国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

On the Hadamard-like inequality

2017-06-01 12:20:57WANGJupingGUODongxingCAOHongyanWANGShulingZHANGChichen
關(guān)鍵詞:東星紅艷對角

WANG Juping, GUO Dongxing, CAO Hongyan, WANG Shuling, ZHANG Chichen

(Shanxi Medical University, Department of Mathematics, Taiyuan 030001)

On the Hadamard-like inequality

WANG Juping, GUO Dongxing, CAO Hongyan, WANG Shuling, ZHANG Chichen*

(Shanxi Medical University, Department of Mathematics, Taiyuan 030001)

In this paper, a problem called Hadamard-like inequality proposed by Minghua Lin is partially proved. It is directly proved that it holds forn=4 and fails forn=2,3. For a special case of tri-diagonal matrices it is proved to hold for anyn≥3. Finally, a new Hadamard-like inequality that holds for all Hermitian matrices of ordern(?n≥2) is generated.

determinant; Hadamard-like inequality; Hermitian matrices

1Introduction

As the cornerstone of algebra and the important tool of other disciplines, the determinant looks like a magic cube which presents lots of difficult mathematical problems. It also greatly enriches the theory of algebra. In the history of mathematics, many scholars are interested in studying determinant problems and get many world-famous achievements. As early as in 1893, the famous mathematician Hadamard proposed the following well-known inequality:

Lemma 1(Hadamard inequality)[1]. LetA=(aij)bearealsymmetricpositivedefinitematrixofordern.Thendet(A)≤a11a22…annanddet(A)=a11a22…annifandonlyifA=(aij)isadiagonalmatrixorthereexistsarow(column)iszero.

In1907,F(xiàn)ishergaveasharperinequalitycalledFisherinequalitywhichmakestheHadamardinequalitybecomeitsspecialcase.TheFisherinequalitycanbestatedasfollows:

Lateron,variousformsofdeterminantinequalitiesarepresented.SuchasthefamousSchurdeterminantinequality,theM.Marcusdeterminantinequality,andtheOppenheimdeterminantinequality.

In2013,IMAGE51of“TheBulletinoftheInternationalLinearAlgebraSociety”[3]releasedadeterminantinequalityandasksforsolving.Inorderforexpression,werewritethisproblem:

Problem (Minghua Lin)[3]. LetA=(aij)bearealsymmetricpositivedefinitematrixofordernandletA(i)bethesubmatrixobtainedfromAbydeletingthei-throwandi-thcolumn.Showthatthefollowinginequalityholdsforn≥4andfailsforn=2,3:

(1)

In2014,MinghuaLingavethesolutiononIMAGE53ofthebulletin[4],heprovedtheproblemaccordingtotheresultofMerris[5]andpointedoutheisstilllookingforthedirectproof.

Inthisarticle,wedirectlyprovethattheinequality(1)holdsforn=4andfailsforn=2, 3.Andthenweprovethatforaclassoftri-diagonalmatrices,theinequality(1)holdsforn≥3.WealsogiveanewHadamard-likeinequalitythatholdsforallHermitianmatricesofordern(n≥1).

Throughout this paper,A(i,j)(i,j=1,2,…,n,i≠j)standsforthesubmatrixofAobtainedfromAbydeletingthei-throwandj-thcolumn.Especially,inordertobeconsistentwiththeoriginalproposition,weuseA(i)(i=1,2,…,n)todenotethesubmatrixofAobtainedfromAbydeletingthei-throwandi-thcolumn.Sincethematrixthatwediscussissymmetric,aji=aij(i,j=1,2,…,n)alwaysbetrue.

2The proof of Hadamard-like inequality failing for n=2,3 and holding for n=4

In fact, (1)’s reverse inequality holds forn=2.Thefollowingistheproof.

and

ThusL≤RandL=Rifandonlyifa12=0.

Next,weprovethattheHadamard-likeinequalityholdsforn=4,themethodofproofisstillprimary.

det(A)=a11detA(1)-a12detA(1,2)+a13detA(1,3)-a14detA(1,4).

