李俞鋒,蒲仁海*,屈紅軍,李斌
(1.西北大學(xué) 大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710069)
瓊東南盆地北礁凹陷梅山組頂部丘形反射特征及成因分析
李俞鋒1,蒲仁海1*,屈紅軍1,李斌1
(1.西北大學(xué) 大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710069)
南海瓊東南盆地北礁凹陷中中新統(tǒng)梅山組頂部丘形反射目前引起廣泛關(guān)注,前人推測(cè)為生物礁、重力蠕動(dòng)與底流疊加成因、等深積丘等。本文通過鉆井資料、二維、三維地震資料精細(xì)刻畫丘形反射(殘丘)和丘間水道特征及其成因。殘丘及水道在北礁凸起不發(fā)育,在邊緣斜坡中部和高地較發(fā)育,且有向高地兩邊規(guī)模減小趨勢(shì),不具對(duì)稱性,殘丘和水道呈平行-亞平行近E-W向展布,局部有合并分叉現(xiàn)象,與北礁凸起走向呈一小角度;丘寬562~1 223 m,丘高29~87 m,丘長(zhǎng)10 km左右,存在丘翼削蝕,水道底蝕現(xiàn)象。地震屬性分析表明三維工區(qū)西南部殘丘間水道由砂泥巖互層充填,形成長(zhǎng)條形強(qiáng)振幅,而殘丘為中-低振幅;地震、鉆井資料分析表明丘形反射(殘丘)由鈣質(zhì)泥巖和泥巖組成,屬于半深海沉積,且殘丘內(nèi)部波阻抗為5.0×106~6.5×106kg/m3·m/s,低于火山巖、灰?guī)r波阻抗,屬于砂泥巖地層范疇;根據(jù)梅山組下段水道由西向東強(qiáng)振幅變?nèi)酢⒎植?、前積反射和海山附近底流(等深流)沉積剝蝕特征綜合判定底流古流向自西向東,根據(jù)海山兩翼地震反射特征推測(cè)底流可追溯至晚中新世早期(11.6 Ma BP),綜合分析認(rèn)為,研究區(qū)中中新統(tǒng)梅山組丘形反射是晚中新世早期底流切割梅山組地層形成的殘丘。
北礁凹陷;梅山組;三維地震;殘丘;水道;半深海;底流(等深流)
南海是西太平洋最大的被動(dòng)大陸邊緣海之一,瓊東南盆地位于南海西北部,東靠珠江口盆地,北臨海南島,南為南部隆起(圖1),是新生代斷陷含油氣盆地[1]。經(jīng)歷了3個(gè)演化階段:始新世-晚漸新世的裂陷期、早中新世-中中新世熱沉降期和晚中新世以來的加速熱沉降期[2](圖2)。瓊東南盆地主要分為西南-東北伸展的北部坳陷區(qū)、北部隆起區(qū)、中央坳陷區(qū)和南部隆起區(qū)4個(gè)一級(jí)構(gòu)造單元[1](圖1,圖3),研究區(qū)北礁凹陷位于松南低凸起和北礁凸起之間,其丘形反射區(qū)分布范圍介于中央水道和北礁凸起之間[3](圖1,圖3),分布在中中新統(tǒng)梅山組頂部地層中(圖2,圖4),其沉積時(shí)期雖然發(fā)生多次海平面升降[4],但盆地整體處于構(gòu)造相對(duì)穩(wěn)定的坳陷期,現(xiàn)今大部分區(qū)域?qū)儆陉懪铩?半)深海沉積環(huán)境(深水區(qū)約占整個(gè)盆地2/3),南部隆起上局部發(fā)育生物礁[5]。
現(xiàn)今南海處于半封閉狀態(tài),海水循環(huán)被分為季節(jié)性表層水(水深小于350 m)、中層水(水深350~1 350 m)和深層水(水深大于1 350 m);季節(jié)性表層水流向受季風(fēng)影響,冬天逆時(shí)針流動(dòng),夏天順時(shí)針流動(dòng);中層水和深層水受北太平洋洋流影響,其流動(dòng)方向分別為順時(shí)針和逆時(shí)針流動(dòng)[6]。底流指在溫鹽或海風(fēng)等機(jī)制驅(qū)動(dòng)下,長(zhǎng)期(永久)呈半穩(wěn)定-穩(wěn)定狀態(tài)作用于海底的海流,它們不必嚴(yán)格要求遵循等深線活動(dòng),一些學(xué)者在研究中也常把等深流和(深水)底流劃為等號(hào)[6]。本文為了與前人Chen等[6]研究南海北部底流(等深流)的沉積剝蝕保持一致,也實(shí)用底流這一概念代表等深流,根據(jù)底流形成的丘形反射分為兩類——沉積成因和切割成因。
圖1 瓊東南盆地構(gòu)造單元?jiǎng)澐旨扒鹦畏瓷浞植嘉恢肍ig.1 Tectonic elements and mound reflection location in the Qiongdongnan Basin
圖2 瓊東南盆地深水區(qū)地層綜合柱狀圖Fig.2 Stratigraphy frameworks of the Qiongdongnan Basin
圖3 瓊東南盆地二維地震構(gòu)造單元?jiǎng)澐諪ig.3 2D seismic tectonic units division in Qiongdongnan Basin
圖4 瓊東南盆地北礁凹陷殘丘、水道與古地形關(guān)系二維地震剖面(剖面位置見圖3)Fig.4 Relationship among remnant mound, channel and paleotopography in the Beijiao Sag of the Qiongdongnan Basin(profile location is shown in Fig.3)
