初元紅, 蔣紅敬, 鄭喜英
(黃河科技學(xué)院 信息工程學(xué)院,河南 鄭州 450063)
用非精確King-werner法求解奇異問(wèn)題
初元紅, 蔣紅敬, 鄭喜英
(黃河科技學(xué)院 信息工程學(xué)院,河南 鄭州 450063)
科學(xué)中很多實(shí)際工程問(wèn)題、生物問(wèn)題最終轉(zhuǎn)化為求解非線性奇異方程,king-werner法因?yàn)槭諗侩A較高、計(jì)算量少,成為求解非線性方程的經(jīng)典迭代法.但在建模過(guò)程中,抽象的數(shù)學(xué)模型和實(shí)際問(wèn)題之間,總存在一定偏差,因此研究用非精確king-werner法求解非線性方程意義更大.在精確的king-werner法中加入攝動(dòng)項(xiàng),用來(lái)求解奇異問(wèn)題,給出了迭代格式的收斂性和漸進(jìn)收斂速率.
Hilbert空間;非線性方程;非精確king-werner法;奇異問(wèn)題;收斂速率
設(shè)F為Hilbert空間H到H的光滑非線性算子,x*為方程F(x)=0的解.當(dāng)F′(x*)不可逆時(shí),稱(chēng)方程F(x)=0為奇異方程.文獻(xiàn)[1-9]中分別給出了Newton等方法求解奇異方程的過(guò)程,并給出了漸進(jìn)收斂率.由于實(shí)際問(wèn)題和數(shù)學(xué)模型之間存在差異,所以考慮用非精確king-werner法求解非線性方程F(x)=0,其迭代如下:
(1)
其中T(x)=F(x)+β3(x),r(x)=β2(x).在奇異點(diǎn)處不精確king-werner法仍然收斂,且漸進(jìn)收斂率為0.430.
假設(shè)F′(x*)為指數(shù)為0的Fredholm算子,用N和X表示F′(x*)零空間和值域,用PN和PX表示H到N和X上的投影算子且滿足[3]:F′(x*)有一維零空間
N=span{φ}, ‖φ‖=<φ,φ>1/2=1,H=X⊕N,
(2)
PNF″(x*)(φ,φ)≠0,PN=I-PX.
(3)
記
(4)
引理1 若F滿足下列條件
1) dimN=1; 2)F∈C3; 3)B(z)為N上的可逆算子,?z∈N,
(5)
證明略.
本文的主要結(jié)果:
(6)
(7)
y1-x*=y0-x*-F′(z0)-1(F(y0)+β3(y0))+β2(y0).
(8)
由引理1知
F′(z0)-1=β-1(z0),
由泰勒公式有
帶入(8)得
(9)
(10)
由引理1可知
同理,可以推出
且存在常數(shù)c1,c2使
(11)
由式(11)有
即
取α<1,則有
取θ0,ρ0充分小,使(1-α)-6(c1θ0+c2ρ0)≥0,則
ρn=yn-x*,ζn+ηn=znζn,
上面證明了非精確king-werner法的收斂性,下面將該方法加速.
(12)
利用Hilbert空間的特征不等式得[9]
則
為了提高算法的收斂速率,令
證明略.
取初始點(diǎn)x1=0.1,x2=0.5,y1=0.12,y2=0.5,部分計(jì)算結(jié)果見(jiàn)表1.
表1 部分計(jì)算結(jié)果
[1] RALL L B. Convergence of the Newton process to multiple solutions[J].Numerische Mathematik,1966,9(1): 23-37.
[2] REDDIEN G W. On Newton’s method for singular problems[J]. SIAM Journal on Numerical Analysis,1978,15(5): 993-996.
[3] DECKER D W,KELLEY C T. Convergence rates for Newton’s method at singular point[J]. SIAM Journal on Numerical Analysis,1983,20(2):296-314.
[4] DECKER D W,KELLEY C T. Convergence acceleration for Newton’s Method at singular point[J]. SIAM Journal on Numerical Analysis, 1982, 19(1): 219-229.
[5] 潘狀元.求解奇異問(wèn)題加速迭代格式的構(gòu)造[J].工程數(shù)學(xué)學(xué)報(bào),1997,14(2):59-64.
[6] 初元紅,潘狀元,劉曉敏.用修正的Broyden方法求解奇異問(wèn)題[J].哈爾濱理工大學(xué)學(xué)報(bào),2006,11(1):39-42.
[7] 初元紅,馬紅娟.Newton-Moser法在奇異點(diǎn)處的加速[J].數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用,2014,35(1):53-58.
[8] 楊月梅,潘狀元.用非精確的平行割線法求解奇異問(wèn)題[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2013,43(6):240-245.
[9] 徐宗本.LP空間特征不等式及應(yīng)用[J].數(shù)學(xué)學(xué)報(bào),1989,12(2):209-218.
Non-accurate King-werner Method for Solving Singular Problem
CHU Yuanhong, JIANG Hongjing, ZHENG Xiying
(CollegeofInformationEngineering,HuangheScienceandTechnologyCollege,Zhengzhou450063,China)
In science, there are many practical engineering problems and biological problems which have to be transformed into solving nonlinear singular equations. The king-werner method is a classical iterative method for solving nonlinear equations because of its higher convergence order and less computation. But in the process of modeling, there is always a certain deviation between abstract mathematical model and practical problems. So it is important to research the non-accurate king-werner method which is used to solve the nonlinear equation. Adding the perturbation term in the precise king-werner method is used to solve the singular problem. The convergence and the asymptotic convergence rate of the iterative scheme are given.
Hilbert space; nonlinear equation; non-accurate king-werner method; singular problems; convergence rate
2016-12-06
鄭州市科技局資助項(xiàng)目(20141374,20141375);河南省教育廳項(xiàng)目(14B110024)
初元紅(1979—),女,河南鄭州人,黃河科技學(xué)院信息工程學(xué)院副教授,主要研究方向:數(shù)值計(jì)算.
10.3969/j.issn.1007-0834.2017.01.004
O241
A
1007-0834(2017)01-0019-05