王克魯,魯世強(qiáng),李 鑫,董顯娟
?
Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金+兩相區(qū)變形行為及工藝參數(shù)優(yōu)化
王克魯,魯世強(qiáng),李 鑫,董顯娟
(南昌航空大學(xué)航空制造工程學(xué)院,南昌 330063)
在變形溫度920~1040 ℃、應(yīng)變速率0.001~70.0 s?1條件下,采用Thermecmastor-Z熱模擬試驗(yàn)機(jī)研究Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金在+兩相區(qū)變形時(shí)的流動(dòng)行為和塑性變形機(jī)制,得到優(yōu)化的工藝參數(shù)范圍。結(jié)果表明:該合金在+兩相區(qū)變形時(shí)的流動(dòng)應(yīng)力對(duì)變形溫度和應(yīng)變速率均較敏感,變形溫度較低時(shí)(920、950和980 ℃),流動(dòng)應(yīng)力曲線呈流動(dòng)軟化特征,變形溫度較高時(shí)(1010和1040 ℃)呈穩(wěn)態(tài)流動(dòng)特征。失穩(wěn)變形工藝參數(shù)范圍為(920~930 ℃、0.2~70 s?1)和(1000~1040 ℃、1~70 s?1)范圍,該區(qū)域易產(chǎn)生局部流動(dòng)和機(jī)械失穩(wěn)。綜合加工圖及微觀組織觀察結(jié)果,優(yōu)化出的Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金+兩相區(qū)變形時(shí)的工藝參數(shù)范圍為(1000~1030 ℃、0.001~0.1 s?1)及(920~935 ℃、0.001~0.003 s?1),其塑性變形機(jī)制為超塑性成形。
Ti合金;變形行為;工藝參數(shù)優(yōu)化;加工圖
鈦合金是航空發(fā)動(dòng)機(jī)中的關(guān)鍵結(jié)構(gòu)材料,進(jìn)一步提高使用溫度是鈦合金技術(shù)領(lǐng)域的重要研究和發(fā)展方向[1]。目前高溫鈦合金的使用溫度已經(jīng)達(dá)到600 ℃,比較典型的高溫鈦合金主要有IMI834、Ti1100、BT36等[2?3]。Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金為我國(guó)自行研制的高溫鈦合金,具有優(yōu)良的綜合性能,適合在600 ℃條件下長(zhǎng)時(shí)間工作[4?5]。該鈦合金為近型高溫鈦合金,成形溫度范圍較窄,局部容易過熱,鍛件的組織性能對(duì)熱加工過程十分敏感,為了獲得所需的組織性能,需嚴(yán)格控制其成形過程[6]。
為了滿足航空發(fā)動(dòng)機(jī)對(duì)鍛件性能的需要,常要求鈦合金具有等軸組織。鈦合金在+/轉(zhuǎn)變溫度以下30~50 ℃加熱、成形,即常規(guī)鍛造時(shí)可得到等軸組織,該組織具有良好的塑性和熱穩(wěn)定性[7?9]。鈦合金鍛造一般得到片層狀組織,片層狀組織較為穩(wěn)定,難以通過熱處理使其球化,主要靠+兩相區(qū)變形得到等軸組織[10?11]。本文作者在熱模擬實(shí)驗(yàn)的基礎(chǔ)上,分析變形工藝參數(shù)對(duì)Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si- 0.85Nd合金+兩相區(qū)變形時(shí)流動(dòng)應(yīng)力的影響規(guī)律,構(gòu)建不同應(yīng)變下的加工圖,并進(jìn)一步分析加工圖中不同區(qū)域的變形特點(diǎn)及變形機(jī)制,得到了優(yōu)化的變形工藝參數(shù)范圍,研究結(jié)果可以為該合金的實(shí)際鍛造提供理論依據(jù)。
Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金材料取自于軋制環(huán)件,其+/轉(zhuǎn)變溫度為1040 ℃,原始組織如圖1所示。從圖1可以看出,熱變形前的組織以片層狀組織為主。