BecauseofLandRcontainingthesameelementa11detA(1),soweonlyneedtoprovethefollowinginequality:

(2)

Bythecalculationruleofthedeterminant,wehavethefollowingresults:

a23a14a34+a13a24a34-a24a14a33),

a12a24a34-a22a13a44+a22a14a34-a14a23a24)

and

a12a24a33-a22a13a34+a14a22a33+a13a23a24).

Sowededucethat

-a12detA(1,2)+a13detA(1,3)-

a14detA(1,4) =2a12a13a23a44+

2a12a14a24a33+2a13a14a22a34-

2a12a14a23a34-2a12a13a24a34

(3)

Andsince

and

Wededucethat

a22detA(2)+a33detA(3)+a44detA(4) =

3a11a22a33a44+2a13a14a22a34+2a12a14a33a24+

(4)

By(2)~(4)Δcan be simplified as follows:

2(a12a13a24a34+a12a14a23a34+a13a14a23a24)+

(a12a34-a14a23)2+(a14a23-a13a24)2-

Next,wedetermineΔis whether positive or not.

SinceAisarealsymmetricpositivedefinitematrixandtheprincipalminorsofAisgreaterthanzero,thenwecanget

So

and

SoΔ≥0.

Thus we complete the proof.

Then

,

detA(1)=7, detA(2)=1, detA(3)=0.75, detA(4)=0.25, and det(A)=0.75.

3The proof of Hadamard-like inequality holding for a kind of special matrix

Firstly,wegiveaformulaofthegeneraltermofanbythefollowing:

an=(λ-m)xn-1+myn-1,

where

and

Proof According to the calculation rule of determinant, we can get the recursion formula ofan:an=λan-1-b2an-2.

Letan-xan-1=y(an-1-xan-2),thenan=(x+y)an-1-xyan-2.Wededucethat

(5)

bn-1=an-xan-1=b1yn-2=(λ2-b2-λx)yn-2.

(6)

Further,consideringan-myn-1=x(an-1-myn-2),wehave

an-xan-1=yn-2(my-mx).

(7)

cn=an-myn-1=c1xn-1=(λ-m)xn-1.

(8)

Soan=(λ-m)xn-1+myn-1.

Thus,wecompletetheproof.

TheLemma3essentiallyprovidesacomputationalmethodforakindoftri-diagonalmatrix.

Sinceaiidet(Ai)=λai-1an-i,wededucethat

Thus,weonlyneedtoprovethefollowinginequalityholds:

(n-1)λn+an-2λan-1-(n-2)λn=

λn+an-2λan-1≥0.

(9)

AccordingtoLemma3,λ=x+yandan=(λ-m)xn-1+myn-1,then(9)canbesimplifiedinthefollowinginequality:

(x+y)n+(λ-m)xn-1+myn-1-

(x+y)n-xn-xn-1y+mxn-1-

(10)

Sincex+y=λ,xy=b2,wecangetλ2-4b2=(x+y)2-4xy=(x-y)2and

λ2-2b2=(x+y)2-2xy=x2+y2.

Consequently,

Andbecauseof

and

Thus,wecancontinuetocalculate(10),wehave

(x+y)n+(λ-m)xn-1+myn-1-

(x+y)n-xn-xn-1y+mxn-1-

(x+y)n-xn-3xn-1y-2xn-2y2-

2xn-2y2-2xy3(xn-4+…yn-4)-

y2(xn-2+…yn-2)=

(11)

Thus,wecompletetheproof.

Example 2 IfA5hastheformasthebeginningofthischapter,letλ=3andb=1,thenA5ispositivedefinitematrix.Bythecalculationruleofthedeterminant,wecanget:L=4×35+144=1116andR=2×3×55+2×3×3×21+2×3×64=900.SoL>R.

Thus, (1)holdsforA5.

4 A new Hadamard-like inequality holding for all Hermitian matrices of order n (?n≥2 )

In this section, we give a derivative result that derived from our research process for the Hadamard-like inequality.

Lemma 4[2]LetA=(aij)beasemidefinitematrixofordern.Ifitsdiagonalelementsare

Lemma 5[2]LetA=(aij)beHermitianmatrixofordernandBbeitsmorderprincipalsubmatrix.Iftheireigenvaluesareλ1≥λ2≥…≥λnandμ1≥μ2≥…≥μmrespectively,then

λj≥μj≥λj+n-m,j=1,2,…,m.

