馬廣文,王業(yè)耀,香 寶,蘇布達(dá),胡 鈺,于 洋,王 光
1.中國環(huán)境監(jiān)測總站,國家環(huán)境保護(hù)環(huán)境監(jiān)測質(zhì)量控制重點(diǎn)實(shí)驗(yàn)室,北京 1000122.中國環(huán)境科學(xué)研究院,環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國家重點(diǎn)實(shí)驗(yàn)室,北京 100012
高緯區(qū)阿什河面源氮和磷污染輸出特征
馬廣文1,王業(yè)耀1,香 寶2,蘇布達(dá)2,胡 鈺2,于 洋1,王 光1
1.中國環(huán)境監(jiān)測總站,國家環(huán)境保護(hù)環(huán)境監(jiān)測質(zhì)量控制重點(diǎn)實(shí)驗(yàn)室,北京 1000122.中國環(huán)境科學(xué)研究院,環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國家重點(diǎn)實(shí)驗(yàn)室,北京 100012
監(jiān)測數(shù)據(jù);高緯度地區(qū);氮和磷污染;基流分割;輸出量
河流富營養(yǎng)化不僅導(dǎo)致河流本身的經(jīng)濟(jì)、生態(tài)、環(huán)境功能下降,也是導(dǎo)致其受納水體污染的重要原因[1-2],而河流作為中國重要的淡水來源之一,也是湖泊、水庫、地下水等淡水庫的補(bǔ)給源,對(duì)中國工農(nóng)業(yè)及社會(huì)的發(fā)展起著重要作用[3]。富營養(yǎng)化是國內(nèi)外河流、湖泊、水庫等淡水系統(tǒng)面臨的一個(gè)嚴(yán)重環(huán)境問題[4-6]。國內(nèi)外對(duì)水體富營養(yǎng)化氮和磷負(fù)荷進(jìn)行了大量的研究[7-11],據(jù)估算,中國水體氮和磷污染當(dāng)中面源氮和磷污染分別占總量的81%和93%[12]。近年來利用水文模型對(duì)面源產(chǎn)污、匯污過程進(jìn)行模擬成為國內(nèi)外面源研究的熱點(diǎn)[13-16],然而這些方法需要大量的氣象、水文、研究區(qū)域下墊面以及農(nóng)業(yè)活動(dòng)等人類對(duì)自然地貌進(jìn)行改造行為的數(shù)據(jù),以及區(qū)域內(nèi)點(diǎn)源污染排放數(shù)據(jù)等。由于面源污染監(jiān)測存在困難[17],且中國缺乏水域面源污染常規(guī)連續(xù)監(jiān)測數(shù)據(jù),如何對(duì)模型的模擬結(jié)果進(jìn)行驗(yàn)證成為技術(shù)難點(diǎn),這些因素都限制了模型的應(yīng)用范圍。因此,利用數(shù)理統(tǒng)計(jì)模型對(duì)面源污染進(jìn)行估算,目前仍然是面源污染研究不可或缺的手段之一。在理想的情況下,可獲取連續(xù)的水質(zhì)水量監(jiān)測數(shù)據(jù),可以評(píng)估流域污染的季節(jié)性變化,然而在中國以往的水環(huán)境常規(guī)監(jiān)測中,連續(xù)的水量水質(zhì)同步監(jiān)測日序列數(shù)據(jù)較為缺乏,如何利用有限的監(jiān)測數(shù)據(jù)進(jìn)行分析,已成為需要解決的科學(xué)問題之一[18],國內(nèi)利用水量和水質(zhì)數(shù)據(jù)計(jì)算點(diǎn)源與面源污染負(fù)荷已有一些研究[19-21],這些研究的研究區(qū)處在緯度較低區(qū)域,水量水質(zhì)同步監(jiān)測數(shù)據(jù)比較連續(xù),缺少對(duì)于冰封期長、監(jiān)測數(shù)據(jù)存在缺失條件下的點(diǎn)源與面源污染負(fù)荷輸出的計(jì)算。筆者探索處于高緯度地區(qū)阿什河氮和磷污染物輸出量計(jì)算,通過對(duì)水質(zhì)和水量監(jiān)測分析處理,利用改進(jìn)埃特金(Aitkin)、相關(guān)性擬合插值法和基流分割法等,研究阿什河氮磷污染尤其是面源污染對(duì)松花江的影響特征,為環(huán)境管理部門對(duì)高緯度地區(qū)河流面源污染的治理提供參考。
1.1 研究區(qū)概況