采用Thermecmastor-Z熱模擬試驗(yàn)機(jī)進(jìn)行等溫恒應(yīng)變速率壓縮試驗(yàn),試樣尺寸為8 mm×12 mm圓柱試樣,兩端加工有7.7 mm、深度0.2 mm的凹槽,用以儲(chǔ)存玻璃潤(rùn)滑劑,降低壓縮變形時(shí)的摩擦因數(shù)。以10 ℃/s的加熱速率將試樣加熱到規(guī)定溫度,保溫時(shí)間300 s,使溫度和組織均勻。變形溫度分別取920、950、980、1010及1040 ℃;應(yīng)變速率分別取1×10?3、1×10?2、1×10?1、1、10及70 s?1;最大高度壓下率為50%,對(duì)應(yīng)的真應(yīng)變約0.7;變形后的試樣立即噴氦氣冷卻。將變形后的試樣沿壓縮軸縱向切刨,制備金相試樣,采用體積比1:3:6的HF+HNO3+H2O的腐蝕劑進(jìn)行腐蝕,并使用XJP?6P金相顯微鏡對(duì)變形組織進(jìn)行觀察分析。
圖1 Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd鈦合金的原始組織
2.1 流動(dòng)應(yīng)力曲線
圖2所示為不同變形溫度下Ti-5.6Al-4.8Sn-2.0Zr- 1.0Mo-0.35Si-0.85Nd合金的流動(dòng)應(yīng)力曲線。從圖2可以看出,不同變形溫度下,在變形的初始階段(真應(yīng)變低于0.1時(shí)),流動(dòng)應(yīng)力均迅速上升,達(dá)到峰值。流動(dòng)應(yīng)力隨應(yīng)變速率的增大而增加,其增加的程度與變形溫度有關(guān),變形溫度越低,增加越明顯。在變形溫度950 ℃條件下(見圖2(a)),流動(dòng)應(yīng)力達(dá)到峰值后,隨著真應(yīng)變的繼續(xù)增加,流動(dòng)應(yīng)力開始下降,呈流動(dòng)軟化特征;應(yīng)變速率越高,流動(dòng)軟化現(xiàn)象越明顯。變形溫度920 ℃和980 ℃條件下的流動(dòng)應(yīng)力曲線與950 ℃時(shí)的情況相似,均呈流動(dòng)軟化趨勢(shì)。在變形溫度1010 ℃條件下(見圖2(b)),流動(dòng)應(yīng)力達(dá)到峰值后,隨著真應(yīng)變的繼續(xù)增加,流動(dòng)應(yīng)力變化較小,大致呈穩(wěn)態(tài)流動(dòng)特征;變形溫度1040 ℃時(shí)的流動(dòng)應(yīng)力曲線變化特征與1010 ℃時(shí)的情況相似。
圖2 不同變形溫度下Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si- 0.85Nd合金的流動(dòng)應(yīng)力曲線
2.2 熱變形行為分析
合金的高溫變形是由熱力學(xué)參數(shù)支配的熱激活過程,變形溫度和應(yīng)變速率對(duì)流動(dòng)應(yīng)力的綜合影響通常用動(dòng)力學(xué)方程來表示[12?13]:
(>1.2) (2)
(for all) (3)
由式(1)和(2)取對(duì)數(shù)可得:
(5)
根據(jù)Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金的熱壓縮試驗(yàn)得出的數(shù)據(jù),可繪制出與和與的關(guān)系曲線,如圖3所示。根據(jù)公式(4)和(5)可知,圖3中各直線的斜率即為所要求的1和值,進(jìn)一步可求出不同溫度下的值。求得的不同溫度下的平均值為0.018。
圖3 Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金的和的關(guān)系曲線
變形激活能用來衡量材料熱變形過程中原子發(fā)生重排時(shí)的難易程度,其大小受材料的本質(zhì)、變形溫度及應(yīng)變速率等因素的影響。根據(jù)式(3)可推導(dǎo)出激活能的表達(dá)式[14]如下:
則得到:
圖4所示為Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si- 0.85Nd合金?和1/?關(guān)系曲線。通過圖4計(jì)算得到的的平均值是2.88,的平均值是2.69。將值和值代入到式(7),可得到該合金在+兩相區(qū)的變形激活能值,其值約為644.1 kJ/mol。
圖4 Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金的?和?1/關(guān)系曲線
