陳 芳 張 昊 魏金濤 楊雪海 趙 娜 張 巍
(湖北省農(nóng)業(yè)科學(xué)院畜牧獸醫(yī)研究所,動物胚胎工程及分子育種湖北省重點實驗室,武漢430064)
?
微小RNA對腸道健康的影響及作用機制
陳 芳 張 昊 魏金濤 楊雪海 趙 娜 張 巍
(湖北省農(nóng)業(yè)科學(xué)院畜牧獸醫(yī)研究所,動物胚胎工程及分子育種湖北省重點實驗室,武漢430064)
腸道既是機體營養(yǎng)物質(zhì)消化吸收的主要場所,也是防御腸道微生物感染的先天性屏障,腸道健康是機體正常生長發(fā)育的關(guān)鍵。微小RNA(miRNAs)是基因轉(zhuǎn)錄后調(diào)控的重要因子。本文主要對腸道m(xù)iRNAs表達情況,miRNAs在腸道細胞中的增殖、分化、凋亡,miRNAs在營養(yǎng)代謝、腸道屏障功能、腸道相關(guān)疾病進程調(diào)控中的作用以及腸道對外源miRNAs攝取等方面的研究進行綜述,以期為相關(guān)研究的開展提供參考。
miRNAs;腸道;影響;作用機制
腸道是機體營養(yǎng)物質(zhì)消化吸收的主要場所,也是防御腸道微生物感染的先天性屏障,腸道健康是機體正常生長發(fā)育的關(guān)鍵。微小RNA(microRNAs,miRNAs)是一類長度20~24 nt的非編碼單鏈小分子RNA,是基因轉(zhuǎn)錄后調(diào)控的重要因子[1]。目前,腸道相關(guān)miRNAs的研究主要集中在人和小鼠腸道疾病發(fā)生發(fā)展調(diào)控方面。然而,越來越多研究表明miRNAs在腸道形態(tài)結(jié)構(gòu)維持、內(nèi)穩(wěn)態(tài)維持、營養(yǎng)代謝等方面亦發(fā)揮重要調(diào)控作用。畜禽腸道健康相關(guān)miRNAs的研究也越來越受到關(guān)注。本文擬就miRNAs對腸道健康的影響及作用機制進行綜述,以期為相關(guān)研究的開展提供參考。
miRNAs在腸道中表達豐富,Coutinho等[2]在牛小腸中檢測到559種miRNAs,且187種為小腸特異性表達miRNAs;Sharbati等[3]在仔豬腸道中鑒定出332種miRNAs,且201種為腸道中新發(fā)現(xiàn)miRNAs。除此之外,不同腸段形態(tài)結(jié)構(gòu)、營養(yǎng)物質(zhì)消化吸收以及微生物定植存在較大差異,相應(yīng)地,miRNAs在不同腸段的表達亦存在較大差異,且miRNAs在腸道的表達隨著腸道組織的發(fā)育存在時間性差異[4]。
小腸黏膜上皮是一個快速自我更新的組織,腸道細胞的增殖、分化和凋亡與腸道健康密切相關(guān),這一過程受阻將導(dǎo)致腸道功能紊亂。Dicer1酶是miRNAs合成的關(guān)鍵酶,Dicer基因缺失可導(dǎo)致小鼠空腸和結(jié)腸隱窩細胞凋亡劇增,空腸細胞遷移亦顯著增加[5];miR-29b參與調(diào)控小腸黏膜生長,過表達miR-29b可使細胞停滯于G1期[6];miR-375亦參與調(diào)控腸內(nèi)分泌細胞發(fā)育等[7]。綜上所述,miRNAs參與調(diào)控腸道細胞增殖、分化和凋亡,在維持腸道形態(tài)結(jié)構(gòu)完整和正常功能行使中起重要作用。
