国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

相位同步討論哺乳動(dòng)物的晝夜節(jié)律

2017-05-24 14:47:09樊慶端劉曾榮
關(guān)鍵詞:哺乳動(dòng)物節(jié)律光照

樊慶端,劉曾榮

(1.上海工程技術(shù)大學(xué)基礎(chǔ)教學(xué)學(xué)院,上海 201620; 2.上海大學(xué)系統(tǒng)生物技術(shù)研究所,上海 200444; 3.上海大學(xué)通信與信息工程學(xué)院,上海 200444)

相位同步討論哺乳動(dòng)物的晝夜節(jié)律

樊慶端1,2,劉曾榮1,3

(1.上海工程技術(shù)大學(xué)基礎(chǔ)教學(xué)學(xué)院,上海 201620; 2.上海大學(xué)系統(tǒng)生物技術(shù)研究所,上海 200444; 3.上海大學(xué)通信與信息工程學(xué)院,上海 200444)

實(shí)驗(yàn)表明哺乳動(dòng)物視交叉上核(suprachiasmatic nucleus,SCN)神經(jīng)元集體涌現(xiàn)出的節(jié)律控制著中央神經(jīng)中樞和外圍組織,從而形成哺乳動(dòng)物的晝夜節(jié)律.為了探索晝夜節(jié)律的涌現(xiàn)機(jī)制,根據(jù)已有實(shí)驗(yàn)結(jié)果構(gòu)建了SCN神經(jīng)元耦合網(wǎng)絡(luò),并建立了描述晝夜節(jié)律的修正的Kuramoto模型.研究發(fā)現(xiàn),晝夜節(jié)律的涌現(xiàn)是通過相位同步來表達(dá)的.另外,討論了模型參數(shù)對(duì)描述相位同步的序參數(shù)的影響,其結(jié)果與生物學(xué)討論吻合.該模型為解釋晝夜節(jié)律的產(chǎn)生機(jī)制提供了一個(gè)新思路.

晝夜節(jié)律;視交叉上核(suprachiasmatic nucleus,SCN);Kuramoto模型;相位同步

晝夜節(jié)律是哺乳動(dòng)物的一種十分常見現(xiàn)象.從生物學(xué)的角度來看,該現(xiàn)象與位于下丘腦的視交叉上核(suprachiasmatic nucleus,SCN)神經(jīng)元中的蛋白表達(dá)及其活性是否與外界環(huán)境(主要是光照)的周期變化一致有關(guān).神經(jīng)節(jié)律的失調(diào)會(huì)嚴(yán)重影響患者的生活質(zhì)量,導(dǎo)致疾病產(chǎn)生,如睡眠障礙[1]、精神分裂[2-3]等.該現(xiàn)象與SCN細(xì)胞的周期行為是否與地球自轉(zhuǎn)的周期行為實(shí)現(xiàn)周期和相位同步有關(guān).按此思路,研究者們開始從分子層次上進(jìn)行晝夜節(jié)律的研究工作.已有學(xué)者通過實(shí)驗(yàn)觀察到SCN細(xì)胞中PERIOD(PER1,2,3),FRQENCY (FRQ1,2)和CRYPTOCHROME(CRY1,2)等時(shí)鐘蛋白的表達(dá)具有振蕩行為,這吸引了很多學(xué)者運(yùn)用轉(zhuǎn)錄-翻譯反饋環(huán)探討晝夜節(jié)律行為.1965年,Goodwin[4]運(yùn)用3個(gè)變量分別表示時(shí)鐘基因的mRNA、蛋白和相關(guān)轉(zhuǎn)錄抑制子,構(gòu)建了一個(gè)轉(zhuǎn)錄-翻譯反饋環(huán)模型.2003年, Leloup等[5]構(gòu)建的19個(gè)方程組成的模型中,變量為主要時(shí)鐘基因PER,CRY,CRY/PER二聚體,BMAL1,CLOCK/BMAL1二聚體的mRNA,蛋白的磷酸化與非磷酸化狀態(tài)以及REVERBα的mRNA和蛋白濃度.同年,Forger等[6]進(jìn)一步建立了含有73個(gè)變量的微分方程模型,該模型再現(xiàn)了SCN神經(jīng)元的晝夜節(jié)律行為.Gonze等[7]在Goodwin模型的基礎(chǔ)上建立了網(wǎng)絡(luò)上的轉(zhuǎn)錄-翻譯的反饋環(huán)動(dòng)力學(xué)模型,并分析了耦合的影響.然而,上述模型很難用來直接討論SCN中所有神經(jīng)元與地球自轉(zhuǎn)產(chǎn)生的周期與相同步.近年來,Li等[8]指出了SCN神經(jīng)元之間耦合的重要性,并運(yùn)用Goodwin模型分析了耦合誘導(dǎo)的同步機(jī)制.Gu等[9]通過Poincare模型分析了耦合強(qiáng)度的分布對(duì)神經(jīng)元的內(nèi)在周期及其同步的影響.Ullner等[10]運(yùn)用全連接網(wǎng)絡(luò)上的Goodwin模型分析了光照強(qiáng)度與耦合強(qiáng)度對(duì)晝夜節(jié)律的影響.這些模型通常應(yīng)用于周期同步的分析,而直接用來分析相同步的模型相對(duì)較少.