南海北部發(fā)育有多種丘形反射類型——砂巖侵入丘[7]、泥底辟泥火山[8]、火成巖丘[9]、生物礁[4,10—12]、重力流蠕動(dòng)與等深流疊加成因丘[3]、底流沉積物波[13—14]、等深積丘[15]、底流底蝕殘丘[16]等,而對(duì)于本研究區(qū)中中新統(tǒng)梅山組的丘形反射體有不同的觀點(diǎn),目前存在的爭(zhēng)議較大。中中新世是南海北部生物礁發(fā)育的重要時(shí)期[17],在珠江口盆地中新統(tǒng)地層中發(fā)現(xiàn)大量丘形反射,其中流花油田鉆遇丘形反射生物礁[18],對(duì)于瓊東南盆地梅山組丘形反射,鉆井資料較少,不少學(xué)者根據(jù)丘形地震反射特征,推測(cè)為生物礁,何仕斌等[19]根據(jù)丘的反射結(jié)構(gòu)同時(shí)結(jié)合沉積背景認(rèn)為,該區(qū)丘為臺(tái)地邊緣礁。吳時(shí)國(guó)等[4]從層序地層學(xué)和地震振幅屬性分析認(rèn)為該區(qū)丘是發(fā)育在濱淺海環(huán)境的生物礁。陳雷等[11]依據(jù)臺(tái)緣結(jié)構(gòu)類型和丘發(fā)育特征認(rèn)為丘是生物礁且可分為斷控型、斷撓型及緩坡型生物礁3種類型。張永貴等[12]從古環(huán)境和丘內(nèi)部結(jié)構(gòu)及與上覆地層接觸關(guān)系認(rèn)為該類丘為生物礁建造。王超等[10]從臺(tái)緣結(jié)構(gòu)和丘結(jié)構(gòu)特征分析認(rèn)為丘形反射是生物礁并可分為斷控陡坡和臺(tái)緣緩坡生物礁兩類。但該工區(qū)自YL19-1-1井鉆遇鈣質(zhì)泥巖丘形反射后,一些學(xué)者提出不同的觀點(diǎn),趙天亮等[14]通過丘反射特征及速度反演認(rèn)為丘為等深流沉積或某種沉積物波,Tian等[3]通過沉積環(huán)境和地貌分析認(rèn)為丘沉積背景為半深海沉積環(huán)境,是在重力流和底流疊加作用下形成的丘體,不少學(xué)者通過古構(gòu)造古地理幾何學(xué)特征等排除了該工區(qū)丘是泥底辟和火山丘的可能[3,14—15],本文不再累述。
雖然前人對(duì)南海丘形反射有大量研究且觀點(diǎn)各異,但對(duì)瓊東南盆地中中新統(tǒng)丘形反射缺乏綜合性的研究,本文通過測(cè)網(wǎng)密度4 km×3 km的二維、2 000 km2三維地震資料結(jié)合深淺海鉆井資料對(duì)丘形發(fā)射和水道的剖面、平面、大小特征、地震屬性、古地理、波阻抗、巖性和古流向做了詳細(xì)的探討并首次提出底流(等深流)成因,綜合分析北礁凹陷丘形反射體的發(fā)育特征,以期為南海北部丘形反射提供新的研究思路和科學(xué)依據(jù)。
2.1 中央水道與丘形反射區(qū)時(shí)空分布特征
中中新統(tǒng)梅山組上段地層丘形反射主要分布在中央水道以南和北礁凸起以北(圖1)。南海北部發(fā)育由溢出中央水道的濁流形成的丘形反射—濁流沉積物波[20],中央水道形成于上新統(tǒng)鶯歌海組,而殘丘形成于中中新統(tǒng)梅山組(T50-T40)沉積時(shí)期,殘丘與中央水道形成的時(shí)空不匹配,即中中新統(tǒng)的殘丘早于上新統(tǒng)濁流沉積物波(早約6.5 Ma),形成于不同的地質(zhì)歷史時(shí)期(圖1,圖2,圖4),因此,該類丘和水道與中央水道溢岸濁流沉積物波無關(guān)。
2.2 北礁凹陷三維區(qū)水道和殘丘地震屬性特征分析
北礁凹陷三維地震工區(qū)梅山組上段頂部均有水道和殘丘分布(圖5a)。該工區(qū)梅山組下段地震RMS(均方根)屬性(圖5b),在西南部和東北部均呈現(xiàn)長(zhǎng)條狀強(qiáng)振幅地質(zhì)體。梅山組上段地震RMS屬性(圖5c)整體呈現(xiàn)中-弱振幅,這也說明梅山組頂部丘狀體內(nèi)部為中-弱反射的地震特點(diǎn)。黃流組底部RMS地震屬性在西南部丘間水道內(nèi)為強(qiáng)振幅反射(圖5d)??梢娒飞浇M上段的丘形內(nèi)部為中-弱的地震反射特征。
圖5 瓊東南盆地北礁三維區(qū)地震屬性圖Fig.5 3D seismic attribute maps of the Beijiao Sag in the Qiongdongnan Basina.北礁凹陷三維區(qū)梅山組上段丘體時(shí)間域厚度圖(時(shí)間厚度:T40-T41);b.北礁凹陷三維區(qū)梅山組下段(時(shí)窗:T41-T50)RMS屬性圖;c.北礁凹陷三維區(qū)梅山組上段(時(shí)窗:T40-T41)RMS屬性圖;d.北礁凹陷三維區(qū)黃流組底部(時(shí)窗:T40-T40-50 ms)RMS屬性圖a.Time isopachous map showing the mounded bodies in the upper Meishan Formation of 3D seismic survey in Beijiao Sag(time isopach from T40 to T41); b.The RMS attribution map of the lower Meishan Formation of 3D seismic survey in Beijiao Sag(time window from T41 to T50); c.The RMS attribution map of the upper Meishan Formation of 3D seismic survey in Beijiao Sag(time window from T40 to T41); d.The RMS attribution map of the bottom Hangliu Formation of 3D seismic survey in Beijiao Sag(time window from T40 to 50 ms-upward)