腸道作為營養(yǎng)物質(zhì)消化吸收的主要器官,miRNAs參與腸上皮對營養(yǎng)物質(zhì)的消化吸收過程,如miR-494參與腸道氯化鈉(NaCl)吸收及電解質(zhì)平衡調(diào)控[8];miR-584可通過調(diào)控小鼠乳鐵蛋白受體表達,參與新生動物營養(yǎng)代謝過程[9]。腸道內(nèi)容物中的營養(yǎng)物質(zhì)亦可通過影響腸道組織miRNAs表達參與相關(guān)代謝通路調(diào)控。微量元素硒可通過相關(guān)miRNAs調(diào)控Caco-2細胞花生四烯酸代謝、谷胱甘肽代謝及氧化應(yīng)激等通路[10]。多酚類物質(zhì)如槲皮素可通過調(diào)控腸道相關(guān)miRNAs表達影響腸道對鐵離子的吸收轉(zhuǎn)運[11]。除此之外,miRNAs可介導(dǎo)營養(yǎng)物質(zhì)對相關(guān)疾病的營養(yǎng)調(diào)控過程。高紅肉飲食可通過提高miR-17-92表達水平增加結(jié)腸癌風險,而抗性淀粉作用剛好相反[12]。核桃中多不飽和脂肪酸通過上調(diào)小鼠大腸腫瘤組織中相關(guān)miRNAs表達,調(diào)控抗炎、抗增殖和細胞凋亡相關(guān)靶基因的表達[13]。綜上所述,miRNAs在腸道營養(yǎng)物質(zhì)吸收、代謝與功能行使過程中起重要調(diào)控作用,相關(guān)miRNAs可為營養(yǎng)調(diào)控提供新靶點與新思路。
腸道屏障功能是腸道防止有毒有害物質(zhì)通過腸黏膜進入機體的結(jié)構(gòu)和功能總和,是維持機體內(nèi)環(huán)境穩(wěn)態(tài)的重要保障。腸道屏障功能破壞會影響機體健康,導(dǎo)致多種疾病發(fā)生。
4.1 腸道黏膜上皮屏障
腸道黏膜上皮屏障主要包括上皮細胞表面的黏液層和腸上皮細胞及其之間的緊密連接。腸道上皮屏障的破壞可導(dǎo)致腸黏膜通透性增加及細菌移位,并觸發(fā)炎癥等一系列病理過程。眾多研究結(jié)果表明,miRNAs參與腸道上皮屏障功能調(diào)控。覆蓋于腸上皮表面的黏液層由杯狀細胞分泌,而miRNAs參與調(diào)節(jié)小腸上皮杯狀細胞分化[14],小腸特異性缺失Dicer1酶的小鼠結(jié)腸上皮中杯狀細胞數(shù)量明顯減少,并導(dǎo)致小腸黏膜免疫力缺失[15]。另外,miRNAs參與腸道上皮緊密連接通透性的調(diào)控過程:miRNAs介導(dǎo)酒精等對腸道上皮緊密連接通透性的影響[16];miRNAs參與年齡對腸道通透性的影響[17];miRNAs亦參與應(yīng)激等造成的腸道上皮損傷調(diào)控[18];等。
4.2 腸道免疫屏障
腸道黏膜免疫系統(tǒng)是動物機體免疫系統(tǒng)的重要組成部分,在抵抗病原微生物入侵、保障機體健康方面起著重要作用。固有免疫系統(tǒng)是機體抵抗病原的第一重防御。miRNAs參與固有免疫細胞發(fā)育,如miR-181、miR-150、miR-15/16促進自然殺傷細胞發(fā)育而miR-483、miR-583抑制其發(fā)育[19];miR-155、miR-221等參與調(diào)控樹突狀細胞凋亡[20]。另外,miRNAs參與固有免疫應(yīng)答過程,如miR-122等可通過調(diào)控模式識別受體NOD樣受體(NLR)家族成員NOD2參與炎癥性腸病的病程調(diào)控等[21]。除此之外,miRNAs在機體特異性免疫系統(tǒng)中扮演重要角色。miRNAs參與免疫細胞成熟與激活,如miR-29、miR-155、miR-17-92參與Th1細胞分化及功能調(diào)控[22],miR-21可通過一種T細胞內(nèi)源性途徑調(diào)控Th2細胞分化[23]。