目前,采用Kuramoto模型討論相同步的工作進(jìn)展較大.Blanter等[11]討論了兩個(gè)振子的同步行為.Gu等[12]討論了SCN中神經(jīng)元振子的相位分離現(xiàn)象.近年來,已有學(xué)者采用Kuramoto模型研究了復(fù)雜網(wǎng)絡(luò)上中振子的周期和相位同步[13-16].這表明Kuramoto模型可用于討論大量基本單位組成系統(tǒng)的周期和相位同步.

基于上述研究,本工作考慮SCN的結(jié)構(gòu)和功能特點(diǎn),構(gòu)造了描述SCN所有神經(jīng)元整體行為的修正Kuramoto模型,并用該模型討論哺乳動(dòng)物相同步產(chǎn)生晝夜節(jié)律的合理性;針對(duì)模型中結(jié)構(gòu)參數(shù)與動(dòng)力學(xué)參數(shù)的影響作進(jìn)一步討論,所得結(jié)果合理地解釋了晝夜節(jié)律的一些現(xiàn)象.

1 SCN網(wǎng)絡(luò)上修正的Kuramoto模型

根據(jù)SCN的結(jié)構(gòu)和功能特點(diǎn),將SCN神經(jīng)元分為腹外側(cè)(ventral-lateral,VL)和背中側(cè)(dorsal-medial,DM)兩部分,并分別構(gòu)造子網(wǎng)絡(luò).然后,通過有向耦合形成一個(gè)網(wǎng)絡(luò),并在此網(wǎng)絡(luò)上構(gòu)建Kuramoto模型.

1.1 SCN網(wǎng)絡(luò)

首先討論SCN的結(jié)構(gòu)和功能.SCN包含了大約20 000個(gè)自激振蕩神經(jīng)元,在解剖學(xué)上SCN的兩個(gè)子區(qū)域VL與DM產(chǎn)生不同的多肽神經(jīng)元,其中VL中的多肽神經(jīng)元主要有血管活性腸肽(vasoactive intes polypeptide,VIP),DM中的多肽神經(jīng)元主要有精氨酸血管加壓素(arginine vasopressin,AVP).VL神經(jīng)元約占SCN的20%~33%[17],具有感光功能且易被外部的周期光卷帶,而DM神經(jīng)元不感光且其在未經(jīng)VL神經(jīng)元收到光信號(hào)時(shí)大多會(huì)產(chǎn)生自激振蕩行為[18].果蠅的生物鐘神經(jīng)元實(shí)驗(yàn)表明:VL通過光信號(hào)對(duì)DM起調(diào)控作用[19];VL神經(jīng)元耦合緊密呈現(xiàn)周期性振蕩,而DM神經(jīng)元之間的弱耦合幾乎可以忽略[20].這表明兩個(gè)子區(qū)域具有不同的結(jié)構(gòu)和功能,因此探討晝夜節(jié)律時(shí)應(yīng)先將SCN神經(jīng)元?jiǎng)澐譃閂L與DM兩部分,分別構(gòu)建相關(guān)子網(wǎng)絡(luò),再將二者耦合起來形成一個(gè)網(wǎng)絡(luò).