2.3 水道及殘丘平面展布特征
三維區(qū)梅山組上段地層厚度顯示殘丘和水道呈平行-亞平行長(zhǎng)條狀近東西向展布(圖5a),局部有合并分叉現(xiàn)象。為了詳細(xì)分析古地貌和殘丘與水道的關(guān)系,采用局部放大區(qū)表征三者之間的關(guān)系(圖6a,6b),殘丘和水道主要分布在邊緣斜坡(圖6a, 6b),在邊緣斜坡局部古高地殘丘規(guī)模最大也最發(fā)育(圖6),北礁古凸起殘丘不發(fā)育,僅出現(xiàn)由古隆起凹凸不平引起走向無規(guī)律的沉積厚度差異(圖6,圖7),這些特征與生物礁在古凸起或圍繞古凸起的生長(zhǎng)方式有著顯著不同。
圖6 北礁凹陷局部三維區(qū)梅山組上段時(shí)間域厚度圖(a)和梅山組上段水道、殘丘與古地貌疊合圖(b,平面位置見圖5a)Fig.6 The local 3D isochronous map of the upper Meishan Formation(a), and the map of the combination between channel, remnant mound and paleotopography(b, location is shown in Fig.5a)
圖7 三維區(qū)殘丘-水道與古地貌地震剖面及其解釋圖(剖面位置見圖6)Fig.7 The 3D survey seismic profile of remnant mound, channel and paleotopography and geological interpretation section(profile location is shown in Fig.6)
圖8 高精度二維地震剖面圖(剖面位置見圖7)Fig.8 The high-resolution seismic section(profile location is shown in Fig.7)
2.4 水道及殘丘剖面特征
殘丘之間為水道,丘寬(L)562~1 223 m,丘高(H)29~87 m,殘丘和水道在北礁凸起邊緣斜坡中部最發(fā)育,殘丘寬、丘高均最大,且向兩邊(NW-SE)逐漸變小直至消失(圖4,圖7)。殘丘向邊緣斜坡下傾方向(圖8a),丘寬、丘高均逐漸變小,密度變大(4~5個(gè)/2 km);殘丘向邊緣斜坡上傾方向(圖8b),丘高逐漸變小,而丘寬和密度(2個(gè)/2 km)幾乎不變。
局部三維區(qū)東北部邊緣斜坡水道和殘丘厚、寬、高均有突增(圖6,圖9),梅山組(T40-T50)高地與下伏地層陵水組(T60-T70)邊緣斜坡高地具有繼承性,同時(shí)發(fā)育大量多邊形斷層并具有多邊形斷層引起的逆牽引構(gòu)造變形特征。水道和殘丘向高地兩邊逐漸變小。Tian等[3]對(duì)研究區(qū)北礁凹陷丘形研究,發(fā)現(xiàn)丘形反射在高地處最明顯,且向高地兩翼規(guī)模逐漸變小,被解釋為底流遇到邊緣斜坡高的阻擋,侵蝕能力加強(qiáng)所致,同時(shí)Chen等[6]發(fā)現(xiàn)在現(xiàn)今高地(海山)附近,底流的剝蝕程度加強(qiáng),丘形規(guī)模最壯觀,這些都可能與該區(qū)水道和殘丘在邊緣斜坡高地處最發(fā)育具有相同的成因。
圖9 過邊緣斜坡高地震剖面(剖面位置見圖6)Fig.9 The seismic section along marginal slope highland(profile location is shown in Fig.6)
圖10 瓊東南盆地過地震工區(qū)中下中新統(tǒng)北東向鉆井地層沉積相對(duì)比剖面圖(位置見圖1)Fig.10 The comparative section of sedimentary facies for connecting wells of the Meishan Formation in the Qiongdongnan Basin(location is shown in Fig.1)
圖11 瓊東南盆地梅山組厚度(a)及沉積相(b)Fig.11 The isopachous(a) and sedimentary facies(b) of the Meishan Formation in the Qiongdongnan Basin
圖12 瓊東南盆地北礁凹陷YL19-1-1鉆井梅山組(T40-T50)丘形反射和鉆井剖面Fig.12 Seismic-well tie and stratigraphic architecture within the Meishan Formation based on integrated well log, cores, and seismic data
圖13 瓊東南盆地殘丘和水道二維測(cè)線波阻抗反演(剖面位置見圖1)Fig.13 The 2D wave impedance section for the remnant mound and channel area(profile location is shown in Fig.1)
圖15 瓊東南盆地南部海山附近等深流相關(guān)環(huán)槽和伸長(zhǎng)狀-丘狀漂積體地震剖面(a, 剖面位置見圖1),海山及地震測(cè)線平面位置圖(b)Fig.15 The seismic proflile showing the seamount-related contourite deposition for mount and elongated-mounded drift(a, location is shown in Fig.1), the map for seismic profile and seamount(b)