miRNAs亦參與免疫細胞功能發(fā)揮,如miR-146a可約束腸道T細胞群體的擴張及減少免疫球蛋白A(IgA)的產(chǎn)生[24]。另外,miRNAs可通過調(diào)控其免疫相關(guān)靶基因的表達參與腸道特異性免疫反應(yīng)及腸道免疫穩(wěn)定維持,如miR-150與白細胞介素-1受體1激酶[25],miR-212/132與白細胞介素-10[26],等。miRNAs在自身免疫系統(tǒng)疾病乳糜泄病人十二指腸中異常表達亦證實miRNAs在腸道免疫屏障中的重要作用[27]。
4.3 腸道微生物屏障
腸道棲息著與機體共生的龐大微生物群體,構(gòu)成機體腸道的微生物屏障。腸道微生態(tài)穩(wěn)定是機體健康的保障。腸道共生菌與機體互作促進腸道內(nèi)環(huán)境穩(wěn)定,而miRNAs參與該系列過程。腸道共生微生物影響腸道m(xù)iRNAs表達譜:與正常情況相比,無菌條件下飼養(yǎng)的小鼠盲腸中有16種miRNAs表達異常[28]。除此之外,腸道微生物參與細菌感染對宿主腸道編碼蛋白基因和miRNAs表達的調(diào)控:正常小鼠和無菌小鼠感染單核細胞增多性李斯特氏菌后,腸道多個miRNAs表達的變化和腸道微生物存在與否有關(guān)[29]。
益生菌廣泛用于促進人和動物健康水平,其在分子水平發(fā)揮作用的一種可能機制是調(diào)控腸道m(xù)iRNAs和免疫相關(guān)基因表達。仔豬飼喂屎腸球菌NCIMA 10415可提高回腸和空腸淋巴細胞中miR-423-5p表達進而參與免疫調(diào)控[30]。慢性酒精刺激可誘導(dǎo)miR-122a表達,最終導(dǎo)致腸道屏障功能破壞,而鼠李糖乳酸桿菌GG株培養(yǎng)上清液可通過抑制酒精誘導(dǎo)的miR-122a表達上調(diào)保護腸道完整性[31]。因此,研究miRNAs在益生菌與腸道互作中的調(diào)控作用,對開發(fā)利用益生菌具有重要意義。
miRNAs參與炎性腸疾病病程發(fā)展調(diào)控。例如,miR-125參與調(diào)控節(jié)段性回腸炎病人病程發(fā)展[32],而miR-19b可減少其炎癥反應(yīng)[33];miR-29a參與調(diào)控潰瘍性結(jié)腸炎的發(fā)病過程[34],而miR-155參與其腸肌纖維細胞炎癥表型[35];等。因此,這些miRNAs有望成為預(yù)測炎性腸病病程發(fā)展標記及治療靶點。另外,miRNAs在2種炎癥性腸病間表達變化的差異可作為鑒定和區(qū)別兩者的生物標記,如miR-19a、miR-21、miR-31、miR-101、miR-146a和miR-375[36]。結(jié)腸直腸癌是腸道常見的惡性腫瘤,多種miRNAs參與其病程發(fā)展。例如,miR-214表達與結(jié)腸炎相關(guān)結(jié)腸癌病程發(fā)展相關(guān)[37];miR-17-92在結(jié)腸癌的發(fā)展過程中起重要作用,可靶向調(diào)控多個誘導(dǎo)腫瘤血管發(fā)生相關(guān)基因的表達[38];等。除此之外,miRNAs可作為癌癥診斷的生物標記,如miR-26b在潰瘍性結(jié)腸炎相關(guān)的結(jié)腸癌組織和血清中表達上調(diào)且與疾病惡化程度相關(guān),而在散發(fā)性結(jié)腸癌中表達顯著下調(diào),因此其可作為區(qū)分潰瘍性結(jié)腸炎相關(guān)的結(jié)腸癌和散發(fā)性結(jié)腸癌的生物標記[39]??傊琺iRNAs在腸道疾病病程中起重要調(diào)控作用,并在具有相似癥狀疾病間存在表達變化的差異性,可為腸道疾病的檢測治療提供新靶點與新思路。