1.2 修正的Kuramoto模型

按照Kuramoto模型的基本方法,可以在SCN網(wǎng)絡(luò)上構(gòu)建描述SCN晝夜節(jié)律行為的模型,為簡(jiǎn)單起見,其中的光信號(hào)用正弦函數(shù)表示,

式中:θj與wj分別表示第j個(gè)神經(jīng)元振子的相位與頻率;N表示SCN中神經(jīng)元的數(shù)目,N1表示VL中神經(jīng)元的數(shù)目,N2表示DM中神經(jīng)元的數(shù)目;?與α分別表示晝夜光信號(hào)的頻率與強(qiáng)度;v(j)表示影響神經(jīng)元j的神經(jīng)元的數(shù)目,即矩陣D中第j列不等于0的元素的個(gè)數(shù);由于DM內(nèi)部的耦合較弱,假定VL內(nèi)部以及VL到DM的耦合強(qiáng)度相等,且與DM內(nèi)部的耦合不同,參數(shù)cs1表示VL內(nèi)部神經(jīng)元之間以及VL到DM神經(jīng)元的耦合強(qiáng)度,cs2表示DM內(nèi)部神經(jīng)元之間的耦合強(qiáng)度.

2 相位同步

2.1 神經(jīng)元相位在光照下的演化

在晝夜節(jié)律系統(tǒng)中,神經(jīng)元的相位可以被外界信號(hào)卷吸到一起,神經(jīng)元的耦合結(jié)構(gòu)與耦合強(qiáng)度以及光照強(qiáng)度對(duì)系統(tǒng)的同步影響較大.為了說明這些現(xiàn)象,以400個(gè)SCN神經(jīng)元為例,運(yùn)用修正Kuramoto模型討論SCN中細(xì)胞的相同步.

生物實(shí)驗(yàn)表明,SCN內(nèi)神經(jīng)元的周期分布為20~28 h[23],因此這里假定神經(jīng)元服從正態(tài)分布N(24,1).另外,注意到DM內(nèi)部的耦合強(qiáng)度較小,故取VL內(nèi)部耦合強(qiáng)度的1/10.模型中的參數(shù)值如表1所示.

表1 SCN網(wǎng)絡(luò)上修正Kuramoto模型中的參數(shù)Table 1 Parameters in the modified Kuramote model on SCN networks

取VL與DM中神經(jīng)元的相位初值在[0,2π]上均服從均勻分布,它們?cè)谥芷跒?4 h、初相位為0的外界光信號(hào)作用下演化.對(duì)系統(tǒng)在240 h內(nèi)的相位變化進(jìn)行數(shù)值模擬,選取其中9個(gè)具有代表性的相位演化過程,具體如圖1所示,其中θ20,θ60與θ100表示VL的3個(gè)神經(jīng)元, θ120,θ160,θ200,θ240,θ280,θ320,θ360與θ400表示DM的8個(gè)神經(jīng)元的相位.從圖1中可以看出,SCN神經(jīng)元逐漸地被周期為24 h的光照所卷吸.大多數(shù)神經(jīng)元都可達(dá)到卷吸效果,即基本上與光照達(dá)到了周期同步和相位同步.同時(shí)也有少數(shù)神經(jīng)元由于與環(huán)境耦合較弱,加之固有周期的差別,仍表現(xiàn)為自激振蕩.這表明上述模型可以較好地說明哺乳動(dòng)物可通過SCN神經(jīng)元與光照的相同步而實(shí)現(xiàn)其晝夜節(jié)律.

圖1 SCN神經(jīng)元相位與外界周期為24 h光信號(hào)同步的過程Fig.1 Processes of phases of SCN neurons’synchronizing to the 24 h cycle light signal

2.2 參數(shù)對(duì)相位序參數(shù)的影響

為進(jìn)一步討論模型的合理性,需要研究模型中參數(shù)對(duì)相同步的影響.由Kuramoto模型討論可知,可以用序參數(shù)來刻畫相位的同步程度.若記神經(jīng)元j的相位為θj,則VL,DM與SCN神經(jīng)元的相位序參數(shù)可分別定義為