瓊東南盆地南部中新世以來構(gòu)造穩(wěn)定,斷裂基本不發(fā)育[21],蒲仁海等[15]根據(jù)瓊東南盆地梅山組厚度的變化特征、鉆井資料、構(gòu)造背景認(rèn)為北礁凹陷為半深海沉積,Tian等[3]通過區(qū)域鉆井資料分析也認(rèn)為北礁凹陷為半深海沉積。趙蒙維[22]通過LS33-1-1古生物(有孔蟲)、同位素、巖性和粒度分析也認(rèn)為中央坳陷帶內(nèi)梅山組為低能海相沉積環(huán)境,本文通過瓊東南盆地鉆井資料(圖10)和梅山組沉積厚度和沉積相(圖11)分析認(rèn)為北礁凹陷梅山組為半深海沉積環(huán)境,與前人研究成果一致,且北礁凹陷沉積環(huán)境從三亞組到黃流組具有繼承性,都為半深海沉積的環(huán)境。YL19-1-1鉆遇梅山組丘形反射,丘形巖性為泥巖和鈣質(zhì)泥巖(圖12),說明丘形反射的沉積背景是半深海的沉積環(huán)境。
通過稀疏脈沖反演技術(shù)獲取研究區(qū)殘丘和水道波阻抗特征(圖13)。根據(jù)南海北部區(qū)域不同巖性波阻抗反演結(jié)果顯示:含油氣的生物礁波阻抗為8×106~12×106kg/m3·m/s[4,14],致密灰?guī)r的波阻抗更高超過10×106kg/m3·m/s[3],砂巖與灰?guī)r波阻抗界限在6×106~8×106kg/m3·m/s[3],而該區(qū)丘形內(nèi)部波阻抗值在5.0×106~6.5×106kg/m3·m/s,水道內(nèi)波阻抗略大于殘丘,為6.0×106~7.5×106kg/m3·m/s,同時(shí)結(jié)合研究區(qū)梅山組半深海的沉積環(huán)境(圖10,圖11),該類殘丘和水道巖性應(yīng)屬于砂泥巖范疇,而碳酸鹽巖的可能性較小。
中新世以來瓊東南盆地大地構(gòu)造背景穩(wěn)定[21],且研究區(qū)遠(yuǎn)離北部物源區(qū),受陸源水流影響小,南海洋流循環(huán)水團(tuán)分為表層水、中層水、深層水3層[23]。瓊東南盆地主要發(fā)育表層水和中層水[23],中新世至今研究區(qū)處于半深海環(huán)境,受深層水流影響小,中層水流對(duì)碎屑沉積物古流向起控制和再沉積作用,大地構(gòu)造背景穩(wěn)定情況下,梅山組和上覆黃流組古水流向應(yīng)具有一致性,因此,可以通過梅山組下段古流向形成強(qiáng)振幅水道的地震地質(zhì)特征,推測(cè)黃流組殘丘的古流向。研究區(qū)梅山組為半深海沉積環(huán)境(圖10,圖11),梅山組下段(圖5b,圖14a)發(fā)育具有強(qiáng)振幅反射的長(zhǎng)條形地質(zhì)體,黃流組底部在丘間水道中發(fā)育強(qiáng)振幅水道地質(zhì)體(圖5d,圖14d)。當(dāng)?shù)貙雍穸刃∮谡{(diào)諧厚度時(shí),振幅大小與砂體厚度成正比[24],根據(jù)梅山組下段水道地震屬性(圖14)平面上由西向東振幅變?nèi)酢l(fā)散分叉,判斷古流向,黃流組底部強(qiáng)振幅水道由西向東振幅變?nèi)?圖5a),同時(shí)向東出現(xiàn)前積反射現(xiàn)象(圖14a),可通過前積反射判斷古流向[25],綜合推斷古水流流向是自西向東,中中新世梅山組殘丘形成時(shí)古水流向與Luisa等[23]、Zhao[26]、Yang等[27]判斷的由西向東的中層水水流向一致。
近年來國(guó)內(nèi)外觀察到大量與海山相關(guān)的等深流沉積特征[6],可根據(jù)海山兩翼的底流(等深流)的剝蝕-沉積特征推測(cè)底流發(fā)育時(shí)間和底流古流向。在二維地震上底流(等深流)沉積物多為“透明的”(transparent)連續(xù)性較好的中-弱反射。瓊東南盆地南部過海山的地震剖面(圖15a)有著與相鄰盆地(珠江口盆地)西部一統(tǒng)暗沙(海山)附近地震剖面極其相似的地震反射特征,在一統(tǒng)暗沙附近這種地震反射特征鉆井已證實(shí)為等深流沉積物,且最早發(fā)育時(shí)間是晚中新世早期(11.6 Ma BP)[6],對(duì)應(yīng)地震反射界面T40(圖15a),海山兩翼(反射界面T40之上)發(fā)育伸長(zhǎng)狀-丘狀漂積體。海山的東北側(cè)環(huán)槽的規(guī)模大于西南環(huán)槽的規(guī)模(圖15a),說明海山東北側(cè)受底流剝蝕程度大于西南側(cè),結(jié)合北半球受科氏力向右偏轉(zhuǎn)的影響,從而推測(cè)底流流向由西向東流經(jīng)海山(圖15b)。
南海北部已發(fā)現(xiàn)的丘形反射類型有砂巖侵入體、泥底辟泥火山、巖漿巖丘、生物礁丘、重力蠕動(dòng)、底流沉積物波等,根據(jù)前人研究排除了該工區(qū)丘是砂巖侵入體、泥底辟泥火山、巖漿巖丘的可能[3,14—15]。對(duì)丘成因有兩種認(rèn)識(shí),分別為生物礁成因和底流成因,其中底流成因又分為重力蠕動(dòng)和底流疊合成因、底流沉積成因、底流切割成因。
6.1 生物礁成因
目前不少學(xué)者把該區(qū)的丘形反射解釋成生物礁,認(rèn)為北礁地區(qū)處于濱淺海沉積環(huán)境,陸源供給少,位于斷控陡坡,礁體受階地控制,礁體位于相對(duì)高地貌,推測(cè)為生物礁[4,28]。然而鉆井資料揭示該區(qū)為半深海沉積環(huán)境,不利于生物礁的生長(zhǎng)發(fā)育,且丘與北礁凸起走向呈一小角度,并非圍繞北礁古凸起生長(zhǎng),丘形反射波阻抗遠(yuǎn)小于生物礁波阻抗,其巖性組份為鈣質(zhì)泥巖和泥巖,綜合分析認(rèn)為生物礁的可能性較小。
