熔型的S型花崗巖為主[1718];路孝平等認為該花崗巖為A型花崗巖[1920],楊明春等則認為該花崗巖屬于I型花崗巖[21]。此外,在膠遼吉帶北部的遼東地區(qū)亦分布有古元古代變質(zhì)輝長巖(部分變質(zhì)程度達到斜長角閃巖)。關(guān)于這些變質(zhì)基性巖的形成環(huán)境,劉永達等認為遼河群早期沉降階段的海相拉斑玄武巖形成于大陸邊緣或類似弧后盆地的大地構(gòu)造環(huán)境[22];王藝芬等認為遼東古元古代基性巖具有大陸拉斑玄武巖和大洋拉斑玄武巖的雙重特征,是遼河裂谷由大陸殼向大洋殼演化過程中的產(chǎn)物[23];Meng等認為基性巖形成于島弧環(huán)境[2425],而Wang等則認為基性巖是陸內(nèi)裂谷作用的產(chǎn)物[26]。
上述有關(guān)條痕狀花崗巖及變質(zhì)基性巖的爭議嚴重制約了對區(qū)域構(gòu)造演化的深入認識。作為遼吉地區(qū)重要巖石組成,條痕狀花崗巖和變質(zhì)基性巖經(jīng)歷了區(qū)域形成與演化的整個過程,并在持續(xù)的地質(zhì)演化過程中經(jīng)歷了強烈變形,因此,對花崗巖和變質(zhì)基性巖進行年代學、地球化學和成因?qū)W研究,可以解決上述爭議,還原遼吉地區(qū)古元古代地質(zhì)演化的整個過程,并進一步深入探討華北克拉通早前寒武紀構(gòu)造樣式。鑒于此,本文選擇遼東地區(qū)條痕狀花崗巖和變質(zhì)基性巖,對其進行詳細的年代學、地球化學和成因?qū)W研究,以期進一步深入探討膠遼吉帶北部遼吉地區(qū)的早前寒武紀地質(zhì)演化。
1區(qū)域地質(zhì)背景
膠遼吉帶呈NE—SW向展布于華北克拉通東部,介于龍崗陸塊和狼林陸塊之間,展布范圍包括北部的遼吉地區(qū)和南部的膠北地區(qū),遼東地區(qū)在古元古代地質(zhì)構(gòu)造劃分上屬于遼吉地區(qū)。遼吉地區(qū)古元古代巖石組合主要包括變質(zhì)火山沉積巖、花崗巖和鎂鐵質(zhì)侵入體(圖1),其中變質(zhì)火山沉積巖被劃分為北側(cè)的老嶺群和北遼河群、以及南側(cè)的集安群和南遼河群[27]。老嶺群和北遼河群由透閃變粒巖、鈉長淺粒巖、變質(zhì)石英砂巖、硅質(zhì)條帶大理巖、白云石大理巖、十字石榴二云片巖和千枚巖等組成,原巖為陸源碎屑巖碳酸鹽巖建造[28];集安群和南遼河群由透輝變粒巖、蛇紋石化大理巖、斜長角閃巖、石墨大理巖、細粒黑云片麻巖、石榴矽線片麻巖等組成,原巖為火山巖陸源碎屑巖碳酸鹽巖建造,以含有較多的變質(zhì)火山巖區(qū)別于老嶺群和北遼河群。
近年來的研究表明,遼吉地區(qū)火山沉積巖形成于2.0~2.1 Ga,并于1.88~1.90 Ga發(fā)生變質(zhì)作用[2939]。區(qū)域古元古代花崗質(zhì)巖漿作用分為兩期:條痕狀花崗巖形成于約2.2 Ga[19,21,4043];斑狀花崗巖和堿性正長巖侵位于1.85~1.88 Ga[28,4447]。遼吉地區(qū)古元古代基性巖亦分為約2.2 Ga[2426,48]和約1.85 Ga[4952]兩期,但與火山沉積巖和花崗巖相比出露較少。
2巖石學特征
條痕狀花崗巖(二長花崗巖)采自遼寧省營口市建一鎮(zhèn)附近[圖2(a)],侵入于南遼河群里爾峪組中(簡稱“建一花崗巖”)。建一花崗巖呈淺肉紅色[圖3(a)],具中粗粒花崗變晶結(jié)構(gòu)、片麻狀構(gòu)造。主要礦物組成為石英(體積分數(shù)為25%~30%)、斜長石(15%~20%)、微斜長石(10%~15%)、條紋長石(10%~15%)、鉀長石(約5%)、磁鐵礦(約3%)和角閃石(1%~3%),副礦物有鋯石、榍石、獨居石、褐簾石等[圖3(d)]。石英呈他形粒狀,大都呈集合體排布,具有拉長和波狀消光現(xiàn)象;斜長石呈短柱狀,發(fā)育聚片雙晶,部分遭受絹云母化和黝簾石化;微斜長石發(fā)育格子雙晶[圖3(d)]。
變質(zhì)基性巖分別采自遼寧省遼陽市隆昌鎮(zhèn)(簡稱“隆昌變質(zhì)輝綠巖”)和蒜盤峪村(簡稱“蒜盤峪變質(zhì)輝長巖”)附近[圖2(b)、(c)],侵位于北遼河群里爾峪組中。隆昌變質(zhì)輝綠巖呈深綠色[圖3(b)],具有細粒變余輝長結(jié)構(gòu),受后期變質(zhì)變形作用的影響;輝石已被交代成細粒角閃石,呈不規(guī)則柱粒狀,部分纖狀[圖3(e)]。隆昌變質(zhì)輝綠巖主要礦物組成為斜長石(體積分數(shù)為45%~50%)、角閃石(30%~45%)、石英(3%~5%)和綠簾石(1%~3%),副礦物主要為磁鐵礦、鈦鐵礦。礦物定向明顯,斜長石呈他形—半自形板粒狀,遭受絹云母化和鈉黝簾石化。角閃石遭受綠泥石化、絹云母化。蒜盤峪變質(zhì)輝長巖呈深灰色[圖3(c)],已變質(zhì)成為斜長角閃巖[圖3(f)],巖石具粒狀變晶結(jié)構(gòu),礦物顆粒較大,變質(zhì)重結(jié)晶程度明顯高于隆昌變質(zhì)輝綠巖。蒜盤峪變質(zhì)輝長巖主要礦物組成為角閃石(體積分數(shù)為65%~70%)和斜長石(25%~30%),斜長石發(fā)生輕微絹云母化。
3分析方法
用于LAICPMS年代學測定的樣品通過常規(guī)重選和磁選技術(shù)分選出鋯石;陰極發(fā)光(CL)圖像在北京鋯年領(lǐng)航科技有限公司的掃描電鏡JSM6510上拍攝完成;鋯石UPb定年在中國地質(zhì)科學院國家地質(zhì)實驗測試中心完成;LAICPMS激光剝蝕系統(tǒng)為美國New Wave公司生產(chǎn)的ArF準分子系統(tǒng),激光器波長為193 nm,ICPMS儀為Thermo Elment Ⅱ型;采用GJ1[53]和Plesovice[54]作為外標進行校正,同位素比值及年齡誤差類型均為1σ;數(shù)據(jù)結(jié)果處理采用ISOPLOT2.49軟件[55]。