由序參數(shù)定義可知,值越接近1表示越多神經(jīng)元實(shí)現(xiàn)了與光照相位同步.表1中參數(shù)K 與q分別決定了子區(qū)域內(nèi)部及子區(qū)域之間的耦合結(jié)構(gòu),可見這兩個(gè)結(jié)構(gòu)參數(shù)對(duì)SCN神經(jīng)元的同步能力極為重要.首先,模型中的K依次取為0,2,4,6,8和10(單側(cè)鄰居數(shù)目為K/2),其余參數(shù)與初值同圖1,可得240 h內(nèi)序參數(shù)隨時(shí)間的變化情況(見圖2).當(dāng)K=0時(shí),VL神經(jīng)元只受光信號(hào)驅(qū)動(dòng),DM神經(jīng)元僅受與其相連的VL神經(jīng)元的影響,其相位可以很快達(dá)到同步.由圖2(a)可以看到,VL神經(jīng)元的相位序參數(shù)短期內(nèi)都能達(dá)到較高的值,而神經(jīng)元間的連接數(shù)目對(duì)其影響甚微.圖2(b)和(c)表明序參數(shù)在初期的增速及其后期的穩(wěn)定值都隨著K的增加而減小,這是一個(gè)比較有趣且有意義的現(xiàn)象.當(dāng)400個(gè)相位在[0,π/3](相應(yīng)時(shí)間差為4 h)上均勻取值時(shí),序參數(shù)r為0.954 7;當(dāng)其(400個(gè)相位)服從均勻分布時(shí),序參數(shù)的多次模擬值均大于0.95.然而,當(dāng)K=10時(shí),SCN的序參數(shù)小于0.9,此時(shí)相位處于較差的卷吸狀態(tài),其原因很可能是K的增大使SCN網(wǎng)絡(luò)出現(xiàn)了一些結(jié)構(gòu)緊湊的“小社團(tuán)”.因此在數(shù)值模擬中,取K=6.隨著q的增大,DM與VL之間的連接增多,即更多VL的相位信息直接傳輸?shù)紻M,從而使得序參數(shù)上升加快.因此q的增大可提高SCN內(nèi)神經(jīng)元的同步速度.

圖2 連接度對(duì)VL,DM和SCN中神經(jīng)元相位序參數(shù)的影響Fig.2 Effects of mean degree on order parameters of neurons in VL,DM and SCN

光照強(qiáng)度與耦合強(qiáng)度也是影響相位動(dòng)力學(xué)行為的重要因素.光照強(qiáng)度α與耦合強(qiáng)度cs1對(duì)序參數(shù)的影響分別如圖3和4所示.圖3(a)表明VL神經(jīng)元相位很快達(dá)到同步,這與神經(jīng)元受光線直接驅(qū)動(dòng)有關(guān);圖3(b)和(c)表明DM以及整個(gè)SCN的神經(jīng)元的序參數(shù)隨著光照強(qiáng)度的增加而緩慢增大,且都有上限.這說明光照強(qiáng)度有利于節(jié)律涌現(xiàn),但促進(jìn)水平卻有限,這一點(diǎn)與生活實(shí)際比較吻合.圖4(a)表明耦合強(qiáng)度的增大提高了VL神經(jīng)元的同步狀態(tài),卻使得VL神經(jīng)元間的相位差縮小,從而使SCN神經(jīng)元的相位更快地實(shí)現(xiàn)同步.這充分表明序參數(shù)隨著耦合的增強(qiáng)而增大.圖3與4的比較也說明光照對(duì)SCN節(jié)律的影響不如神經(jīng)元間耦合強(qiáng)度的影響大.因此,晝夜節(jié)律涌現(xiàn)的主要因素為SCN內(nèi)部的結(jié)構(gòu)與耦合,外界環(huán)境的作用僅僅是利于節(jié)律的形成.

圖3 光照強(qiáng)度對(duì)VL,DM和SCN中神經(jīng)元相位序參數(shù)的影響Fig.3 Effects of light density on order parameters of neurons in VL,DM and SCN

圖4 耦合強(qiáng)度對(duì)VL,DM和SCN中神經(jīng)元相位序參數(shù)的影響Fig.4 Effects of coupling strength on order parameters of neurons in VL,DM and SCN

3 結(jié)束語(yǔ)

哺乳動(dòng)物的生理、行為等節(jié)律主要由視交叉上核中的神經(jīng)元控制.已有實(shí)驗(yàn)和理論研究表明,這些神經(jīng)元的振蕩行為與外界環(huán)境(主要是光照)同時(shí)具有周期同步和相位同步才能使哺乳動(dòng)物表現(xiàn)出晝夜節(jié)律行為.