阿什河位于黑龍江省哈爾濱市境內(nèi),全長257 km。阿什河流域的地理坐標(biāo)為45°05′~45°49′N, 126°40′~127°42′E,流域面積為3 545 km2[22],流域氣候冬季寒冷而漫長、夏季涼爽而短促,屬中溫帶大陸性季風(fēng)氣候,年均降水量為545.7 mm左右,年降水主要集中在6—9月,其中,降雨集中在每年7—8月,降雪集中在每年11月—次年1月。 每年11月中旬—次年4月上旬為冰封期。阿什河中下游干流豐水期水面寬238~360 m,水深為4.00~4.70 m;枯水期水面寬10.00~23.5 m,水深為0.20~0.25 m。多年平均入境水量為5.16億m3,多年平均徑流量為4.58億m3,最大年徑流量為9.01億m3,最小年徑流量為1.10億m3。阿什河主要有12條支流水系:頭道河、二道河、大泥黑河、黃玉河、西泉眼水庫、洼河和海溝等,見圖1。阿什河水量季節(jié)性明顯,7—8月為豐水期;4—6月、9—10月為平水期;11—12月和次年的1—3月為枯水期[23]。阿什河流域上游森林植被覆蓋良好,中下游耕地廣布,流域內(nèi)從上游到下游依次包括哈爾濱市的尚志市、五常市、阿城區(qū)、香坊區(qū)和道外區(qū)。
圖1 阿什河流域位置和水系分布Fig.1 Location and water system of Ashi River Basin
1.2 監(jiān)測數(shù)據(jù)及分析方法
埃特金插值法主要原理是將一個(gè)高次多項(xiàng)式逼近缺值點(diǎn)的過程轉(zhuǎn)換成多個(gè)線性插值的線性組合:一個(gè)復(fù)雜的高次插值計(jì)算由多個(gè)線性計(jì)算逐步插值來實(shí)現(xiàn)。如果實(shí)測數(shù)據(jù)序列(xj,yj),j=0, 1, 2, …,n, 選取其中m個(gè)(m (k=2,3,…,m;i=k,k+1,…,m) (1) 在指定的x=R處,運(yùn)用線性組合求得近似函數(shù)值,若精度不夠,可再增加選點(diǎn)數(shù)(m值)。在河流的封凍期和解凍期,缺失若干個(gè)數(shù)據(jù),因此,需要對(duì)原有埃特金插值法適當(dāng)改進(jìn),原指定R點(diǎn)作為流動(dòng)點(diǎn)(Rj),取出m個(gè)(可取m=n/2)實(shí)測數(shù)據(jù),成為補(bǔ)差數(shù)據(jù)列,該列數(shù)在實(shí)測數(shù)據(jù)中的序號(hào),由數(shù)據(jù)的可調(diào)指針LB(0≤LB≤m)來確定,需要使Rj位于XLB-P(P=1, 2, …,m) 之間,然后用線性組合,求得一個(gè)等距序列(其中包括實(shí)測點(diǎn))。因此,式(2)為 (j=1,2,…,n;k=2,3,…,m; i=k,k+1,…,m;p=1,2,…,m) (2) 式中:j為補(bǔ)差點(diǎn)序列號(hào)(含缺值點(diǎn)與實(shí)測點(diǎn));變量i為實(shí)測數(shù)據(jù)列中補(bǔ)差時(shí)線性組合的次數(shù);變量k為取出實(shí)測數(shù)據(jù)列中的數(shù)據(jù)序列號(hào),p為補(bǔ)差函數(shù)值的序號(hào)[24]。阿什河口2008—2010年TN、NH+4-N和TP濃度插值后結(jié)果見圖2。 圖2 2008—2010年阿什河口TN、NH+4-N和TP月均濃度結(jié)果Fig.2 TN, NH+4-N and TP average monthly concentration of Ashi River estuary from 2008 to 2010 改進(jìn)后埃特金插值法計(jì)算結(jié)果精度較高,是由于每次插值組合都是線性的,所以計(jì)算簡單、數(shù)據(jù)可靠,高次插值不會(huì)振蕩,增加插值組合的點(diǎn)數(shù)可以進(jìn)一步提高插值函數(shù)的精度。 流量數(shù)據(jù)為阿什河水文站流量監(jiān)測數(shù)據(jù),由于流量的監(jiān)測數(shù)據(jù)上下游之間的相關(guān)性比較好,對(duì)于空間點(diǎn)位缺失的流量數(shù)據(jù),利用相關(guān)性進(jìn)行數(shù)據(jù)插值,依據(jù)回歸方程對(duì)缺失數(shù)據(jù)擬合插值。一般擬合曲線需要6個(gè)以上監(jiān)測數(shù)據(jù),呈冪函數(shù)相關(guān)。 利用Microsoft Excel軟件圖表向?qū)Ш推交€功能繪制過程線擬合。依照擬合公式再計(jì)算缺失的數(shù)據(jù),得出缺失點(diǎn)的數(shù)據(jù)。阿什河口2008—2010年月均流量擬合結(jié)果見圖3。 圖3 2008—2010年阿什河口月均流量擬合結(jié)果Fig.3 Average monthly flow fitting results of Ashi River estuary from 2008 to 2010 1.3 面源污染輸出量估算方法 阿什河面源污染輸出量主要是在水質(zhì)水量的監(jiān)測并補(bǔ)差缺值點(diǎn)數(shù)據(jù),運(yùn)用基流分割法進(jìn)行計(jì)算。