6.2 重力流蠕動(dòng)和底流疊合成因
在排除生物礁的情況下,有學(xué)者認(rèn)為該區(qū)丘形反射主要是重力流蠕動(dòng)形成丘(擠壓脊),再進(jìn)一步受底流下切形成丘的疊加成因[3],認(rèn)為沉積在該區(qū)南部隆起碳酸鹽巖臺(tái)地斜坡的泥巖在塊體流移動(dòng)下產(chǎn)生擠壓變形所形成的波狀丘,且已在南海北部發(fā)現(xiàn)大量塊體流[29],該區(qū)處于半深海沉積環(huán)境且具有重力流(塊體流)發(fā)育的邊緣斜坡地質(zhì)背景(圖4, 圖7)。南海北部塊體流蠕動(dòng)形成的丘(擠壓脊)常發(fā)育在塊體流的趾部,且丘間伴有逆沖斷層,同時(shí)丘脊與塊體流流向垂直[29]。然而該區(qū)丘形反射在邊緣斜坡中部最發(fā)育,向邊緣斜坡下傾方向(趾部)有逐漸變小的趨勢(shì),這點(diǎn)不符合重力流(塊體流)蠕動(dòng)形成的丘,且無逆沖斷層,殘丘近東西展布與北礁凸起走向非平行。地震剖面顯示(圖3,圖4)該區(qū)南部有永樂凹陷(圖1),使南部隆起物源(重力流)搬運(yùn)至永樂凹陷,而無法跨越北礁凸起到達(dá)北礁凹陷,北礁凹陷丘形反射不具備來自南部隆起的大量物源(重力流)供給的地質(zhì)條件,且在永樂凹陷丘形不發(fā)育(圖4),重力蠕動(dòng)說似乎也不成立。
6.3 底流成因
底流即可以形成沉積成因的沉積物波也可以形成底流剝蝕成因的殘丘。
6.3.1 底流沉積成因
底流沉積形成的底流(等深流)沉積物波排列方式與區(qū)域等深線呈一定角度(一般為10°~50°),并向斜坡上傾方向和逆流方向遷移[13]。內(nèi)部波狀連續(xù)反射,加積堆積,隨著流速的增加,迎流面沉積,背流面削蝕或無沉積,向古水流相反方向遷移[30]。這些特征都不符合研究區(qū)丘形反射。
6.3.2 底流切割成因
Stuart和Huuse[31],Knutz[32]研究北海丘形反射和Sun等[16]研究南海珠江口盆地荔灣凹陷丘形反射,發(fā)現(xiàn)這類丘都是底流水道切割下伏地層所形成殘丘,且殘丘和水道在平面呈平行亞平行展布,局部分叉合并現(xiàn)象,殘丘與水道之間呈削截和上超的接觸關(guān)系。本工區(qū)也有類似的特征(圖6,圖16,圖17)。Chen等[6]研究南海北緣一統(tǒng)暗沙附近深水等深流沉積體系特征,確定了有東到西的底流(等深流)古流向以及等深流最早發(fā)育時(shí)期——晚中新世早期,形成等深積丘、水道、漂積物等,這些特征與瓊東南盆地南部晚中新世至今的底流(等深流)沉積特征一致(圖15)。
在平行與垂直殘丘的地震剖面均顯示殘丘內(nèi)部地震反射平行-亞平行于下伏地層,殘丘與水道之間呈削截和上超的接觸關(guān)系(圖16a,16b),沿水道地震剖面顯示水道與下伏地層呈削截上超關(guān)系(圖17),暗示晚中新世早期底流切割下伏地層,即水道具有下蝕現(xiàn)象。在半深海-深海的沉積環(huán)境中,是底流(等深流)較發(fā)育的理想場(chǎng)所[33],水道在平面的線性相互平行的展布特征(圖6),且梅山組發(fā)育多邊形斷層(圖8,圖16,圖17),這些綜合特征都顯示北礁凹陷丘形反射是底流切割下伏地層形成水道,水道間殘留的地層形成殘丘。
圖16 水道和殘丘上超削截的地震接觸關(guān)系圖(剖面位置見圖5)Fig.16 The interactive relationship of seismic reflection between channel and remnant mounds(profile location is shown in Fig.5)
圖17 沿水道軸線地震地層接觸關(guān)系特征(剖面位置見圖6)Fig.17 The characteristics of the stratigraphic interactive relationship along the axis of channel(profile location is shown in Fig.6)
(1)梅山組頂部殘丘和水道發(fā)育于中央坳陷區(qū),在平面呈近E-W向展布,與北礁凸起走向呈一定角度,局部有合并分叉的現(xiàn)象,北礁凸起殘丘不發(fā)育,邊緣斜坡較發(fā)育。剖面上,邊緣斜坡下傾方向殘丘寬高均逐漸變小,殘丘和水道密度變大,上傾方向丘高減小丘寬幾乎不變,殘丘具有不對(duì)稱特征。
(2)中中新世北礁凹陷為半深海沉積環(huán)境,不利于生物礁的發(fā)育,鉆井證實(shí)殘丘由鈣質(zhì)泥巖和泥巖組成,稀疏脈沖波阻抗反演揭示殘丘內(nèi)部為低波阻抗,水道相對(duì)高波阻抗,屬于砂泥巖范疇。
(3)三維地震屬性顯示晚中新統(tǒng)黃流組底部水道在三維工區(qū)西南部為砂泥間互充填的強(qiáng)振幅,而中中新統(tǒng)梅山組上段丘形反射(殘丘)為中-低振幅。根據(jù)梅山組下段強(qiáng)振幅水道由西向東變?nèi)跖c前積反射和海山兩翼環(huán)槽的剝蝕特征綜合判定古流向自西向東。
(4)底流水道與下伏地層有明顯的削截現(xiàn)象同時(shí)底流水道內(nèi)有雙向上超特征,再結(jié)合底流古流向分析認(rèn)為北礁凹陷晚中新世早期(11.6 Ma BP)底流底蝕下覆梅山組地層形成的底流水道,水道間為殘余地層即殘丘。
[1]雷超,任建業(yè),裴健翔,等. 瓊東南盆地深水區(qū)構(gòu)造格局和幕式演化過程[J]. 地球科學(xué)(中國(guó)地質(zhì)大學(xué)學(xué)報(bào)),2011,36(1):151-162.