Fig. 4 Relationships of Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si- 0.85Nd alloy during hot compression?(a) and?1/(b)
應(yīng)變速率和變形溫度對(duì)流變應(yīng)力的影響可用Zener-Hollomom()參數(shù)來表示[15]:
式中:為溫度補(bǔ)償應(yīng)變速率因子。
將式(8)取自然對(duì)數(shù),可得:
將變形溫度、應(yīng)變速率和激活能帶入式(8),可求得值;以和為坐標(biāo),進(jìn)行單因素線性回歸,得到?的關(guān)系,如圖5所示。由式(9)可知,圖5的直線斜率即為,其值為2.76;截距為,其值為58.47,則值為2.47×1025。
圖5和的關(guān)系曲線
Fig. 5 Linear relationship betweenand
因而,Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金的本構(gòu)方程可表示為
2.3 加工圖及其分析
根據(jù)動(dòng)態(tài)材料模型理論,工件吸收的來自工具的功率,在塑性變形中通過以下兩個(gè)方面進(jìn)行耗 散[16?17]:
式中:為功率耗散量,表示由于塑性變形引起的功率耗散,大部分轉(zhuǎn)化為粘塑性熱(見式(12));為功率耗散協(xié)量,表示在變形過程中與組織演變有關(guān)的功率耗散[18](見式(13))。
(12)
功率耗散效率為
(14)
式中:為應(yīng)變速率敏感因子。為無量綱參數(shù),它隨應(yīng)變速率和溫度的變化便形成了功率耗散圖,功率耗散圖上的等值線表示與材料的微觀結(jié)構(gòu)演變相關(guān)的相對(duì)熵產(chǎn)率。一般說來,高值區(qū)域?qū)?yīng)著較好的加工性能區(qū)。
同時(shí),PRASAD等學(xué)者[19?20]提出了塑性失穩(wěn)判據(jù):
從圖6可以看出,Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo- 0.35Si-0.85Nd合金+兩相區(qū)變形時(shí),在高應(yīng)變速率區(qū)域,存在較大的流變失穩(wěn)區(qū)域,且隨著變形程度的增加,合金的流變失穩(wěn)區(qū)域有所擴(kuò)大。圖6(a)所示為真應(yīng)變0.3時(shí)的加工圖,從圖中可以看出,當(dāng)變形溫度為1000~1040 ℃,應(yīng)變速率為1~70 s?1時(shí),功率耗散效率均在0.35之下,變形處于流變失穩(wěn)區(qū)。應(yīng)變速率較低(0.001~0.1 s?1)時(shí),功率耗散效率多在0.4以上,變形處于穩(wěn)定區(qū)域;從圖6(a)中還可以看出,加工圖中存在兩個(gè)功率耗散效率峰值區(qū)域,分別為:1)變形溫度1000~1030 ℃,應(yīng)變速率0.001~0.1 s?1區(qū)域;2)變形溫度920~940 ℃,應(yīng)變速率0.001~0.01 s?1區(qū)域。這兩個(gè)區(qū)域的功率耗散效率值多在0.50以上,對(duì)應(yīng)的應(yīng)變速率敏感因子≥0.33。僅從加工圖判斷,可認(rèn)為這兩個(gè)功率耗散效率峰值區(qū)域?yàn)樵摵辖鹫鎽?yīng)變?yōu)?.3時(shí)的較佳變形工藝參數(shù)范圍。圖6(b)所示為真應(yīng)變0.7時(shí)的加工圖,同真應(yīng)變0.3時(shí)的加工圖相比,在低溫高應(yīng)變速率區(qū)域出現(xiàn)了一個(gè)流變失穩(wěn)區(qū)域,其范圍為變形溫度920~930 ℃,應(yīng)變速率0.2~70 s?1區(qū)域。該區(qū)域的功率耗散效率多在0.25以下,對(duì)應(yīng)的應(yīng)變速率敏感因子≤0.14;變形溫度1000~1040 ℃,應(yīng)變速率1~70 s?1范圍,功率耗散效率均在0.35之下,變形同樣處于流變失穩(wěn)區(qū)。應(yīng)變速率較低(0.001~0.1 s?1)時(shí),功率耗散效率多在0.4以上,變形處于穩(wěn)定區(qū)域。從圖6(b)還可以看出,加工圖中同樣存在兩個(gè)功率耗散效率峰值區(qū)域,分別為:1) 變形溫度為1000~1030 ℃,應(yīng)變速率為0.001~0.1 s?1區(qū)域;2) 變形溫度為920~ 935 ℃,應(yīng)變速率為0.001~0.003 s?1區(qū)域。僅從加工圖判斷,可認(rèn)為這兩個(gè)區(qū)域?yàn)門i-5.6Al-4.8Sn- 2.0Zr-1.0Mo-0.35Si-0.85Nd合金真應(yīng)變?yōu)?.7時(shí)的適宜的變形工藝參數(shù)范圍。