全巖主量、微量元素分析在北京大學造山帶與地殼演化教育部重點實驗室完成。主量元素分析采用X射線熒光光譜法(XRF)進行,分析誤差優(yōu)于5%;微量元素分析在ICPMS儀上測定;元素含量(質(zhì)量分數(shù),下同)大于10×10-6的精度優(yōu)于5%,小于10×10-6的精度優(yōu)于10%。
全巖RbSr、SmNd同位素的分離及測試在核工業(yè)北京地質(zhì)研究院分析測試研究中心完成,化學分離和純化通過陽離子交換柱法完成。同位素比值在IsoProbeT熱電離質(zhì)譜計上完成,分析誤差小于05%。Sr質(zhì)量分餾用N(86Sr)/N(88Sr)=0119 4進行校正;Rb實驗室流程本底為2×10-10 g,Sr為2×10-10 g。Nd質(zhì)量分餾用N(146Nd)/N(144Nd)=0721 9進行校正;SmNd全流程本底小于50×10-12 g。
4結(jié)果分析
4.1鋯石UPb年齡
建一花崗巖鋯石為淺灰色短柱狀[圖4(a)],晶形較為完好,具有巖漿鋯石典型的韻律環(huán)帶結(jié)構(gòu),鋯石長80~150 μm,長短軸比值介于10~15之間。w(Th)/w(U)值為040~0.62,N(207Pb)/N(206Pb)年齡為2 256~2 400 Ma(表1)。23個分析點的加權(quán)平均年齡為(2 322±18)Ma,平均標準權(quán)重偏差(MSWD)為0.77(置信度為95%),因此,建一花崗巖的結(jié)晶年齡為(2 322±18)Ma[圖5(b)]。
隆昌變質(zhì)輝綠巖鋯石為短柱狀至長柱狀[圖4(b)],晶形略有破碎,具有巖漿鋯石典型的韻律環(huán)帶結(jié)構(gòu),鋯石長80~120 μm,長短軸比值介于10~1.5之間。w(Th)/w(U)值為0.45~1.26,N(207Pb)/N(206Pb)年齡為2 269~2 393 Ma(表1)。17個分析點的加權(quán)平均年齡為(2 335±21)Ma,MSWD值為082(置信度為95%),因此,隆昌變質(zhì)輝綠巖的結(jié)晶年齡為(2 335±21)Ma[圖5(d)]。
蒜盤峪變質(zhì)輝長巖鋯石為短柱狀[圖4(c)],晶形發(fā)生破碎,鋯石長70~110 μm,長短軸比值介于10~12之間。w(Th)/w(U)值為0.41~0.84,屬于巖漿鋯石,N(207Pb)/N(206Pb)年齡為2 283~2 424 Ma(表1)。19個分析點的加權(quán)平均年齡為(2 353±22)Ma,MSWD值為15(置信度為95%),因此,蒜盤峪變質(zhì)輝長巖的結(jié)晶年齡為(2 353±22)Ma[圖5(f)]。
4.2地球化學特征
建一花崗巖主要成分包括SiO2(含量為7326%~7445%)、Al2O3(1189%~1325%)、K2O(403%~474%)、Na2O(364%~437%)、TFe2O3(205%~348%)、CaO(114%~132%)、TiO2(015%~024%)、MgO(010%~020%)和MnO(003%~004%)(表2)。建一花崗巖稀土元素總含量較高,輕、重稀土元素分餾明顯[圖6(a)],w(La)N/w(Sm)N
值為273~662,w(La)N/w(Yb)N值為479~2720,具有弱的負Eu異常。在球粒隕石標準化稀土元素配分模式[圖6(a)]中,輕稀土元素富集,呈右傾模式,重稀土元素呈平坦分布模式。在原始地幔標準化微量元素蛛網(wǎng)圖[圖6(b)]中,建一花崗巖具有較高的Rb含量((99.44~125.61)×10-6)、U含量((1.21~2.18)×10-6)、Nd含量((17.90~8478)×10-6),以及較低的Nb含量((1221~2455)×10-6)、Ta含量((0.90~1.75)×10-6)和P含量((119.42~153.17)×10-6)。其中,w(·)N為元素含量球粒隕石標準化后的值。
隆昌變質(zhì)輝綠巖SiO2含量為5267%~5378%,Al2O3為1274%~1301%,K2O為027%~038%,Na2O為534%~558%,TFe2O3為1202%~1291%,CaO為520%~572%,TiO2為132%~140%,MgO為707%~730%,MnO為009%~010%(表2)。隆昌變質(zhì)輝綠巖輕、重稀土元素分餾不顯著[圖6(c)],w(La)N/w(Sm)N值為177~267,w(La)N/w(Yb)N值為348~751,無或僅有略微負Eu異常。樣品輕稀土元素相對重稀土元素略有富
5討論
5.1巖石成因
建一花崗巖的10 000w(Ga)/w(Al)值大于26,在Whalen等提出的判別圖解[58]中落入在A型花崗巖區(qū)域[圖7(a)]或是接近A型花崗巖區(qū)域[圖7(b)],路孝平等也據(jù)此認為遼吉地區(qū)古元古代條痕狀花崗巖為A型花崗巖[1920,59]。然而,A型花崗巖和高分異的I型花崗巖地球化學特征非常相似,不能僅僅依靠10 000w(Ga)/w(Al)值來判斷巖石是否為A型花崗巖。建一花崗巖中不含堿性礦物,不含鐵橄欖石和鈦鐵礦,缺乏A型花崗巖的典型特征:在TAS圖解中,建一花崗巖位于亞堿性花崗巖區(qū)域內(nèi)[圖8(a)];在K2OSiO2圖解中,建一花崗巖位于高鉀鈣堿系列區(qū)域[圖8(b)]。