飲食中包含大量的外源miRNAs。有研究結(jié)果表明,外源miRNAs可通過進食獲得并進入受體細胞調(diào)控相關(guān)靶基因表達進而影響受體細胞功能[40]。牛奶中外泌體miRNAs可通過腸道內(nèi)吞作用進入新生兒機體內(nèi)并在新生兒免疫系統(tǒng)發(fā)育中扮演重要角色[41]。但到目前為止,通過進食獲得外源miRNAs功能的研究還存在較大爭議。Snow等[42]在進食蘋果和香蕉后人血清中幾乎沒有檢測到植物源miRNAs。飼喂高表達miR-30b轉(zhuǎn)基因小鼠奶的幼鼠血液、小腸、肝臟、肺臟和腎臟中miR-30b水平與飼喂野生型小鼠奶亦無顯著性差異[43]。若外源性miRNAs可通過腸道吸收調(diào)控相關(guān)靶器官基因表達則使口服miRNAs作為相關(guān)疾病的治療手段成為可能。另外,腸道作為直接攝取外源miRNAs的器官,miRNAs作為腸道疾病治療手段可能更易于其他器官。因此該方向的研究依然值得關(guān)注。
在畜禽養(yǎng)殖過程中,腸道健康是影響其生產(chǎn)性能的關(guān)鍵因素。近年來,與畜禽腸道健康相關(guān)miRNAs研究也越來越受到重視。斷奶應(yīng)激是影響仔豬生產(chǎn)的重大問題,相同日齡斷奶和哺乳狀態(tài)下仔豬腸道中多種miRNAs表達差異顯著,且主要參與腸道代謝、應(yīng)激及免疫反應(yīng)[44];大腸桿菌F18感染易造成斷奶仔豬腹瀉和水腫病,該菌敏感型和抵抗型斷奶仔豬腸道中表達差異顯著的12種miRNAs可作為該菌易感性的候選標記[45]。miRNAs亦參與了益生菌[30]、霉菌毒素[46]等對豬腸道健康的調(diào)控。在家禽研究方面,miRNAs參與病原感染引起的宿主反應(yīng)過程,如接種空腸彎曲桿菌的雞盲腸中4種miRNAs表達變化顯著[47];另外,miRNAs參與腸道疾病和病原易感性的調(diào)控,如壞死性腸炎敏感性不同的2個白萊航雞品系腸道中10種miRNAs表達差異顯著[48],馬立克病抵抗和敏感的不同品系雞腸道中多個miRNAs差異表達并參與炎癥相關(guān)基因調(diào)控[49]。綜上所述,miRNAs在畜禽腸道健康調(diào)控、疾病診斷、抗病育種等方面具有重要的研究價值,但現(xiàn)有研究主要停留在篩選階段,miRNAs具體作用機制還需進一步深入研究。
人和小鼠模型等腸道健康相關(guān)miRNAs的研究已使我們充分認識到miRNAs在腸道健康中的重要調(diào)控作用。但到目前為止,miRNAs在畜禽腸道中功能的研究還比較滯后。隨著miRNAs在畜禽腸道發(fā)育、營養(yǎng)代謝以及各種應(yīng)激和腸道疾病中功能研究的進一步深入,miRNAs及其靶基因形成的調(diào)控通路有望成為畜禽健康調(diào)控的新靶點,為畜禽腸道健康的營養(yǎng)調(diào)控及相關(guān)疾病的抗病育種研究提供新思路,具有重要的研究意義與應(yīng)用前景。
[1] ZHANG L,CHENG J,FAN X M.MicroRNAs:new therapeutic targets for intestinal barrier dysfunction[J].World Journal of Gastroenterology,2014,20(19):5818-5825.