河流不同時(shí)間的水質(zhì)和水量監(jiān)測數(shù)據(jù),經(jīng)過水文分割處理,用于估算進(jìn)入水體的面源污染負(fù)荷。 1.3.1 基流分割法 根據(jù)水文學(xué)原理可知總徑流分為基流和地表徑流2部分,基流一般指來源于地下水或其他延遲部分的徑流,或者定義為下滲水到達(dá)地下水面并注入河道的部分[25]。 一般認(rèn)為基流是河道內(nèi)常年出現(xiàn)的那部分水流,主要受流域的氣候、植被、地質(zhì)和土壤等的影響。國外的學(xué)者一般將總徑流分為地面徑流和基流2個(gè)部分[26],該基流是指除地面徑流以外的徑流量。在中國一般認(rèn)為總徑流由深層地下徑流、淺層地下徑流和地面徑流3個(gè)部分構(gòu)成,其中深層地下徑流成分比較穩(wěn)定,也稱基流[27]。目前國際上普遍采用的是這種直接將總徑流分為基流和地面徑流2部分的方法[28],本文也采用這一概念的方法。該方法考慮了點(diǎn)源、面源污染形成規(guī)律,基流輸送的污染物代表了點(diǎn)源負(fù)荷和自然背景值,而地表徑流輸送的污染物為面源污染負(fù)荷。 基流分割方法中直線分割法具有直觀、易于操作等特點(diǎn),應(yīng)用較多。直線分割法分為平割法和斜割法2種。平割法(枯水期直線分割法)是指用直線連接流量過程線中不同拐點(diǎn)進(jìn)行基流分割,在對(duì)年流量過程進(jìn)行基流分割時(shí),一般以枯水期月均流量的最小值作為基準(zhǔn),進(jìn)行基流的分割。平割法一般適用于山區(qū)閉合流域的基流分割,對(duì)于洪水歷時(shí)短、地下徑流小的流域比較適用,適合阿什河流域的水文特征。 1.3.2 輸出量核算方法 根據(jù)水文分割法原理,基流分割是在河流基流和地表徑流劃分基礎(chǔ)上,將地表徑流狀態(tài)下水體中的污染物視為面源豐(平)水期天然背景值,將基流狀態(tài)下水體中的污染負(fù)荷視為點(diǎn)源及枯水期天然背景值,河流年輸出污染總負(fù)荷可表示為 (3) 式中:t為時(shí)間;Cp(t)為t時(shí)刻點(diǎn)源污染物質(zhì)量濃度;Cn(t)為t時(shí)刻面源污染物質(zhì)量濃度;Qp(t)為河流基流量;Qn(t)為地表徑流量;Wt為輸出污染總負(fù)荷。Wt可由監(jiān)測斷面的水質(zhì)、水量數(shù)據(jù)直接求出。點(diǎn)源污染負(fù)荷通過枯水期實(shí)測污染物質(zhì)量濃度來計(jì)算,河流基流由河流的徑流分割來劃分。通過對(duì)式(3)進(jìn)行離散化并移項(xiàng)處理,面源污染負(fù)荷由總污染負(fù)荷與點(diǎn)源污染負(fù)荷之差來計(jì)算[29-30]: (4) 式中:Wn為面源污染負(fù)荷;Cni為第i次監(jiān)測的面源污染物質(zhì)量濃度;Qni為第i次監(jiān)測的流量;Δt為第i次監(jiān)測的時(shí)間段;Ci為第i次監(jiān)測的污染物質(zhì)量濃度;Qi為第i次監(jiān)測的流量;Cpi為第i次監(jiān)測的點(diǎn)源污染物質(zhì)量濃度;Qpi為第i次監(jiān)測點(diǎn)源時(shí)的流量,即河流基流量。 2.1 污染物年際間輸出量 計(jì)算阿什河2008—2010年氮磷污染輸出量,見表1。 表1 2008—2010年阿什河輸出污染負(fù)荷計(jì)算結(jié)果Table 1 Output pollution loading of Ashi River from 2008 to 2010 2.2 污染物年內(nèi)輸出量分布 2008年各月TN、NH+4-N和TP負(fù)荷隨時(shí)間變化過程見圖4。 圖4 2008年TN、NH+4-N、TP污染負(fù)荷隨時(shí)間變化過程Fig.4 Change of TN, NH4+-N and TP pollutional loading of Ashi River in 2008 從圖4可以看出,5月TP輸出量最大,達(dá)129.2 t,面源TP輸出量為91.5 t,TP輸出量主要由面源污染造成,面源TP輸出量占總量的70.8%,其次,6月TP輸出量較大,再次為8月;5月TN輸出量最大,達(dá)886.9 t,面源TN輸出量為568.3 t,TN負(fù)荷主要由面源污染造成,面源TN輸出量占總量的64.1%,其次,6月TN輸出量較大,再次為4月;5月NH+4-N輸出量最大,達(dá)517.7 t,面源NH+4-N輸出量為420.5 t,NH+4-N輸出量主要由面源污染造成,面源NH+4-N輸出量占總量的81.2%,其次,6月NH+4-N輸出量較大,再次為8月。 2009年各月TP、NH+4-N、TN輸出量隨時(shí)間變化過程見圖5。 