圖(a)、(b)引自文獻[58];圖(c)引自文獻[60]
因此,建一花崗巖是鈣堿性花崗巖,不是堿性花崗巖,也就不是A型花崗巖。建一花崗巖含有榍石和磁鐵礦,表明巖漿富水且具有高的氧逸度,這是I型花崗巖的典型特征。在稀土元素特征方面,A型花崗巖通常顯示巨大的負Eu異常(V字形),但建一花崗巖Eu異常(035~063)并不顯著[圖6(a)],且富集輕稀土元素,虧損重稀土元素,與A型花崗巖富集重稀土元素的特征相矛盾。在圖6(b)中,建一花崗巖富集Rb、Ba、U等大離子親石元素,虧損Nb、Ta、Zr、Hf等高場強元素,具有俯沖環(huán)境下I型花崗巖的典型特征。建一花崗巖鋁飽和指數(shù)(ASI)為087~091,A/NK值為105~108,在A/CNKA/NK圖解中落入準鋁質(zhì)區(qū)域[圖8(c)],屬于準鋁質(zhì)I型花崗巖,而不是過堿性A型花崗巖。
建一花崗巖具有相對平坦的重稀土元素分布模式[圖6(a)],反映其源自無石榴石殘留相的熔融源區(qū)。強烈虧損的Sr元素[圖6(b)]暗示花崗巖源區(qū)處于斜長石穩(wěn)定域內(nèi)。建一花崗巖εNd(t)值為-92~-12,二階段模式年齡為2 810~3 454 Ma,大于巖石形成年齡,表明花崗巖源區(qū)主要為太古宙古老地殼。建一花崗巖富集Rb、Ba、U等大離子親石元素和輕稀土元素,虧損Nb、Ta、Zr、Hf等高場強元素,具有明顯的俯沖帶巖漿特征[6466]。這種島弧地球化學特征可能是花崗質(zhì)巖漿本身的特點,也可能是繼承自源區(qū)的太古宙地殼。在RbY+Nb圖解中,建一花崗巖落入火山弧花崗巖以及火山弧花崗巖和板內(nèi)花崗巖之間的過渡區(qū)域[圖7(c)],花崗巖w(Nb)/w(Ta)值(1359~1449)介于地殼w(Nb)/w(Ta)值(11~12)和地幔w(Nb)/w(Ta)值(約175)之間,反映其源區(qū)受到了來自俯沖帶交代地幔流體的影響[67]。
在TAS圖解中,隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖均位于亞堿性區(qū)域[圖8(a)]。隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖的球粒隕石標準化稀土元素配分模式呈略微右傾模式[圖6(c)、(e)],具有明顯的富集型洋中脊玄武巖(EMORB)地球化學特征,這一點也得到了w(Nb)/w(Yb)值的驗證。在Nb/YbTh/Yb圖解中,隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖均位于EMORB上方,表明兩者同時具有弧巖漿特征[圖9(b)]。蒜盤峪變質(zhì)輝長巖富集Rb、Ba、Th、U等大離子親石元素,且隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖明顯虧損Nb、Ta、Zr、Hf等高場強元素[圖6(d)、(f)]。此外,在Hf/3ThNb/16圖解[圖9(a)]中,蒜盤峪變質(zhì)輝長巖位于火山弧玄武巖區(qū)域內(nèi),隆昌變質(zhì)輝綠巖位于火山弧玄武巖與板內(nèi)玄武巖之間。因此,筆者認為建一花崗巖、隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖最有可能的產(chǎn)出環(huán)境為大陸弧后盆地。同時,相比于蒜盤峪變質(zhì)輝長巖,較晚侵位的隆昌變質(zhì)輝綠巖顯示較低的Ba、Th、Pb等流體活動元素含量,較高的εNd值,表明其形成過程中軟流圈地幔貢獻逐漸增大,標志著弧后盆地愈發(fā)成熟。
在初始N(87Sr)/N(86Sr)εNd(t)圖解中,蒜盤峪變質(zhì)輝長巖位于地幔序列中,較為接近EMⅠ型富集地幔,隆昌變質(zhì)輝綠巖則偏離地幔序列(圖10)。隆昌變質(zhì)輝綠巖εNd(t)值為-2.0~-0.8,二階段模式年齡為2 791~2 885 Ma,暗示隆昌變質(zhì)輝綠巖源自新太古代富集程度不高的地幔部分熔融,并在上升過程中受到年輕地殼的改造。蒜盤峪變質(zhì)輝長巖εNd(t)值為-7.0~-3.3,二階段模式年齡為3 006~3 303 Ma,表明其源自古太古代—中太古代富集地幔的部分熔融。此外,地殼中K2O和Rb的富集程度遠大于地幔。因此,可以通過觀察εNd(t)值隨K2O和Rb含量的變化關(guān)系來判斷地幔巖石是否受到地殼的混染。如果地幔巖石受地殼混染明顯,則εNd(t)值會隨著K2O和Rb含量發(fā)生規(guī)律性變化。但隆昌變質(zhì)輝綠巖和蒜盤峪變質(zhì)輝長巖的K2O、Rb含量與εNd(t)值并無明顯關(guān)系,表明變質(zhì)基性巖受地殼混染微弱或不明顯(圖11)。
圖10初始N(87Sr)/N(86Sr)εNd(t)圖解
Fig.10Diagram of Initial N(87Sr)/N(86Sr)εNd(t)
圖11變質(zhì)基性巖K2OεNd(t)圖解及RbεNd(t)圖解
Fig.11Diagrams of K2OεNd(t) and RbεNd(t) of Metamafic Rocks
5.2構(gòu)造演化