一般將SCN的神經(jīng)元分為VL與DM來研究晝夜節(jié)律,因?yàn)镾CN的子區(qū)域結(jié)構(gòu)與功能明顯不同.另外,已有的研究中缺乏既考慮SCN的結(jié)構(gòu)特點(diǎn)又能全面分析周期和相位行為的模型.為此,本工作結(jié)合VL與DM神經(jīng)元的功能與結(jié)構(gòu)特點(diǎn),構(gòu)建了描述SCN細(xì)胞涌現(xiàn)晝夜節(jié)律的一個(gè)修正的Kuramoto模型,從相位同步的觀點(diǎn)解釋了晝夜節(jié)律的涌現(xiàn)機(jī)制,并討論各個(gè)參數(shù)對(duì)節(jié)律涌現(xiàn)的影響.數(shù)值結(jié)果表明,光照強(qiáng)度與神經(jīng)元之間耦合強(qiáng)度的增加有利于晝夜節(jié)律的涌現(xiàn),而光照的促進(jìn)作用比較有限.另外,SCN網(wǎng)絡(luò)中神經(jīng)元的平均連接數(shù)目的增加可能導(dǎo)致局部出現(xiàn)連接緊密的神經(jīng)元簇,不利于晝夜節(jié)律的涌現(xiàn).這是一個(gè)有趣的結(jié)果,有待于進(jìn)一步研究.通過調(diào)控神經(jīng)元之間的耦合關(guān)系及耦合強(qiáng)度可以促進(jìn)神經(jīng)節(jié)律的涌現(xiàn),這為節(jié)律失調(diào)藥物的開發(fā)提供了新思路.

[1]DAGAN Y.Circadian rhythm sleep disorders(CRSD)[J].Sleep Medicine Reviews,2002,6(1): 45-54.

[2]STEPHENSON R.Circadian rhythms and sleep-related breathing disorders[J].Sleep Medicine, 2007,8(6):681-687.

[3]ROOPUN A K,KRAMER M A,CARRACEDO L M,et al.Period concatenation underlies interactions between gamma and beta rhythms in neocortex[J].Frontiers in Cellular Neuroscience, 2008,2(1):1-8.

[4]GOODWIN B C.Oscillatory behavior in enzymatic control processes[J].Advances in Enzyme Regulation,1965,3:425-438.

[5]LELOUP J C,GOLDBETER A.Toward a detailed computational model for the mammalian circadian clock[J].Proceedings of the National Academy of Sciences,2003,100(12):7051-7056.

[6]FORGERDB,PESKINCS.Adetailedpredictivemodelofthemammalian circadian clock[J].Proceedings of the National Academy of Sciences,2003,100(25):14806-14811.

[7]GONZE D,BERNARD S,WALTERMANN C,et al.Spontaneous synchronization of coupled circadian oscillators[J].Biophysical Journal,2005,89(1):120-129.

[8]LI Y,LIU Z R.Synchronization of clocks coupled by neurotransmitter in the SCN[J].Journal of Biological Systems,2013,21(1):1350006.

[9]GU C G,WANG J X,LIU Z H.Free-running period of neurons in the suprachiasmatic nucleus: its dependence on the distribution of neuronal coupling strengths[J].Physical Review E,2009, 80(3):030904.

[10]ULLNER E,BUCETA J,DIEZ-NOGUERA A,et al.Noise-induced coherence in multicellular circadian clocks[J].Biophysical Journal,2009,96(9):3573-3581.

[11]BLANTER E M,LE MOUEL J L,SHNIRMAN M G,et al.Kuramoto model of nonlinear coupled oscillators as a way for understanding phase synchronization:application to solar and geomagnetic indices[J].Solar Physics,2014,289(11):4309-4333.

[12]GU C G,WANG J X,WANG J,et al.Mechanism of phase splitting in two coupled groups of suprachiasmatic-nucleus neurons[J].Physical Review E,2011,83(4):046224.

[13]ZHANG Y F,XIAO R B.Synchronization of Kuramoto oscillators in small-world networks[J]. Physica A,2014,416(3):33-40.

[14]ARENAS A,DIAZ-GUILERA A.Synchronization and modularity in complex networks[J].The European Physical Journal Special Topics,2007,143(1):19-25.