Lei Chao, Ren Jiangye, Pei Jianxiang, et al. Tectonic framework and multiple episode tectonic evolution in deepwater area of Qiongdongnan Basin, Northern Continental Margin of South China Sea[J]. Eearh Scince: Journal of China University of Geoscience, 2011, 36(1):151-162.
[2] Xie Xinong, Müller R D, Li Sitian, et al. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship todynamic topography[J]. Marine and Petroleum Geology, 2006,23(7):745-765.
[3] Tian Jie, Wu Shiguo, Lv Fuliang, et al. Middle Miocene mound-shaped sediment packages on the slope of the Xisha carbonate platforms, South China Sea: Combined result of gravity flow and bottom current[J].Deep Sea Research Part II: Topical Studies in Oceanography,2015,122:172-184.
[4] 吳時(shí)國(guó),袁圣強(qiáng),董冬冬,等.南海北部深水區(qū)中新世生物礁發(fā)育特征[J]. 海洋與湖沼,2009,40(2):117-121.
Wu Shiguo, Yuan Shengqiang, Dong Dongdong, et al. The miocene reef development charateristics in Northern South China Sea[J]. Oceanologia et Limnologia Sinica, 2009,40(2):117-121.
[5] 于亞蘋,劉立,徐守立,等. 西沙群島西科1井梅山組一段儲(chǔ)層物性特征及儲(chǔ)集評(píng)價(jià)[J]. 世界地質(zhì),2015,34(4):1069-1078.
Yu Yaping, Liu Li, Xu ShouLi, et al. Reservoir characteristics and evaluation of the first member of Meishan Formation in Well Xike 1,Xisha Islands[J]. Global Geology,2015,34(4):1069-1078.
[6] Chen Hui, Xie Xinong, Rooij D V, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea[J]. Marine Geology, 2014, 355(3):36-53.
[7] 楊波,張昌民,李少華,等.珠江口盆地大型丘狀地質(zhì)體地震相分析及地質(zhì)解釋[J]. 石油學(xué)報(bào), 2014, 35(1):37-49.
Yang Bo, Zhang Changmin, Li Shaohua, et al. Seismic facies analysis and geological interpretation of large-scale mounds in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2014, 35(1):37-49.
[8] 孟祥君,張訓(xùn)華,韓波,等. 海底泥火山地球物理特征[J]. 海洋地質(zhì)前沿, 2012, 28(12): 6-9.
Meng Xiangjun, Zhang Xunhua, Han Bo, et al. The geophysical characteristics of submarine mud volcano[J]. Marine Geology Frontiers, 2012, 28(12): 6-9.
[9] 張斌,王璞珺,張功成,等. 珠—瓊盆地新生界火山巖特征及其油氣地質(zhì)意義[J]. 石油勘探與開發(fā), 2013, 40(6): 657-665.
Zhang Bin, Wang Pujun, Zhang Gongcheng, et al. Cenozoic volcanic rocks in the Pearl River Mouth and Southeast Hainan Basins of South China Sea and their implications for petroleum geology[J]. Petroleum Exploration & Development, 2013, 40(6): 657-665.
[10]王超,陸永潮,杜學(xué)斌,等.南海西部深水區(qū)臺(tái)緣生物礁發(fā)育模式與成因背景[J]. 石油地球物理勘探, 2015, 50(6): 1179-1189.
Wang Chao, Lv Yongchao, Du Xuebin, et al. Developmental pattern and genetic background of carbonate platform margin reef complexes in deep-water area in Western South China Sea[J]. Oil Geophysical Prospecting, 2015, 50(6): 1179-1189.
[11] 陳雷, 陸永潮, 王振峰,等. 南海西部深水區(qū)臺(tái)緣結(jié)構(gòu)、生物礁發(fā)育特征及控制因素分析[J].石油實(shí)驗(yàn)地質(zhì), 2011, 33(6): 607-612.
Chen Lei, Lu Yongchao, Wang Zhenfeng, et al. Structure of carbonate platform margin and characteristics of reef and their controlling factors in western deep-water region of South China Sea[J]. Petroleum Geology & Experiment, 2011, 33(6): 607-612.
[12] 張永貴, 宋在超, 周小進(jìn), 等. 瓊東南盆地南部中新統(tǒng)生物礁的識(shí)別[J]. 石油實(shí)驗(yàn)地質(zhì), 2011, 33(3): 307-309.