功率耗散效率較高的區(qū)域一般對(duì)應(yīng)著較佳的變形工藝參數(shù)范圍,然而由于楔形裂紋等破壞機(jī)制通常也對(duì)應(yīng)于高的功率耗散效率,因此,由加工圖優(yōu)化的變形工藝參數(shù)范圍還需通過變形顯微組織觀察和分析來佐證。圖7所示為真應(yīng)變0.7時(shí),加工圖中的失穩(wěn)區(qū)域?qū)?yīng)的顯微組織。圖7(a)所示為變形溫度920 ℃,應(yīng)變速率70 s?1時(shí)的顯微組織,該變形工藝參數(shù)條件下,功率耗散效率僅0.11。從圖7(a)可以看出,變形試樣中可以觀察到局部流動(dòng)現(xiàn)象。圖7(b)所示為變形溫度1010 ℃,應(yīng)變速率70 s?1時(shí)的顯微組織,該變形工藝參數(shù)條件下,功率耗散效率為0.20。從圖7(b)可以看出,晶粒沿著壓縮方向明顯伸長(zhǎng),沿相界處分布有相,顯微組織明顯不均勻,即發(fā)生了機(jī)械失穩(wěn)。
圖6 Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金不同應(yīng)變下的加工圖
圖7 α+β兩相區(qū)變形時(shí)Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo- 0.35Si-0.85Nd合金的顯微組織
圖8所示為真應(yīng)變0.7時(shí),加工圖中的功率耗散效率峰值區(qū)域?qū)?yīng)的顯微組織。當(dāng)變形溫度為920 ℃,應(yīng)變速率為0.001 s?1時(shí),功率耗散效率為0.56,該變形條件下的顯微組織如圖8(a)所示。從圖8(a)可以看出,Ti-5.6Al- 4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金中存在較多的相,組織較為均勻細(xì)小。當(dāng)變形溫度為1010 ℃,應(yīng)變速率為0.001 s?1時(shí),功率耗散效率達(dá)0.77,該變形條件下的顯微組織照片如圖8(b)所示。從圖8(b)可以看出,其變形組織更為均勻。應(yīng)變速率敏感因子可反映金屬產(chǎn)生均勻變形或抵抗局部變形的能力,為超塑性成形的重要指標(biāo),由于功率耗散效率峰值區(qū)域?qū)?yīng)的值較高,多大于0.35(如(1010 ℃,0.001 s?1)條件下的值達(dá)0.63),可認(rèn)為該變形工藝參數(shù)條件下的塑性變形機(jī)制為超塑性成形[21]。超塑性成形過程中,晶界滑移的同時(shí)伴隨有擴(kuò)散蠕變,原子的遷移可對(duì)晶界滑移起調(diào)節(jié)作用,因而晶界具有高遷移性,故功率耗散效率較高[22]。組織觀察結(jié)果說明,由加工圖預(yù)測(cè)的穩(wěn)定變形區(qū)和失穩(wěn)變形區(qū)以及工藝優(yōu)化結(jié)果是可靠的。
圖8 α+β兩相區(qū)變形時(shí)Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo- 0.35Si-0.85Nd合金的顯微組織
綜合加工圖和變形顯微組織分析結(jié)果可知,當(dāng)真應(yīng)變?yōu)?.7時(shí),變形工藝參數(shù)(920~930 ℃、0.2~70 s?1)及(1000~1040 ℃、1~70 s?1)范圍為Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金+兩相區(qū)變形時(shí)的流變失穩(wěn)區(qū)域,其塑性變形機(jī)制為局部流動(dòng)和機(jī)械失穩(wěn)。變形工藝參數(shù)(1000~1030 ℃、0.001~0.1 s?1)及(920~935 ℃、0.001~0.003 s?1)區(qū)域?yàn)檫m宜的變形工藝參數(shù)范圍,其塑性變形機(jī)制為超塑性成形。
1) Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金+兩相區(qū)熱變形時(shí)的流動(dòng)應(yīng)力對(duì)變形溫度和應(yīng)變速率均較敏感,隨著變形溫度的升高和應(yīng)變速率的降低,流動(dòng)應(yīng)力減小。在變形溫度較低時(shí)(920、950和980 ℃),流動(dòng)應(yīng)力曲線呈流動(dòng)軟化特征。在變形溫度較高時(shí)(1010和1040 ℃),流動(dòng)應(yīng)力曲線呈穩(wěn)態(tài)流動(dòng)特征。
2) 當(dāng)變形工藝參數(shù)(920~930 ℃、0.2~70 s?1)時(shí),Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金易發(fā)生局部流動(dòng);在變形工藝參數(shù)(1000~1040 ℃、1~70 s?1)范圍,易產(chǎn)生機(jī)械失穩(wěn)。
3) 綜合加工圖以及顯微組織觀察結(jié)果,優(yōu)化出的Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金+兩相區(qū)變形時(shí)的工藝參數(shù)范圍為(1000~1030 ℃、0.001~ 0.1 s?1)及(920~935 ℃、0.001~0.003 s?1),其塑性變形機(jī)制為超塑性成形。
[1] 蔡建明, 曹春曉. 新一代600℃高溫鈦合金材料的合金設(shè)計(jì)及應(yīng)用展望[J]. 航空材料學(xué)報(bào), 2014, 34(4): 27?36. CAI Jiang-ming, CAO Chun-xiao. Alloy design and application expectation of a new generation 600℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34(4): 27?36.
[2] GHAVAM M H, MORAKABATI M, ABBASI S M, BADRI H. Flow behavior modeling of IMI834 titanium alloy during hot tensile deformation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3): 748?758.
[3] CHANDRAVANSHI V K, SARKAR R, KAMAT S V, NANDY T K. Effect of boron on microstructure and mechanical properties of thermomechanically processed near alpha titanium alloy Ti-1100[J]. Journal of Alloys and Compounds, 2011, 509(18): 5506?5514.
[4] ZHAO Z L, LI H, FU M W, GUO H Z, YAO Z K. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing[J]. Journal of Alloys and Compounds, 2014, 617: 525?533.
[5] PENG Wen-wen, ZENG Wei-dong, WANG Qing-jiang, YU Han-qing. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J]. Materials and Design, 2013, 51: 95?104.
[6] LUO J, LI M Q. Strain rate sensitivity and strain hardening exponent during the isothermal compression of Ti60 alloy[J]. Materials Science and Engineering A, 2012, 538: 156?163.