關(guān)于遼吉地區(qū)古元古代地質(zhì)演化,前人的學術(shù)觀點大致可以分為裂谷和島弧兩類。裂谷觀點認為華北克拉通東部陸塊在太古宙時為一整體,在古元古代早期經(jīng)歷了裂谷作用而形成洋盆,將東部陸塊分裂為北部的龍崗陸塊和南部的狼林陸塊,其后伴隨著洋盆的消減閉合,最終裂谷消失,龍崗陸塊和狼林陸塊又重新拼合[26,29,7073]。這一觀點著重強調(diào)龍崗陸塊和狼林陸塊在太古宙時本來是一整體,正是由于古元古代的裂谷作用才產(chǎn)生了膠遼吉帶,遼吉地區(qū)的演化經(jīng)歷了一個從大陸拉張形成洋盆到大洋俯沖消減陸塊重新拼合的完整威爾遜旋回,裂谷作用是這一觀點的核心內(nèi)容。而與裂谷觀點相悖的島弧觀點則認為龍崗陸塊和狼林陸塊之前并不在一起,兩陸塊無親緣關(guān)系,只是由于大洋的消失才使得兩陸塊最終拼合在一起[24,31,50,7475]。這一觀點強調(diào)俯沖作用在膠遼吉帶形成過程中的重要作用及意義,并且龍崗陸塊和狼林陸塊在古元古代之前沒有親源性。此外,近年來還有研究提出了雙向俯沖再閉合的模型[52]。
遼東地區(qū)南遼河群和北遼河群的主要差異在于:南遼河群主要由火山碎屑巖構(gòu)成,具有逆時針的變質(zhì)PT軌跡;而北遼河群主要是陸源碎屑巖,具有順時針的PT軌跡,并且在吉林南部集安群與北部老嶺群的差別也同樣如此[27,32]。此外,東南部集安群和南遼河群內(nèi)卷入的古元古代侵入巖也明顯多于西北部的老嶺群和北遼河群。上述巖石構(gòu)造組合的空間分布最符合板塊構(gòu)造體制下的大陸弧后盆地環(huán)境[7677];東南部的集安群和南遼河群靠近俯沖帶海溝一側(cè),西北部的老嶺群和北遼河群靠近內(nèi)陸一側(cè),來自火山弧一側(cè)的火山碎屑巖、侵入巖和來自內(nèi)陸一側(cè)的陸源碎屑巖共同充填了遼吉地區(qū)這一古元古代弧后盆地。更為重要的是,不斷深入的鋯石UPb年代學顯示,狼林陸塊主要由古元古代巖石組成,太古宙巖石比例極為有限,而同樣的古元古代地質(zhì)記錄在膠遼吉帶以北的龍崗陸塊中則非常罕見[7881]。這一事實強有力地證明,狼林陸塊在古元古代時為一活動大陸邊緣,而膠遼吉帶以北的龍崗陸塊在古元古代時則處于內(nèi)陸地區(qū)。本文的巖石成因?qū)W研究成果支持遼吉地區(qū)弧后盆地構(gòu)造模型。此外,遼吉地區(qū)的弧后盆地屬性也得到了前人對區(qū)域內(nèi)同期變質(zhì)基性巖(包括基性火山巖和侵入巖)相關(guān)研究的支持[24,49]。
圖12古元古代早期遼吉地區(qū)構(gòu)造環(huán)境示意圖
Fig.12Schematic Illustration Showing Tectonic
Environment of LiaoningJilin Region During Early Paleoproterozoic
前人關(guān)于裂谷和島弧的爭論往往是在討論遼吉地區(qū)本身是否標志著消失了的大洋(縫合帶)[24,26,29,31,50,52,7075]。而實際上發(fā)生俯沖的洋殼遠在東部陸塊東南(即現(xiàn)今朝鮮半島東南),并不位于遼吉地區(qū):古元古代時期,東部陸塊東側(cè)的巖漿弧大致位于朝鮮半島(圖12),即朝鮮島??;遼吉地區(qū)處于朝鮮島?。ù箨戇吘壔。┑幕『髤^(qū)域[82]。結(jié)合區(qū)域地質(zhì)資料,本文的巖石成因?qū)W研究成果不支持前人構(gòu)造演化觀點。換而言之,無論是前人的裂谷觀點還是島弧觀點,它們均認為遼吉活動帶代表主大洋所在位置,但本研究認為遼吉活動帶并不代表主大洋的存在,古元古代時主大洋應(yīng)該位于華北東部陸塊東南(即現(xiàn)今朝鮮半島東南)。遼吉地區(qū)存在海相沉積,但遼吉弧后盆地最終是否拉張形成玄武質(zhì)洋殼還不確定,這仍需進一步深入研究。
古元古代早期(2.2~2.3 Ga),東部陸塊以東的大洋巖石圈板塊向西北方向俯沖于東部陸塊之下[82],洋殼的持續(xù)俯沖導致弧后伸展,進而在大陸島弧后側(cè)產(chǎn)生2.2~2.3 Ga期間的遼吉弧后盆地(圖11),弧后伸展作用導致大陸巖石圈部分熔融形成花崗巖和基性巖,并在后期地體拼貼過程中遭受到不同程度的變質(zhì)變形。大陸邊緣?。ǔr弧)一側(cè)的火山碎屑巖和內(nèi)陸一側(cè)的陸源碎屑巖分別從兩側(cè)經(jīng)搬運沉積在遼吉弧后盆地中,最終形成了以火山碎屑巖為主的南遼河—集安群和以陸源碎屑巖為主的北遼河—老嶺群。
6結(jié)語
(1)遼東營口—遼陽地區(qū)保存有較好的古元古代地質(zhì)記錄,其中建一花崗巖形成于(2 322±18)Ma,隆昌變質(zhì)輝綠巖形成于(2 335±21)Ma,蒜盤峪變質(zhì)輝長巖形成于(2 353±22)Ma。
(2)建一花崗巖為鈣堿性I型花崗巖,源自太古宙古老地殼部分熔融;隆昌變質(zhì)輝綠巖形成自新太古代富集程度不高的地幔部分熔融,并在上升過程中受到年輕地殼的改造;蒜盤峪變質(zhì)輝長巖是古太古代—中太古代富集地幔部分熔融的產(chǎn)物。三者均具有俯沖帶巖漿特征。
(3)古元古代早期(2.2~2.3 Ga),遼吉地區(qū)處于大陸弧后盆地構(gòu)造環(huán)境,弧后伸展作用導致大陸巖石圈部分熔融產(chǎn)生花崗巖和基性巖,在后期的地體拼貼過程中,兩者遭受到不同程度的變質(zhì)變形,進而形成了條痕狀花崗巖和變質(zhì)基性巖。
參考文獻:
References:
[1]ZHAO G C,CAWOOD P A,WILDE S A,et al.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution[J].Precambrian Research,2000,103(1/2):5588.