Zhang Yonggui, Song Zaichao, Zhou Xiaojin, et al. Identification of reef in Miocene, south of Qiongdongnan Basin[J]. Petroleum Geology & Experiment, 2011, 33(3):307-309.
[13] 鐘廣法, 李前裕, 郝滬軍, 等. 深水沉積物波及其在南海研究之現(xiàn)狀[J]. 地球科學(xué)進(jìn)展, 2007, 22(9): 907-913.
Zhong Guangfa, Li Qianyu, Hao Hujun, et al. Current status of deep-water sediment wave studies and the South China Sea Perspectives[J]. Advances in Earth Science, 2007, 22(9): 907-913.
[14] 趙天亮,蒲仁海,屈紅軍,等. 瓊東南盆地南部中新統(tǒng)“丘”形反射成因探討[J]. 海洋學(xué)報(bào), 2013, 35(4): 112-120.
Zhao Tianliang, Pu Renhai, Qu Hongjun, et al. An origin discussion of mound-shaped reflections in Miocene, southern Qiongdongnan Basin[J]. Haiyang Xuebao, 2013, 35(4): 112-120.
[15] 蒲仁海,屈紅軍,吳曉川,等.南海北部中新統(tǒng)的等深流成因的丘形與水道沉積[C]//第十七屆中國(guó)科協(xié)年會(huì)論文集-分9 南海深水油氣勘探開發(fā)技術(shù)研討會(huì)論文集. 北京: 海洋出版社, 2015:1-18.
Pu Renhai, Qu Hongjun, Wu Xiaochuan, et al. The Miocene mound and channel reflections originated from contourite in Northern South China[C]//17thannual meeting of china association for science and technology- Breakout 9: Proceedings of the Symposium on deepwater oil and gas exploration and development in the South China Sea. Beijing: China Ocean Press, 2015:1-18.
[16] Sun Qiliang, Cartwright J, Wu Shiguo, et al. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change[J]. Marine & Petroleum Geology, 2016, 77:75-91.
[17] 伊萬順, 鄧艷濤, 狄邦讓. 瓊東南盆地南部隆起帶丘狀地震相成因討論[J]. 石油物探, 2012, 51(2):199-203.
Yi Wanshun, Deng Yantao, Di bangrang. Discussion on the genesis of domal reflections at the uplift zone of the southern Qiongdongnan Basin[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):199-203.
[18] 古莉,胡光義,羅文生,等. 珠江口盆地流花油田新近系生物礁灰?guī)r儲(chǔ)層特征及成因分析[J]. 地學(xué)前緣, 2012, 19(2): 49-58.
Gu Li, Hu Guangyi, Luo Wensheng, et al. Characteristics and genesis of reservoir spaces in Neocene reef reservoir of Liuhua Oilfield,Pearl River Mouth Basin[J]. Earth Science Frontiers, 2012, 19(2): 49-58.
[19] 何仕斌, 張功成, 米立軍,等. 南海北部大陸邊緣盆地深水區(qū)儲(chǔ)層類型及沉積演化[J]. 石油學(xué)報(bào), 2007, 28(5):51-56.
He Shibin, Zhang Gongcheng, Mi Lijun, et al. Reservoir type and sedimentary evolution in the continental margin deepwater area of the northern South China Sea[J]. Acta Petrolei Sinica, 2007, 28(5):51-56.
[20] 王海榮,王英民,邱燕,等. 南海北部大陸邊緣深水環(huán)境的沉積物波[J]. 自然科學(xué)進(jìn)展, 2007, 17(9): 1235-1243.
Wang Hairong, Wang Yingmin, Qiu Yan, et al. The sedimentary wave in deepwater basin on the continental shelf in the North South China Sea[J]. Progress in Natural Science, 2007, 17(9): 1235-1243.
[21] 陳宏言, 孫志鵬, 翟世奎, 等. 瓊東南盆地井震地層對(duì)比分析及區(qū)域地層格架的建立[J]. 海洋學(xué)報(bào), 2015, 37(5):1-14.
Chen Hongyan, Sun Zhipeng, Zhai Shikui, et al. Analysis of well-seismic stratigraphic correlation and establishment of regional stratigraphic framework in the Qiongdongnan Basin of northern South China Sea[J]. Haiyang Xuebao, 2015, 37(5):1-14.
[22] 趙蒙維. 瓊東南盆地新生代古海洋環(huán)境演變[D]. 青島: 中國(guó)海洋大學(xué), 2013.
Zhao Mengwei. Evolution of paleoenvironment in Qiongdongnan Basin during Cenozoic[D]. Qingdao: Ocean University of China, 2013.
[23] Luisa P, Hanno K, Volkhard S. Sequence stratigraphic framework of a mixed turbidite-contourite depositional system along the NW slope of the South China Sea[J]. Geo-Marine Letters, 2015, 35(1): 1-21.
[24] Brown A R. Structural interpretation from horizontal seismic sections[J]. Geophysics, 1983, 48(9): 1179-1194.
[25] 蒲仁海. 前積反射的地質(zhì)解釋[J]. 石油地球物理勘探, 1994, 29(4): 490-497.
Pu Renhai. Geological interpretation of progradational reflections[J]. Oil Geophysical Prospecting, 1994, 29(4): 490-497.
[26] Zhao Quanhong. Late Cainozoic ostracod faunas and paleoenvironmental changes at ODP Site 1148, South China Sea[J]. Marine Micropaleontology, 2005, 54: 27-47.
[27] Yang Jiayan, Wu Dexing, Lin Xiapei. On the dynamics of the South China Sea Warm Current[J]. Journal of Geophysical Research Oceans, 2008, 113(C8):185-198.