[7] ZHOU Y G, ZENG W D, YU H Q. An investigation of a new near-beta forging process for titanium alloys and its application in aviation components[J]. Materials Science and Engineering A, 2005, 393(1/2): 204?212.
[8] SHI Z F, GUO H Z, LIU R, WANG X C, YAO Z K. Microstructure and mechanical properties of TC21 titanium alloy by near-isothermal forging[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 72?79.
[9] 邵 暉, 趙永慶, 曾衛(wèi)東, 葛鵬, 楊 義.+鈦合金微觀組織對(duì)強(qiáng)韌性的影響概述[J]. 稀有金屬材料與工程, 2012, 41(7): 1313?1316. SHAO Hui, ZHAO Yong-qing, ZENG Wei-dong, GE Ping, YANG Yi. Review on influence of microstructure on strength and fracture toughness in+titanium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(7): 1313?1316.
[10] WU Cheng-bao, YANG He, FAN Xiao-guang, SUN Zhi-chao. Dynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructure[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 1963?1969.
[11] SONG Hong-wu, ZHANG Shi-hong, CHENG Ming. Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure[J]. Defence Technology, 2014, 10(1): 40?46.
[12] SAREBANZADEH M, MAHMUDI R, ROUMINA R. Constitutive analysis and processing map of an extruded Mg-3Gd-1Zn alloy under hot shear deformation[J]. Materials Science and Engineering A, 2015, 637: 155?161.
[13] 楊勝利, 沈 健, 閆曉東, 李錫武, 孫寶慶, 張 飛. Al-Cu-Li-Mg-Mn-Zn-Ag合金的熱變形流變行為與本構(gòu)方 程[J]. 中國(guó)有色金屬學(xué)報(bào), 2015, 25(8): 2083?2090. YANG Sheng-li, SHEN Jian, YAN Xiao-dong, LI Xi-wu, SUN Bao-qing, ZHANG Fei. Flow behavior and constitutive equations of Al-Cu-Li-Mg-Mn-Zn-Ag alloy during isothermal compression[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2083?2090.
[14] WU B, LI M Q, MA D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy[J]. Materials Science and Engineering A, 2012, 542: 79?87.
[15] 李俊儒, 龔 臣, 陳 列, 佐 輝, 劉雅政. 10Cr12Ni3Mo2VN超超臨界機(jī)組用葉片鋼的熱變形行為[J]. 金屬學(xué)報(bào), 2014, 50(9): 1063?1070. LI Jun-ru, GONG Chen, CHEN Li, ZUO Hui, LIU Yia-zheng. Hot deformation behavior of blades steel 10Cr12Ni3Mo2VN for ultra-supercritical units[J]. Acta Metallurgica Sinica, 2014, 50(9): 1063?1070.
[16] PRASAD Y V R K, GEGEL H L. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15: 1883?1892.
[17] 魯世強(qiáng), 李 鑫, 王克魯, 董顯娟, 李臻熙, 曹春曉. 基于DMM的材料熱加工工藝優(yōu)化方法[J]. 中國(guó)有色金屬學(xué)報(bào), 2007, 17(6): 890?896. LU Shi-qiang, LI Xin, WANG Ke-lu, DONG Xian-juan, LI Zhen-xi, CAO Chun-xiao. Optimizing approach of materials hot working processes based on dynamic material model[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(6): 890?896.
[18] 段永華, 孫 勇, 何建洪, 方東升, 郭中正. Pb-Mg-Al合金的熱變形行為與加工圖[J]. 中國(guó)有色金屬學(xué)報(bào), 2013, 23(2): 311?319. DUAN Yong-hua, SUN Yong, HE Jian-hong, FANG Dong-sheng, GUO Zhong-zheng.Hot deformation behavior and processing map of Pb-Mg-Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(2): 311?319.