[2]ZHAO G C.Palaeoproterozoic Assembly of the North China Craton[J].Geological Magazine,2001,138(1):8791.
[3]ZHENG J P,GRIFFIN W L,OREILLY S Y,et al.36 Ga Lower Crust in Central China:New Evidence on the Assembly of the North China Craton[J].Geology,2004,32(3):229232.
[4]GUO J H,SUN M,CHEN F K,et al.SmNd and SHRIMP UPb Zircon Geochronology of Highpressure Granulites in the Sanggan Area,North China Craton:Timing of Paleoproterozoic Continental Collision[J].Journal of Asian Earth Sciences,2005,24(5):629642.
[5]WU F Y,ZHAO G C,WILDE S A,et al.Nd Isotopic Constraints on Crustal Formation in the North China Craton[J].Journal of Asian Earth Sciences,2005,24(5):523545.
[6]ZHAI M G,LI T S,PENG P,et al.Precambrian Key Tectonic Events and Evolution of the North China Craton[J].Geological Society,London,Special Publications,2010,338(1):235262.
[7]KUSKY T M.Geophysical and Geological Tests of Tectonic Models of the North China Craton[J].Gondwana Research,2011,20(1):2635.
[8]ZHAI M G,SANTOSH M.Metallogeny of the North China Craton:Link with Secular Changes in the Evolving Earth[J].Gondwana Research,2013,24(1):275297.
[9]ZHAI M G.Multistage Crustal Growth and Cratonization of the North China Craton[J].Geoscience Frontiers,2014,5(4):457469.
[10]KUSKY T M,POLAT A,WINDLEY B F,et al.Insights into the Tectonic Evolution of the North China Craton Through Comparative Tectonic Analysis:A Record of Outward Growth of Precambrian Continents[J].Earthscience Reviews,2016,162:387432.
[11]ZHAO G C,SUN M,WILDE S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J].Precambrian Research,2005,136(2):177202.
[12]遼寧省地質(zhì)礦產(chǎn)勘查局.遼寧省區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1989.
Liaoning Bureau of Geology and Mineral Resources Exploration.Regional Geology in Liaoning Province[M].Beijing:Geological Publishing House,1989.
[13]WU F Y,YANG J H,WILDE S A,et al.Geochronology,Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula,NE China[J].Chemical Geology,2005,221(1/2):127156.
[14]ZHAO G C,ZHAI M G.Lithotectonic Elements of Precambrian Basement in the North China Craton:Review and Tectonic Implications[J].Gondwana Research,2013,23(4):12071240.
[15]張秋生.遼東半島早期地殼與礦床[M].北京:地質(zhì)出版社,1988.
ZHANG Qiusheng.Early Crust and Mineral Deposits of Liaodong Peninsula[M].Beijing:Geological Publishing House,1988.
[16]劉光啟.遼吉東部層狀混合巖的成因[J].吉林地質(zhì),1989(4):4249.
LIU Guangqi.On Origin of the Bedded Migmatite in Eastern Parts of LiaoningJilin Provinces[J].Jilin Geology,1989(4):4249.
[17]趙鳳順,胡平.虎皮峪條痕狀花崗質(zhì)巖石特征及成因探討[J].遼寧地質(zhì),1989,6(4):298311.
ZHAO Fengshun,HU Ping.Features and Origin of Streaky Graniticrocks from Hupiyu[J].Liaoning Geology,1989,6(4):298311.
[18]曲洪祥,張永,雷廣新,等.試論遼東地區(qū)古元古代殼?;旌想s巖[J].遼寧地質(zhì),2000,17(3):199205.
QU Hongxiang,ZHANG Yong,LEI Guangxin,et al.On the Paleoproterozoic Crustmantle Mixed Complex in East Liaoning[J].Liaoning Geology,2000,17(3):199205.
[19]路孝平,吳福元,張艷斌,等.吉林南部通化地區(qū)古元古代遼吉花崗巖的侵位年代與形成構(gòu)造背景[J].巖石學報,2004,20(3):381392.
LU Xiaoping,WU Fuyuan,ZHANG Yanbin,et al.Emplacement Age and Tectonic Setting of the Paleoproterozoic Liaoji Granites in Tonghua Area,Southern Jilin Province[J].Acta Petrologica Sinica,2004,20(3):381392.
[20]郝德峰,李三忠,趙國春,等.遼吉地區(qū)古元古代花崗巖成因及對構(gòu)造演化的制約[J].巖石學報,2004,20(6):14091416.
HAO Defeng,LI Sanzhong,ZHAO Guochun,et al.Origin and Its Constraint to Tectonic Evolution of Paleoproterozoic Granitoids in the Eastern Liaoning and Jilin Province,North China[J].Acta Petrologica Sinica,2004,20(6):14091416.
[21]楊明春,陳斌,閆聰.華北克拉通膠—遼—吉帶古元古代條痕狀花崗巖成因及其構(gòu)造意義[J].地球科學與環(huán)境學報,2015,37(5):3151.
YANG Mingchun,CHEN Bin,YAN Cong.Petrogenesis of Paleoproterozoic Gneissic Granites from JiaoLiaoJi Belt of North China Craton and Their Tectonic Implications[J].Journal of Earth Sciences and Environment,2015,37(5):3151.