[28] 孫啟良,吳時(shí)國(guó),陳端新,等. 南海北部深水盆地流體活動(dòng)系統(tǒng)及其成藏意義[J]. 地球物理學(xué)報(bào), 2014, 57(12): 4052-4062.
Sun Qiliang, Wu Shiguo, Chen Duanxin, et al. Focused fluid flow systems and their implications for hydrocarbon and gas hydrate accumulations in the deep-water basins of the northern South China Sea[J]. Chinese Journal of Geophysics(in Chinese), 2014, 57(12):4052-4062.
[29] 秦志亮. 南海北部陸坡塊體搬運(yùn)沉積體系的沉積過程、分布及成因研究[D]. 青島: 中國(guó)科學(xué)院海洋研究所,2012.
Qin Zhiliang. Sedimentary process, distribution and mechanism of mass transport deposits, the slop area of Nothern South China Sea[D]. Qingdao: Institute of Oceanography,Chinese Academy of Sciences,2012.
[30] 高平, 何幼斌. 深海大型沉積物波的研究現(xiàn)狀與展望[J]. 海洋科學(xué), 2009, 33(5):92-97.
Gao Ping, He Youbin. Status and prospect of study on deep-sea large-scale sediment waves[J]. Marine Sciences, 2009, 33(5):92-97.
[31] Stuart J Y, Huuse M. 3D seismic geomorphology of a large Plio-Pleistocene delta—‘Bright spots’ and contourites in the Southern North Sea[J]. Marine & Petroleum Geology, 2012, 38(1):143-157.
[32] Knutz P C. Channel structures formed by contour currents and fluid expulsion: significance for Late Neogene development of the central North Sea basin[M]//Petroleum Geology: From Mature Basins to New Frontiers—Proceedings of the 7th Petroleum Geology Conference. 2010:77-94.
[33] Hernandezmolina F J, Llave E, Preu B, et al. Contourite processes associated with the Mediterranean Outflow Water after its exit from the Strait of Gibraltar: Global and conceptual implications[J]. Geology, 2014, 42(3):227-230.
The characteristics and genesis analysis of the mound at the top of Meishan Formation in the Beijiao Sag of the Qiongdongnan Basin
Li Yufeng1, Pu Renhai1, Qu Hongjun1,Li Bin1
(1.StateKeyLaboratoryofContinentalDynamics,NorthwestUniversity,Xi’an710069,China)
The mounded reflections of the mid-Miocene upper Meishan Formation in the Beijiao Sag of Qiongdongnan Basin have been arousing widely the attention of the geologists. Previous studies inferred that the mounded reflection originated from various genesises such as reef, combined result of gravityow and bottom current, and contourite. Based on drilling, 2D and 3D seismic data, this paper researched on the mounds(remnant mounds) and channels in detail. In the Beijiao Uplift the remnant mounds and channels were not developed well, while in the mid part and high of the marginal slope they occurred well. The scale of them became smaller on the two blank of the highland and they are asymmetric. Mounds and channels with nearly E-W orientation are liner and sub-parallel with each others and locally conjunctive and bifurcate. The strikes of those have a small angle intersection with the strike of Beijiao Uplift. The mounds display mounded widths, heights, and length of 562-1 233 m, 29-87 m, and about 10 m, respectively. There are some seismic reflections with the truncation of the blank of the mounds and the incision of the channel. The 3D seismic attributes showed that long strip strong amplitude infilled by the interbedding of sandstone and mudstone mainly occurred in the S-W part of 3D survey, however, the interior remnant mounds with mid-lower amplitude. Integrated drilling and seismic data, the results of this research showed that mounds were composed of mudstone and calcareous mudstone, which belonged to the bathyal depositional environment. The wave impedance (5.0×106-6.5×106kg/m3·m/s) of the mounds were lower than that of carbonate rock and igneous rock, which also belonged the scope of the wave impedance of mudstone and sandstone. According the strong amplitude of the lower Meishan Formation channel became weaker, bifurcate, progradation from W to E and the contourite depositional-erosional characteristics in the vicinity of seamount, we inferred that paleo-current of the remnant mound and channel of formation flew from W to E. And the epoch of contourite deposition and erosion could ascend to the early later Miocene(11.6 Ma BP). Integrated analysis of various mounded reflections, we inferred that in study area mid-Miocene mounded reflections originated from the remnant underlying Meishan Formation incised by bottom current in the early later-Miocene.
Beijiao Sag; Meishan Formation; 3D seismics; remnant mound; channel; bathyal depositional; calcareous mudstone
10.3969/j.issn.0253-4193.2017.05.009Li Yufeng, Pu Renhai, Qu Hongjun, et al. The characteristics and genesis analysis of the mound at the top of Meishan Formation in the Beijiao Sag of the Qiongdongnan Basin[J]. Haiyang Xuebao, 2017, 39(5): 89-102, doi:10.3969/j.issn.0253-4193.2017.05.009
2016-07-24;
2016-12-20。
國(guó)家科技重大專項(xiàng)(2011ZX05025-006-02);國(guó)家自然科學(xué)基金(41390451)。
李俞鋒(1986—),男,四川省南充市人,博士研究生,主要從事海洋沉積學(xué)及其油氣效應(yīng)研究。E-mail:526376337@qq.com
*通信作者:蒲仁海(1962—),男,教授,油氣地質(zhì)與地球物理專業(yè)。E-mail: purenhai@126.com
P736.23
A
0253-4193(2017)05-0089-14
李俞鋒,蒲仁海,屈紅軍,等. 瓊東南盆地北礁凹陷梅山組頂部丘形反射特征及成因分析[J]. 海洋學(xué)報(bào), 2017, 39(5): 89-102,