圖5 2009年TN、NH+4-N和TP隨時(shí)間變化過程Fig.5 Change of TN, NH+4-N and TP loading of Ashi River in 2009 從圖5可以看出,10月TP輸出量最大,達(dá)到38.8 t,面源TP輸出量為22.2 t,TP輸出量主要由面源污染造成,面源TP輸出量占總量的57.1%,其次,3月TP輸出量較大;9月TN輸出量最大,達(dá)450.6 t,面源TN輸出量為177.7 t,TN輸出量主要由點(diǎn)源污染造成,面源TN輸出量占總量的39.4%,其次,6月TN輸出量較大;3月NH+4-N輸出量最大,達(dá)到335.7 t,面源NH+4-N負(fù)荷為149.2 t,面源NH+4-N負(fù)荷占總量的44.5%,其次,2月NH+4-N輸出量較大。 2010年各月TP、NH+4-N、TN負(fù)荷隨時(shí)間變化過程見圖6。 圖6 2010年TN、NH+4-N和TP負(fù)荷隨時(shí)間變化過程Fig.6 Change of TN, NH+4-N and TP loading of Ashi River in 2010 [1] THIEU V, BILLEN G, GARNIER J. Nutrient transfer in three contrasting NW European watersheds: the Seine,Somme,and Scheldt Rivers. A comparative application of the Seneque/ Riverstrahler modle[J].Water Research,2009,43(6):1 740-1 754. [2] WITHERS P J A,SHARPLEY A N.Characterization and apportionment of nutrient and sediment sources in catchments[J]. Journal of Hydrology,2008,350(3-4):127-130. [3] 李躍飛,夏永秋,李曉波,等. 秦淮河典型河段總氮總磷時(shí)空變異特征[J].環(huán)境科學(xué),2013,34(1):91-97. LI Y F, XIA Y Q, LI X B, et al. Temporal and spatial variations of total nitrogen and total phosphorus in the typical reaches of Qinhuai River[J]. Environmental Science,2013,34(1):91-97. [4] 陳軍,權(quán)文婷,孫記紅. 太湖氮磷濃度與水質(zhì)因子的關(guān)系[J].中國環(huán)境監(jiān)測,2011,27(3):79-83. CHEN J,QUAN W T,SUN J H.Relationship between Nitrogen,Phosphorus concentration and water quality factors[J]. Environmental Monitoring in China, 2011,27(3):79-83. [5] SMITH V H,JOYE S B,HOWARTH R W. Eutrophication of freshwater and marine ecosystems[J].Limnol Oceanogr,2006(51):351-355. [6] 蔡履冰. 太湖流域水體富營養(yǎng)化成因及防治對(duì)策的初步研究[J].中國環(huán)境監(jiān)測,2003,19(3):52-54. CAI L B. Preliminary study on the cause and the prevent ing and cur ing of the water body eutrophication of the Taihu Basin[J]. Environmental Monitoring in China,2003,19(3):52-54. [7] STEINMAN A, CHU X F, OGDAHL M. Spatial and temporal variability of internal and external phosphorus loads in Mona Lake,Michigan[J]. Aqual Ecol,2009(43):1-18. [8] 朱冠霖,劉德富,謝濤,等. 香溪河庫灣氮的時(shí)空分布及影響因子分析[J].