[22]劉永達,邴志波,董景超.遼東半島早元古宙海相拉斑玄武巖特征及其意義[J].遼寧地質(zhì),1989,6(4):289297.
LIU Yongda,BING Zhibo,DONG Jingchao.Features and Significance of Marine Tholeiite of Early Proterozoic in Liaoning Peninsular[J].Liaoning Geology,1989,6(4):289297.
[23]王藝芬,徐貴忠,佘宏全,等.遼東地區(qū)早元古代火山巖特征及其形成的動力學背景[J].現(xiàn)代地質(zhì),2005,19(3):315324.
WANG Yifen,XU Guizhong,SHE Hongquan,et al.Characteristics of the Early Proterozoic Volcanic Rocks and Its Dynamic Background of Formation in the Liaodong Area[J].Geoscience,2005,19(3):315324.
[24]MENG E,LIU F L,LIU P H,et al.Petrogenesis and Tectonic Significance of Paleoproterozoic Metamafic Rocks from Central Liaodong Peninsula,Northeast China:Evidence from Zircon UPb Dating and Insitu LuHf Isotopes,and Wholerock Geochemistry[J].Precambrian Research,2014,247:92109.
[25]LI Z,CHEN B,WANG J L.Geochronological Framework and Geodynamic Implications of Mafic Magmatism in the Liaodong Peninsula and Adjacent Regions,North China Craton[J].Acta Geologica Sinica:English Edition,2016,90(1):138153.
[26]WANG X P,PENG P,WANG C,et al.Petrogenesis of the 2 115 Ma Haicheng Mafic Sills from the Eastern North China Craton:Implications for an Intracontinental Rifting[J].Gondwana Research,2016,39:347364.
[27]賀高品,葉慧文.遼東—吉南地區(qū)早元古代兩種類型變質(zhì)作用及其構(gòu)造意義[J].巖石學報,1998,14(2):152162.
HE Gaopin,YE Huiwen.Two Types of Early Proterozoic Metamorphism and Its Tectonic Significance in Eastern Liaoning and Southern Jilin Areas[J].Acta Petrologica Sinica,1998,14(2):152162.
[28]路孝平,吳福元,郭敬輝,等.通化地區(qū)古元古代晚期花崗質(zhì)巖漿作用與地殼演化[J].巖石學報,2005,21(3):721736.
LU Xiaoping,WU Fuyuan,GUO Jinghui,et al.Late Paleoproterozoic Granitic Magmatism and Crustal Evolution in the Tonghua Region,Northeast China[J].Acta Petrologica Sinica,2005,21(3):721736.
[29]LUO Y,SUN M,ZHAO G C,et al.LAICPMS UPb Zircon Ages of the Liaohe Group in the Eastern Block of the North China Craton:Constraints on the Evolution of the JiaoLiaoJi Belt[J].Precambrian Research,2004,134(3/4):349371.
[30]LUO Y,SUN M,ZHAO G C,et al.A Comparison of UPb and Hf Isotopic Compositions of Detrital Zircons from the North and South Liaohe Groups:Constraints on the Evolution of the JiaoLiaoJi Belt,North China Craton[J].Precambrian Research,2008,163(3/4):279306.
[31]LU X P,WU F Y,GUO J H,et al.Zircon UPb Geochronological Constraints on the Paleoproterozoic Crustal Evolution of the Eastern Block in the North China Craton[J].Precambrian Research,2006,146(3/4):138164.
[32]WAN Y S,SONG B,LIU D Y,et al.SHRIMP UPb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event[J].Precambrian Research,2006,149(3/4):249271.
[33]XIE L W,YANG J H,WU F Y,et al.PbSL Dating of Garnet and Staurolite:Constraints on the Paleoproterozoic Crustal Evolution of the Eastern Block,North China Craton[J].Journal of Asian Earth Sciences,2011,42(1/2):142154.
[34]孟恩,劉福來,劉平華,等.遼東半島東北部寬甸地區(qū)南遼河群沉積時限的確定及其構(gòu)造意義[J].巖石學報,2013,29(7):24652480.
MENG En,LIU Fulai,LIU Pinghua,et al.Depositional Ages and Tectonic Implications for South Liaohe Group from Kuandian Area in Northeastern Liaodong Peninsula,Northeast China[J].Acta Petrologica Sinica,2013,29(7):24652480.
[35]秦亞,陳丹丹,梁一鴻,等.吉林南部通化地區(qū)集安群的年代學[J].地球科學,2014,39(11):14871499.
QIN Ya,CHEN Dandan,LIANG Yihong,et al.Geochronology of Jian Group in Tonghua Area,Southern Jilin Province[J].Earth Science,2014,39(11):14871499.
[36]HU G Y,LI Y H,F(xiàn)AN C F,et al.In situ LAMCICPMS Boron Isotope and Zircon UPb Age Determinations of Paleoproterozoic Borate Deposits in Liaoning Province,Northeastern China[J].Ore Geology Reviews,2015,65:11271141.
[37]李壯,陳斌,劉經(jīng)緯,等.遼東半島南遼河群鋯石UPb年代學及其地質(zhì)意義[J].巖石學報,2015,31(6):15891605.
LI Zhuang,CHEN Bin,LIU Jingwei,et al.Zircon UPb Ages and Their Implications for the South Liaohe Group in the Liaodong Peninsula,Northeast China[J].Acta Petrologica Sinica,2015,31(6):15891605.
[38]LI Z,CHEN B,WEI C J,et al.Provenance and Tectonic Setting of the Paleoproterozoic Metasedimentary Rocks from the Liaohe Group,JiaoLiaoJi Belt,North China Craton:Insights from Detrital Zircon UPb Geochronology,Wholerock SmNd Isotopes,and Geochemistry[J].Journal of Asian Earth Sciences,2015,111:711732.
[39]王惠初,任云偉,陸松年,等.遼吉古元古代造山帶的地層單元劃分與構(gòu)造屬性[J].地球?qū)W報,2015,36(5):583598.
WANG Huichu,REN Yunwei,LU Songnian,et al.Stratigraphic Units and Tectonic Setting of the Paleoproterozoic LiaoJi Orogen[J].Acta Geoscientica Sinica,2015,36(5):583598.