[2] COUTINHO L L,MATUKUMALLI L K,SONSTEGARD T S,et al.Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues[J].Physiological Genomics,2007,29(1):35-43.
[3] SHARBATI S,FRIEDLNDER M R,SHARBATI J,et al.Deciphering the porcine intestinal microRNA transcriptome[J].BMC Genomics,2010,11:275.
[4] LIANG G X,MALMUTHUGE N,MCFADDEN T B,et al.Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life[J].PLoS One,2014,9(3):e92592.
[5] MCKENNA L B,SCHUG J,VOUREKAS A,et al.MicroRNAs control intestinal epithelial differentiation,architecture,and barrier function[J].Gastroenterology,2010,139(5):1654-1664,1664.e1.
[6] XIAO L,RAO J N,ZOU T T,et al.miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2[J].Molecular Biology of the Cell,2013,24(19):3038-3046.
[7] KNUDSEN L A,PETERSEN N,SCHWARTZ T W,et al.The microRNA repertoire in enteroendocrine cells:identification of miR-375 as a potential regulator of the enteroendocrine lineage[J].Endocrinology,2015,156(11):3971-3983.
[8] ANBAZHAGAN A N,PRIYAMVADA S,KUMAR A,et al.Translational repression of SLC26A3 by miR-494 in intestinal epithelial cells[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,2014,306(2):G123-G131.
[9] LIAO Y,L?NNERDAL B.miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period[J].International Journal of Biochemistry & Cell Biology,2010,42(8):1363-1369.
[10] MACIEL-DOMINGUEZ A,SWAN D,FORD D,et al.Selenium alters miRNA profile in an intestinal cell line:evidence that miR-185 regulates expression of GPX2 and SEPSH2[J].Molecular Nutrition & Food Research,2013,57(12):2195-2205.
[11] LESJAK M,HOQUE R,BALESARIA S,et al.Quercetin inhibits intestinal iron absorption and ferroportin transporter expressioninvivoandinvitro[J].PLoS One,2014,9(7):e102900.
[12] PERES J.Resistant starch may reduce colon cancer risk from red meat[J].Journal of the National Cancer Institute,2014,106(10),doi:10.1093/jnci/dju341.
[13] TSOUKAS M A,KO B J,WITTE T R,et al.Dietary walnut suppression of colorectal cancer in mice:mediation by miRNA patterns and fatty acid incorporation[J].The Journal of Nutrition Biochemistry,2015,26(7):776-783.
[14] GOTO Y,KIYONO H.Epithelial cell microRNAs in gut immunity[J].Nature Immunology,2011,12(3):195-197.
[15] BITON M,LEVIN A,SLYPER M,et al.Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk[J].Nature Immunology,2011,12(3):239-246.
[16] YU T,LU X J,LI J Y,et al.Overexpression of miR-429 impairs intestinal barrier function in diabetic mice by down-regulating occludin expression[J].Cell and Tissue Research,2016,doi:10.1007/s00441-016-2435-5.
[17] TRAN L,GREENWOOD-VAN MEERVELD B.Age-associated remodeling of the intestinal epithelial barrier[J].The Journals of Gerontology Series A:Biological Sciences and Medical Sciences,2013,68(9):1045-1056.
[18] YU J,LIU F,YIN P,et al.Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine[J].Functional & Integrative Genomics,2011,11(2):203-213.
[19] LEONG J W,WAGNER J A,IRELAND A R,et al.Transcriptional and post-transcriptional regulation of NK cell development and function[J].Clinical Immunology,2016,doi:10.1016/j.clim.2016.03.003.
