劉 洋, 潘 斌
(遼寧石油化工大學(xué) 理學(xué)院,遼寧 撫順 113001)
一類高階差分方程的無窮多非振蕩解
劉 洋, 潘 斌
(遼寧石油化工大學(xué) 理學(xué)院,遼寧 撫順 113001)
研究了一類高階非線性中立時滯差分方程,通過使用巴拿赫壓縮映射原理,得到了該方程存在無窮多個有界非振蕩解的充分條件,所得的結(jié)論改進了已有文獻的結(jié)果。
無窮多有界非振蕩解; 高階中立型時滯差分方程; 壓縮映射
隨著計算數(shù)學(xué)、計算機工程、自動控制技術(shù)等學(xué)科的迅速發(fā)展,差分方程理論在現(xiàn)代物理學(xué)、醫(yī)學(xué)、經(jīng)濟學(xué)等領(lǐng)域得到了越來越廣泛的應(yīng)用。學(xué)者們對于差分方程解的存在性的研究也越來越多[1-6]。針對各類差分方程,學(xué)者們也做了相應(yīng)的研究,如:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
本文考慮如下的高階非線性中立型時滯差分方程:
(11)
差分方程(11)的無窮多個有界非振蕩解存在的充分條件。
定理1 假設(shè)存在常數(shù)M、N,且滿足N>M>0,數(shù)列ain}n≥n0(1
(12)
(13)
(14)
則方程(11)在A(M,N)上有無窮多個有界非振蕩解。
(15)
(16)
(17)
(18)
對?x∈A(M,N)成立。
對?x∈A(M,N)和n≥n0,由式(13)和式(16),得:
現(xiàn)在只需證明TL是A(M,N)上的一個壓縮映射。由式(12)和式(17)可知,對?x,y∈A(M,N),?n≥n0,得:
即證TL是A(M,N)上的一個壓縮映射。由巴拿赫壓縮映射原理可知,TL必有唯一的不動點x∈A(M,N),并且該不動點就是方程(11)的一個有界非振蕩解。對?n≥N0+d得:
即:
……
因此,x為差分方程(11)的一個有界非振蕩解。
即證x≠y。定理證畢。
例1 考慮如下的四階非線性中立型時滯差分方程:
(19)
取M=1,N=2,容易驗證方程(19)滿足定理1所需的條件。因此,由定理1可得,方程(19)在A(1,2)上存在一個非振蕩解。
文獻[3-5]和文獻[7-16]中的結(jié)果都不能用于方程(19),因此本文所做的研究改進了現(xiàn)有文獻中的相關(guān)的結(jié)論,是有意義的。
[1] Agarwal R P. Difference equations and inequalities[M]. 2nd ed.,New York:Marcel Dekker,2000:1089-1097.
[2] Agarwal R P, Grace S R, O’Regan D. Oscillation theory for difference and functional differential equations[J]. Springer Science & Business Media, 2000, 73(3):657-662.
[3]AgarwalRP,ThandapaniE,WongPJ.Oscillationsofhigher-orderneutraldifferenceequations[J].AppliedMathem-aticsLetters, 1997, 10(1):71-78.
[4]AgarwalRP,GraceSR.Oscillationofhigher-ordernonlineardifferenceequationsofneutraltype[J].AppliedMathem-aticsLetters, 1999, 12(8):77-83.
[5]ChengJ.Existenceofanonoscillatorysolutionofasecond-orderlinearneutraldifferenceequation[J].AppliedMathem-aticsLetters, 2007, 20(8):892-899.
[7]ZhangZ,LiQ.Oscillationtheoremsforsecond-orderadvancedfunctionaldifferenceequations[J].Computers&MathematicswithApplications, 1998, 36(6):11-18.
[8]ThandapaniE,ManuelMMS,GraefJR,etal.Monotonepropertiesofcertainclassesofsolutionsofsecond-orderdifferenceequations[J].Computers&MathematicswithApplications, 1998, 36(10):291-297.
[9]MigdaM,MigdaJ.Asymptoticpropertiesofsolutionsofsecond-orderneutraldifferenceequations[J].NonlinearAnalysis:Theory,Methods&Applications, 2005, 63(5):789-799.
[10]MengQ,YanJ.Boundedoscillationforsecond-ordernonlineardelaydifferentialequationinacriticalstate[J].JournalofComputational&AppliedMathematics, 2006, 197(1):204-211.
[11]LiuZ,XuY,KangSM.Globalsolvabilityforasecondordernonlinearneutraldelaydifferenceequation[J].Computers&MathematicswithApplications, 2009, 57(4):587-595.
[12]ZhouY.Existenceofnonoscillatorysolutionsofhigher-orderneutraldifferenceequationswithgeneralcoefficients[J].AppliedMathematicsLetters, 2002, 15(7):785-791.
[13]YangFJ,LiuJC.Positivesolutionofevenordernonlinearneutraldifferenceequationswithvariabledelay[J].JournalofSystemsScience&MathematicalSciences, 2002, 22(1):85-89.
[14]GrzegorczykG,WerbowskiJ.Oscillationofhigher-orderlineardifferenceequations[J].Computers&MathematicswithApplications, 2001, 42(3):711-717.
[15]ZhouY,HuangYQ.Existencefornonoscillatorysolutionsofhigher-ordernonlinearneutraldifferenceequations[J].CzechoslovakMathematicalJournal,2005,280(1):63-76.
[16]ZhouY,ZhangBG.Existenceofnonoscillatorysolutionsofhigher-orderneutraldelaydifferenceequationswithvariablecoefficients[J].Computers&MathematicswithApplications, 2003, 45(6):991-1000.
(編輯 陳 雷)
Infinitely Many Bounded Nonoscillatory Solutions of a Higher-Order Equation
Liu Yang, Pan Bin
(CollegeofSciences,LiaoningShihuaUniversity,F(xiàn)ushunLiaoning113001,China)
This paper considers the solvability of a higher-order nonlinear neutral delay difference equation. By using the Banach contraction principle a sufficient condition of the existence of Infinitely many bounded nonoscillatory solutions of the equation is given,which fills a gap in the literature.
Infinitely many bounded nonoscillatory solutions; Higher-order neutral delay difference equation; Contraction mapping
1672-6952(2017)02-0066-05
2016-12-01
2016-12-21
國家自然科學(xué)基金項目(61602228)。
劉洋(1987-),女,碩士,助教,從事泛函分析方向研究;E-mail:liuyang466126@163.com。
O
Adoi:10.3969/j.issn.1672-6952.2017.02.014
投稿網(wǎng)址:http://journal.lnpu.edu.cn