[40]LI S Z,ZHAO G C.SHRIMP UPb Zircon Geochronology of the Liaoji Granitoids:Constraints on the Evolution of the Paleoproterozoic JiaoLiaoJi Belt in the Eastern Block of the North China Craton[J].Precambrian Research,2007,158(1/2):116.
[41]胡古月,范昌福,李延河,等.遼東明安硼鎂礦床混合花崗巖的鋯石UPb年齡及對成礦時代的制約[J].礦床地質(zhì),2014,33(2):397405.
HU Guyue,F(xiàn)AN Changfu,LI Yanhe,et al.Zircon UPb Dating of Migmatitic Granites of Mingan Mgborate Deposit in Kuandian Area,Eastern Liaoning Province,and Its Constrains on Mineralization Age[J].Mineral Deposits,2014,33(2):397405.
[42]陳斌,李壯,王家林,等.遼東半島~2.2 Ga巖漿事件及其地質(zhì)意義[J].吉林大學學報:地球科學版,2016,46(2):303320.
CHEN Bin,LI Zhuang,WANG Jialin,et al.Liaodong Peninsula ~22 Ga Magmatic Event and Its Geological Significance[J].Journal of Jilin University:Earth Science Edition,2016,46(2):303320.
[43]ZHAI M G,ZHAO Y,ZHAO T P.Main Tectonic Events and Metallogeny of the North China Craton[M].Singapore:Springer,2016.
[44]蔡劍輝,閻國翰,牟保磊,等.遼寧蓋縣梁屯—礦洞溝堿性正長巖雜巖體的UPb和SmNd年齡及其地質(zhì)意義[J].巖石學報,2002,18(3):349354.
CAI Jianhui,YAN Guohan,MOU Baolei,et al.UPb and SmNd Isotopic Ages of an Alkaline Syenite Complex Body in LiangtunKuangdonggou,Gai County,Liaoning Province,China and Their Geological Significance[J].Acta Petrologica Sinica,2002,18(3):349354.
[45]路孝平,吳福元,林景仟,等.遼東半島南部早前寒武紀花崗質(zhì)巖漿作用的年代學格架[J].地質(zhì)科學,2004,39(1):123138.
LU Xiaoping,WU Fuyuan,LIN Jingqian,et al.Geochronological Successions of the Early Precambrian Granitic Magmatism in Southern Liaoning Province and Its Constrains on Tectonic Evolution of the North China Craton[J].Chinese Journal of Geology,2004,39(1):123138.
[46]楊進輝,吳福元,謝烈文,等.遼東礦洞溝正長巖成因及其構(gòu)造意義:鋯石原位微區(qū)UPb年齡和Hf同位素制約[J].巖石學報,2007,23(2):263276.
YANG Jinhui,WU Fuyuan,XIE Liewen,et al.Petrogenesis and Tectonic Implications of Kuangdonggou Syenites in the Liaodong Peninsula,East North China Craton:Constraints from Insitu Zircon UPb Ages and Hf Isotopes[J].Acta Petrologica Sinica,2007,23(2):263276.
[47]楊明春,陳斌,閆聰.吉南地區(qū)古元古代雙岔巨斑狀花崗巖成因及其構(gòu)造意義:巖石學、年代學、地球化學和SrNdHf同位素證據(jù)[J].巖石學報,2015,31(6):15731588.
YANG Mingchun,CHEN Bin,YAN Cong.Petrological,Geochronological,Geochemical and SrNdHf Isotopic Constraints on the Petrogenesis of the Shuangcha Paleoproterozoic Megaporphyritic Granite in the Southern Jilin Province:Tectonic Implications[J].Acta Petrologica Sinica,2015,31(6):15731588.
[48]于介江,楊德彬,馮虹,等.遼南海城斜長角閃巖原巖的形成時代:鋯石LAICPMS UPb定年證據(jù)[J].世界地質(zhì),2007,26(4):391396,408.
YU Jiejiang,YANG Debin,F(xiàn)ENG Hong,et al.Chronology of Amphibolite Protolith in Haicheng of Southern Liaoning:Evidence from LAICPMS Zircon UPb Dating[J].Global Geology,2007,26(4):391396,408.
[49]王惠初,陸松年,初航,等.遼陽河欄地區(qū)遼河群中變質(zhì)基性熔巖的鋯石UPb年齡與形成構(gòu)造背景[J].吉林大學學報:地球科學版,2011,41(5):13221334.
WANG Huichu,LU Songnian,CHU Hang,et al.Zircon UPb Age and Tectonic Setting of Metabasalts of Liaohe Group in Helan Area,Liaoyang,Liaoning Province[J].Journal of Jilin University:Earth Science Edition,2011,41(5):13221334.
[50]LI Z,CHEN B.Geochronology and Geochemistry of the Paleoproterozoic Metabasalts from the JiaoLiaoJi Belt,North China Craton:Implications for Petrogenesis and Tectonic Setting[J].Precambrian Research,2014,255:653667.
[51]秦亞,梁一鴻,張青偉,等.遼東地區(qū)什司縣變質(zhì)基性巖墻群的LAICPMS鋯石UPb測年及其意義[J].礦物學報,2015,35(4):540544.
QIN Ya,LIANG Yihong,ZHANG Qingwei,et al.LAICPMS Zircon UPb Age of Plagioclase Amphibolite from Shensixian Mafic Dyke Swarm in Liaodong Area,China and Its Significance[J].Acta Mineralogica Sinica,2015,35(4):540544.
[52]YUAN L L,ZHANG X H,XUE F H,et al.Two Episodes of Paleoproterozoic Mafic Intrusions from Liaoning Province,North China Craton:Petrogenesis and Tectonic Implications[J].Precambrian Research,2015,264:119139.
[53]JACKSON S E,PEARSON N J,GRIFFIN W L,et al.The Application of Laser Ablationinductively Coupled Plasmamass Spectrometry to Insitu UPb Zircon Geochronology[J].Chemical Geology,2004,211(1/2):4769.
[54]SLAMA J,KOSLER J,CONDON D J,et al.Plesovice Zircon:A New Natural Reference Material for UPb and Hf Isotopic Microanalysis[J].Chemical Geology,2008,249(1/2):135.