Lemma 6[2]LetA=(aij)beHermitianmatrixofordern.Ifitseigenvaluesareλ1,λ2,…,λn,then(a11,a22,…,ann)(λ1,λ2,…,λn).

Now,westateournewinequality.

Letμ1i≥μ2i≥…≥μn-1i(i=1,2,…,n)betheeigenvaluesofA(i)andλ1≥…≥λnbetheeigenvaluesofA=(aij),thenbyLemma5,wehaveλj≥μji≥λj+1,where

j=1,2,…,n-1,i=1,2,…,n.

Consequently,wehave

(12)

(13)

By(12)and(13),wecandeducethat

(14)

Thuswecompletetheproof.

[1] HOM R A, JOHNSON C R. Matrix Analysis [M]. Cambridge: Cambridge University Press, 1985.

[2] ZHAN X Z. Matrix Theory[M]. Beijing: Higher Education Press(In Chinese), 2008.06.

[3] The Bulletin of the International Linear Algebra Society.IMAGE51.Fall 2013,41.[EB/OL] http://ilasic.org/IMAGE/.

[4] The Bulletin of the International Linear Algebra Society.IMAGE53.Fall 2014,45.[EB/OL] http://ilasic.org/IMAGE/.

[5] MERRIS R.Oppenheim’s inequality for the second immanant[J]. Canad Math Bull 1987, 30:367-369.

[6] ZHANG F. Matrix theory: basic results and techniques [J]. 2nd ed. New York: Springer,, 2011.

[7] CHEN S. Some determinantal inequalities for Hadamard product of matrices [J]. Linear Algebra Appl, 2003, 368: 99-106.

2016-08-23.

山西省重點(diǎn)課題研究項(xiàng)目(SSKLZDKT2014084).

1000-1190(2017)01-0012-06

關(guān)于Hadamard-like不等式

王菊平, 郭東星, 曹紅艷, 王淑玲, 張持晨

(山西醫(yī)科大學(xué) 數(shù)學(xué)教研室, 太原 030001)

給出了由林明華提出的Hadamard-like不等式問題的部分證明,用直接的方法證明了該不等式當(dāng)n=2, 3 時不成立,當(dāng)n=4 時成立以及對于特殊的三對角矩陣,該不等式當(dāng)n≥3 時恒成立.最后,文中給出了一種新的Hadamard-like不等式,此種不等式對于任意的Hermitian矩陣當(dāng)n≥2 成立.

Hadamard-like不等式; 行列式;Hermitian矩陣

O151

A

*通訊聯(lián)系人.E-mail:zhangchichen@sina.com.

猜你喜歡
東星紅艷對角
零淀粉開口飼料在東星斑育苗中的應(yīng)用研究
擬對角擴(kuò)張Cuntz半群的某些性質(zhì)
奢石人居美學(xué)倡導(dǎo)者——對話東星集團(tuán)副總裁/東星奢石CEO蔡小郭
Temperature field analysis of two rotating and squeezing steel-rubber rollers①
Forming mechanism of ink layer on the printing plate in inking process and influencing factors of its thickness①
Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm*
葉東星家庭
海峽姐妹(2014年5期)2014-02-27 15:09:48
非奇異塊α1對角占優(yōu)矩陣新的實(shí)用簡捷判據(jù)
東星航空,民營航空的“先烈”
折大象
新和县| 民乐县| 进贤县| 夹江县| 忻州市| 普宁市| 井陉县| 佛山市| 石棉县| 乌兰县| 甘南县| 监利县| 宜宾市| 巩留县| 固阳县| 阜阳市| 甘南县| 保德县| 弥渡县| 遵义市| 湖州市| 石嘴山市| 永宁县| 吉安市| 卢湾区| 深水埗区| 仁布县| 金华市| 宕昌县| 梅州市| 柯坪县| 宁化县| 南丹县| 东丽区| 鸡西市| 巴林左旗| 德安县| 连江县| 凌源市| 新源县| 长寿区|