[19] BHIMAVARAPU S B, MAHESHWARI A K, BHARGAVA D, NARAYAN S P. Compressive deformation behavior of Al 2024 alloy using 2D and 4D processing maps[J]. Journal of Materials Science, 2011, 46: 3191–3199.
[20] 肖宏超, 劉楚明, 徐 璐, 王 霄, 萬迎春. Mg-10Gd-4.8Y- 0.6Zr鎂合金熱變形行為與加工圖[J]. 中國(guó)有色金屬學(xué)報(bào), 2013, 23(2): 303?310. XIAO Hong-chao, LIU Chu-ming, XU Lu, WANG Xiao, WAN Ying-chun. Deformation behavior and processing map of Mg-10Gd-4.8Y-0.6Zr magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(2): 303?310.
[21] 于秋穎, 姚志浩, 董建新, 張盼達(dá), 韓 剛. 難變形高溫合金GH4720Li的超塑性變形行為[J]. 材料熱處理學(xué)報(bào), 2015, 36(7): 30?35. YU Qiu-ying, YAO Zhi-hao, DONG Jian-xin, ZHANG Pan-da, HAN Gang. Superplastic behavior of hard-to-deformed GH4720Li superalloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(7): 30?35.
[22] 曹富榮, 崔建忠, 丁 樺, 侯紅亮, 李志強(qiáng). 不同初始組織材料超塑性值模型與驗(yàn)證[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2015, 47(10): 50?54. CAO Fu-rong, CUI Jian-zhong, DING Hua, HOU Hou-liang, LI Zhi-qiang. Modeling thevalue and its experimental verification during superplasticity of materials with different initial microstructures[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 50?54.
(編輯 王 超)
Deformation behavior and process parameter optimization of Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd alloy in+forging process
WANG Ke-lu, LU Shi-qing, LI Xin, DONG Xian-juan
(School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nangchang 330063, China)
The flow behavior and plastic deformation mechanism of Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd alloy were studied by the hot compression, which was carried out on a Thermecmastor-Z simulator in the temperature range of 920?1040 ℃ and strain rate range of 0.001?70.0 s?1, and the optimization process parameter range was obtained. The results show that the flow stress of this alloy is sensitive to temperature and strain rate in the+range. The flow stress curves exhibit a flow softening behavior when the temperature is lower than or equal to 980 ℃; while the flow stress curves exhibit a steady-state characteristic when the temperature is higher than or equal to 1010 ℃. The processing map exhibits two instability fields: 920?930 ℃ at 0.2?70 s?1and 1000?1040 ℃ at 1?70 s?1. In these instability fields, the flow location or mechanical instability occurs. Combining processing map with microstructure observation, the optimum deformation process parameters in+range for Ti-5.6Al-4.8Sn-2.0Zr- 1.0Mo-0.35Si-0.85Nd alloy are (1000?1030 ℃, 0.001?0.1 s?1) and (920?935 ℃, 0.001?0.003 s?1), respectively, and the corresponding plastic deformation mechanism is superplasticity deformation.
Ti alloy; defomration behavior; process parameter optimization; processing map
Project(51164030) supported by the National Natural Science Foundation of China; Project(GJJ13501) supported by the Education Commission Foundation of Jiangxi Province, China; Project (JW201323004) supported by the Metal Material Microstructure Control in Jiangxi Province Key Laboratory, China
2016-01-04; Accepted date:2016-06-07
WANG Ke-lu; Tel: +86-13133804266; E-mail: wangkelu@126.com
10.19476/j.ysxb.1004.0609.2017.04.007
1004-0609(2017)-04-0724-08
TG146.23
A
國(guó)家自然科學(xué)基金資助項(xiàng)目(51164030);江西省教育廳科技基金資助項(xiàng)目(GJJ13501);江西省金屬材料微結(jié)構(gòu)調(diào)控重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(JW201323004)
2016-01-04;
2016-06-07
王克魯,教授,博士;電話:13133804266;E-mail: wangkelu@126.com