[55]LUDWIG K R.Users Manual for Isoplot/Ex Rev.249:A Geochronological Toolkit for Microsoft Excel[R].Berkeley:Berkeley Geochronology Center,2001.
[56]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313345.
[57]DEPAOLO D J.Neodymium Isotopes in the Colorado Front Range and Crustmantle Evolution in the Proterozoic[J].Nature,1981,291:193196.
[58]WHALEN J B,CURRIE K L,CHAPPELL B W.Atype Granites:Geochemical Characteristics,Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95(4):407419.
[59]李三忠,楊振升.膠遼地塊古元古代花崗巖類型及成因[J].西北地質(zhì),1997,18(3):2126.
LI Sanzhong,YANG Zhensheng.Types and Genesis of Paleoproterozoic Granites in the JiaoLiao Massif[J].Northwestern Geology,1997,18(3):2126.
[60]PEARCE J A,HARRIS N B W,TINDLE A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology,1984,25(4):956983.
[61]MIDDLEMOST E A K.Naming Materials in the Magma/Igneous Rock System[J].Earthscience Reviews,1994,37(3/4):215224.
[62]PECCERILLO A,TAYLOR S R.Geochemistry of Eocene Calcalkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58(1):6381.
[63]MANIAR P D,PICCOLI P M.Tectonic Discrimination of Granitoids[J].Geological Society of America Bulletin,1989,101(5):635643.
[64]FLOYD P A,WINCHESTER J A.Magma Type and Tectonic Setting Discrimination Using Immobile Elements[J].Earth and Planetary Science Letters,1975,27(2):211218.
[65]PEARCE J A.Trace Element Characteristics of Lavas from Destructive Plate Boundaries[M]∥THORPE R S.Andesites:Orogenic Andesites and Related Rocks.New York:John Wiley and Sons,1982:525548.
[66]BRIQUEU L,BOUGAULT H,JORON J L.Quantification of Nb,Ta,Ti and V Anomalies in Magmas Associated with Subduction Zones:Petrogenetic Implications[J].Earth and Planetary Science Letters,1984,68(2):297308.
[67]GREEN T H.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crustmantle System[J].Chemical Geology,1995,120(3/4):347359.
[68]WOOD D A.The Application of a ThHfTa Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province[J].Earth and Planetary Science Letters,1980,50(1):1130.
[69]PEARCE J A.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust[J].Lithos,2008,100(1/2/3/4):1448.
[70]陳榮度.一個早元古代裂谷盆地:遼東裂谷[J].遼寧地質(zhì),1984,1(2):125133.
CHEN Rongdu.A Paleoproterozoic Rift Basin:Liaodong Rift[J].Liaoning Geology,1984,1(2):125133.
[71]張秋生.中國早前寒武紀地質(zhì)及成礦作用[M].長春:吉林人民出版社,1984.
ZHANG Qiusheng.Geology and Metallogeny of the Early Precambrian in China[M].Changchun:Jilin Peoples Publishing House,1984.
[72]劉永江,李三忠.遼東海城—大石橋—吉洞地區(qū)早元古代花崗巖[J].遼寧地質(zhì),1996,13(1):1018.
LIU Yongjiang,LI Sanzhong.Paleoproterozoic Granite in HaichengDashiqiaoJidong Area,Eastern Liaoning[J].Liaoning Geology,1996,13(1):1018.
[73]LI S Z,ZHAO G C,SUN M,et al.Deformation History of the Paleoproterozoic Liaohe Assemblage in the Eastern Block of the North China Craton[J].Journal of Asian Earth Sciences,2005,24(5):659674.
[74]白瑾,黃學光,戴鳳巖,等.中國前寒武紀地殼演化[M].北京:地質(zhì)出版社,1993.
BAI Jin,HUANG Xueguang,DAI Fengyan,et al.Precambrian Crustal Evolution of China[M].Beijing:Geological Publishing House,1993.
[75]FAURE M,LIN W,MONIE P,et al.Palaeoproterozoic Arc Magmatism and Collision in Liaodong Peninsula (Northeast China)[J].Terra Nova,2004,16(2):7580.
[76]
瘙 塁 ENGOR A M C.Plate Tectonics and Orogenic Research After 25 Years:A Tethyan Perspective[J].Earthscience Reviews,1990,27(1/2):1201.
[77]CONDIE K C.Plate Tectonics and Crustal Evolution[M].4th ed.Oxford:ButterworthHeinemann,1997.
[78]ZHAO G C,CAO L,WILDE S A,et al.Implications Based on the First SHRIMP UPb Zircon Dating on Precambrian Granitoid Rocks in North Korea[J].Earth and Planetary Science Letters,2006,251(3/4):365379.
[79]ZHAI M G,GUO J H,PENG P,et al.UPb Zircon Age Dating of a Rapakivi Granite Batholith in Rangnim Massif,North Korea[J].Geological Magazine,2007,144(3):547552.
[80]吳福元,李秋立,楊正赫,等.朝鮮北部狼林地塊構(gòu)造歸屬與地殼形成時代[J].巖石學報,2016,32(10):29332947.
WU Fuyuan,LI Qiuli,YANG Jonghyok,et al.Crustal Growth and Evolution of the Rangnim Massif,Northern Korean Peninsula[J].Acta Petrologica Sinica,2016,32(10):29332947.
[81]趙磊,張艷斌,楊正赫,等.朝鮮狼林地塊東南緣太古宙巖石及其對古元古代構(gòu)造熱事件的響應(yīng)[J].巖石學報,2016,32(10):29482964.
ZHAO Lei,ZHANG Yanbin,YANG Zhenghe,et al.Archean Rocks at the Southeastern Margin of the Rangnim Massif,Northern Korean Peninsula,and Their Response to Paleoproterozoic Tectonothermal Event[J].Acta Petrologica Sinica,2016,32(10):29482964.
[82]PENG P,WANG X P,WINDLEY B F,et al.Spatial Distribution of ~1 9501 800 Ma Metamorphic Events in the North China Craton:Implications for Tectonic Subdivision of the Craton[J].Lithos,2014,202/203:250266.