[15]DORFLER F,BULLO F.Synchronization in complex networks of phase oscillators:a survey[J]. Automatica,2014,50(6):1539-1564.

[16]DAIDO H.Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators[J].Physical Review E,2000,61(2):2145-2147.

[17]MEIjER J H,SCHWARTZ W J.In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus[J].Journal of Biological Rhythms,2003,18(3):235-249.

[18]LI Y,LIU Z,ZHANG J,et al.Synchronisation mechanisms of circadian rhythms in the suprachiasmatic nucleus[J].IET Systems Biology,2009,3(2):100-112.

[19]YAO Z,SHAFER O T.The drosophila circadian clock is a variably coupled network of multiple peptidergic units[J].Science,2014,343(6178):1516-1520.

[20]YAMAGUCHI S,ISEjIMA H,MATSUO T,et al.Synchronization of cellular clocks in the suprachiasmatic nucleus[J].Science,2003,302(5649):1408-1412.

[21]FREEMAN G M,KROCK R M,ATON S J,et al.GABA networks destabilize genetic oscillations in the circadian pacemaker[J].Neuron,2013,78(5):799-806.

[22]HAFNER M,KOEPPL H,GONZE D.Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus[J].PLoS Computational Biology,2012,8(3):e1002419.

[23]HONMA S,NAKAMURA W,SHIRAKAWA T,et al.Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period[J].Neuroscience Letters,2004,358(3):173-176.

本文彩色版可登陸本刊網(wǎng)站查詢:http://www.journal.shu.edu.cn

Circadian rhythm in mammal based on phase synchronization

FAN Qingduan1,2,LIU Zengrong1,3
(1.College of Fundamental Studies,Shanghai University of Engineering Science,Shanghai 201620,China; 2.Institute of Systems Biology,Shanghai University,Shanghai 200444,China; 3.School of Communication and Information Engineering,Shanghai University Shanghai 200444,China)

A collective rhythm emerges in suprachiasmatic nucleus(SCN)of mammals hypothalamus,controlling the central nervous system and peripheral tissues.To explore the emergence of circadian rhythms,a modified Kuramoto model of the SCN network is established,and its phase synchronization is analyzed.The results show that emergence of circadian rhythm is expressed by phase synchronization.The effect of parameters on order parameter is studied,showing agreements with biological facts.This study provides insights of the mechanism of circadian rhythm.

circadian rhythm;suprachiasmatic nucleus(SCN);Kuramoto model;phase synchronization

Q 612;O 29

A

1007-2861(2017)02-0290-08

10.3969/j.issn.1007-2861.2015.02.005

2015-11-07

國(guó)家自然科學(xué)基金資助項(xiàng)目(10832006,11172158)

劉曾榮(1943—),男,教授,博士生導(dǎo)師,研究方向?yàn)橄到y(tǒng)生物學(xué).E-mail:zrongliu@126.com

猜你喜歡
哺乳動(dòng)物節(jié)律光照
節(jié)能環(huán)保 光照萬(wàn)家(公益宣傳)
節(jié)能環(huán)保光照萬(wàn)家(公益宣傳)
春光照瑤鄉(xiāng)
2 從最早的哺乳動(dòng)物到人類
哺乳動(dòng)物大時(shí)代
哺乳動(dòng)物家族會(huì)
哺乳動(dòng)物不全是恒溫動(dòng)物
蜆木扦插苗人工幼林生長(zhǎng)節(jié)律
慢性給予GHRP-6對(duì)小鼠跑輪運(yùn)動(dòng)日節(jié)律的影響
模擬微重力對(duì)NIH3T3細(xì)胞近日節(jié)律基因的影響
攀枝花市| 桦甸市| 冕宁县| 长宁县| 扬中市| 留坝县| 永春县| 宝鸡市| 瑞安市| 平果县| 松桃| 虞城县| 堆龙德庆县| 济源市| 安宁市| 万州区| 贡嘎县| 麟游县| 阿拉尔市| 临夏县| 大方县| 金川县| 建瓯市| 襄樊市| 沭阳县| 香河县| 平罗县| 青川县| 获嘉县| 柞水县| 磐石市| 曲麻莱县| 龙泉市| 河池市| 灵寿县| 平度市| 永川市| 航空| 东丽区| 汉沽区| 彝良县|