[20] LU C M,HUANG X,ZHANG X X,et al.miR-221 and miR-155 regulate human dendritic cell development,apoptosis,and IL-12 production through targeting of p27kip1,KPC1,and SOCS-1[J].Blood,2011,117(16):4293-4303.
[21] CHEN Y,WANG C X,LIU Y,et al.miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease[J].Biochemical and Biophysical Research Communications,2013,438(1):133-139.
[22] KALLA R,VENTHAM N T,KENNEDY N A,et al.MicroRNAs:new players in IBD[J].Gut,2015,64(3):504-513.
[23] SAWANT D V,WU H,KAPLAN M H,et al.The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway[J].Molecular Immunology,2013,54(3/4):435-442.
[24] RUNTSCH M C,HU R,ALEXANDER M,et al.microRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis[J].Oncotarget,2015,6(30):28556-28572.
[25] KUMAR V,TORBEN W,KENWAY C S,et al.Longitudinal examination of the intestinal lamina propria cellular compartment of simian immunodeficiency virus-infected rhesus macaques provides broader and deeper insights into the link between aberrant microRNA expression and persistent immune activation[J].Journal of Virology,2016,90(10):5003-5019.
[26] CHINEN I,NAKAHAMA T,KIMURA A,et al.The aryl hydrocarbon receptor/microRNA-212/132 axis in T cells regulates IL-10 production to maintain intestinal homeostasis[J].International Immunology,2015,27(8):405-415.
[27] MAGNI S,COMANI G B,ELLI L,et al.miRNAs affect the expression of innate and adaptive immunity proteins in celiac disease[J].American Journal of Gastroenterology,2014,109(10):1662-1674.
[28] SINGH N,SHIRDEL E A,WALDRON L,et al.The murine caecal microRNA signature depends on the presence of the endogenous microbiota[J].International Journal of Biological Sciences,2012,8(2):171-186.
[29] ARCHAMBAUD C,SISMEIRO O,TOEDLING J,et al.The intestinal microbiota interferes with the microRNA response upon oral Listeria infection[J].MBio,2013,4(6):e00707-13.
[30] KREUZER-REDMER S,BEKURTZ J C,ARENDS D,et al.Feeding ofEnterococcusfaeciumNCIMB 10415 leads to intestinal miRNA-423-5p-induced regulation of immune-relevant genes[J].Applied and Environmental Microbiology,2016,82(8):2263-2269.
[31] ZHAO H Y,ZHAO C Q,DONG Y Y,et al.Inhibition of miR122a byLactobacillusrhamnosusGG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease[J].Toxicology Letters,2015,234(3):194-200.
[32] PECK B C E,WEISER M,LEE S E,et al.microRNAs classify different disease behavior phenotypes of Crohn’s disease and may have prognostic utility[J].Inflammatory Bowel Diseases,2015,21(9):2178-2187.
[33] CHENG X Q,ZHANG X F,SU J W,et al.miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn’s disease[J].Scientific Reports,2015,5:10397.
[34] LV B,LIU Z,WANG S,et al.miR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1[J].International Journal of Clinical and Experimental Pathology,2014,7(12):8542-8552.
[35] PATHAK S,GRILLO A R,SCARPA M,et al.miR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis[J].Experimental & Molecular Medicine,2015,47:e164.
[36] SCHAEFER J S,ATTUMI T,OPEKUN A R,et al.microRNA signatures differentiate Crohn’s disease from ulcerative colitis[J].BMC Immunology,2015,16:5.
[37] POLYTARCHOU C,HOMMES D W,PALUMBO T,et al.microRNA214 is associated with progression of ulcerative colitis,and inhibition reduces development of colitis and colitis-associated cancer in mice[J].Gastroenterology,2015,149(4):981-992.e911.
[38] MA H B,PAN J S,JIN L X,et al.MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis[J].Cancer Letters,2016,376(2):293-302.
[39] BENDERSKA N,DITTRICH A L,KNAUP S,et al.miRNA-26b Overexpression in ulcerative colitis-associated carcinogenesis[J].Inflammatory Bowel Diseases,2015,21(9):2039-2051.
[40] ZHANG L,HOU D X,CHEN X,et al.Exogenous plant MIR168a specifically targets mammalian LDLRAP1:evidence of cross-kingdom regulation by microRNA[J].Cell Research,2012,22(1):107-126.
[41] GU Y R,LI M Z,WANG T,et al.Lactation-related microRNA expression profiles of porcine breast milk exosomes[J].PLoS One,2012,7(8):e43691.
[42] SNOW J W,HALE A E,ISAACS S K,et al.Ineffective delivery of diet-derived microRNAs to recipient animal organisms[J].RNA Biology,2013,10(7):1107-1116.
[43] LAUBIER J,CASTILLE J,LE GUILLOU S,et al.No effect of an elevated miR-30b level in mouse milk on its level in pup tissues[J].RNA Biology,2015,12(1):26-29.
[44] TAO X,XU Z W.microRNA transcriptome in swine small intestine during weaning stress[J].PLoS One,2013,8(11):e79343.
[45] YE L,SU X M,WU Z C,et al.Analysis of differential miRNA expression in the duodenum of Escherichia coli F18-sensitive and-resistant weaned piglets[J].PLoS One,2012,7(8):e43741.
[46] BRZUZAN P,WONY M,WOLINSKA-NIZIOL,et al.microRNA expression profiles in liver and colon of sexually immature gilts after exposure toFusariummycotoxins[J].Polish Journal of Veterinary Sciences,2015,18(1):29-38.
[47] DINH H,HONG Y H,LILLEHOJ H S.Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility[J].Veterinary Immunology and Immunopathology,2014,159(1/2):74-82.
[48] LIU X Y,LIU L Y,ZHANG M Z,et al.Chicken cecal microRNAs in the response toCampylobacterjejuniinoculation by Solexa sequencing[J].Poultry Science,2016,doi:10.3382/ps/pew190.
[49] HONG Y H,DINH H,LILLEHOJ H S,et al.Differential regulation of microRNA transcriptome in chicken lines resistant and susceptible to necrotic enteritis disease[J].Poultry Science,2014,93(6):1383-1395.
Author, CHEN Fang, assistant professor, E-mail: zhhchenfang0730@hotmail.com
(責任編輯 王智航)
MicroRNAs: Effects on Intestinal Health and Its Mechanisms
CHEN Fang ZHANG Hao WEI Jintao YANG Xuehai ZHAO Na ZHANG Wei
(HubeiKeyLaboratoryofAnimalEmbroyoEngineeringandMolecularBreeding,InstituteofAnimalHusbandryandVeterinarySciences,HubeiAcademyofAgriculturalSciences,Wuhan430064,China)
Intestine is the major organ of digesting and absorbing nutrients and plays an important role in protecting body against from bacterial infection. MicroRNAs (miRNAs) serve as important intracellular factor in post-transcriptional regulation of gene expression. In this paper, in order to provide reference for further study, we summarized recent researches in the expression of miRNAs in intestinal tissue, the effects of miRNAs on proliferation, differentiation and apoptosis of intestinal cells, the regulatory function on nutrient metabolism, intestinal barrier function and disease progression, and the absorption of external miRNAs in intestine.[ChineseJournalofAnimalNutrition, 2017, 29(1):21-26]
miRNAs; intestine; effect; mechanism
10.3969/j.issn.1006-267x.2017.01.003
2016-07-14
湖北省農(nóng)業(yè)科學(xué)院青年基金(2015NKYJJ27);湖北省創(chuàng)新團隊項目(2016-620-000-001-028)
陳 芳(1987—),女,四川眉山人,助理研究員,博士,主要從事動物營養(yǎng)調(diào)控機理與飼料資源開發(fā)利用研究。E-mail: zhhchenfang0730@hotmail.com
S852.2
A
1006-267X(2017)01-0021-06