中國環(huán)境監(jiān)測,2013,29(6):73-78. ZHU G L,LIU D F,XIE T, et al. The temporal and spatial distribution of Nitrogen in Xiangxi Bay and the analyze of the impact factor [J]. Environmental Monitoring in China,2013,29(6):73-78. [9] CHEN Y X, LIU R M, SUN C C, et al. Spatial and temporal variations in nitrogen and phosphorous nutrients in the Yangtze River Estuary[J]. Marine Pollution Bulletin,2012(64):2 083-2 089. [10] HOU D K, HE J, LYU C W,et al. Spatial variations and distributions of phosphorus and nitrogen in bottom sediments from a typical north-temperate lake, China[J]. Environmental Earth Sciences, 2014,71(7):3 063-3 079. [11] 曾凡海,張晟,熊強(qiáng),等. 三峽水庫干流氮和磷含量的季節(jié)變化[J].中國環(huán)境監(jiān)測,2012,28(5):29-32. ZENG F H,ZHANG S,XIONG Q,et al.Seasonal variation of Nitrogen and Phosphorus in Three-Gorge Reservoir [J]. Environmental Monitoring in China, 2012,28(5):29-32. [12] EDWIN D O, ZHANG X L,YU T. Current status of agricultural and rural non-point source pollution assessment in China [J]. Environmental Pollution,2010(158):1 159-1 168. [13] STEVEN W,THOMAS S, TREVOR F, et al. A modeling approach to water quality management of an agriculturally dominated watershed, kansas, USA [J]. Water Air Siol Pollut,2009(203):193-206. [14] SERDAR G, ERDEM A. Modeling climate change effects on streams and reservoirs with HSPF [J]. Water Resour Manage,2010(24):707-726. [15] QIU Z, CHEN Y X, GHULAM J L, et al. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin [J]. Journal of Hazardous Materials,2010(174):824-830. [16] SHEN Z Y, GONG Y W, LI Y H, et al. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area [J]. Agricultural Water Management,2009(96):1 435-1 442. [17] MA G W, WANG S R. Temporal and spatial distribution changing characteristics of exogenous pollution load into Dianchi Lake, Southwest of China[J]. Environmental Earth Sciences,2015,74(5):3 781-3 793. [18] 劉潔,陳曉宏,周純,等. 非點(diǎn)源污染在東江河流水環(huán)境中的貢獻(xiàn)比例估算[J].中國人口·資源與環(huán)境,2014,24(11):79-82. LIU J, CHEN X H, ZHOU C, et al. Study on estimation method of the pollutant loads ratio from non-point source in the Dongjiang River[J]. China Population, Resources and Environment,2014,24(11):79-82. [19] 張革,劉德富,宋林旭,等. 不同基流分割方法在香溪河流域的應(yīng)用對(duì)比研究[J].長江流域資源與環(huán)境,2013,22(2):164-171. ZHANG G, LIU D F, SONG L X, et al. Different baseflow separation methods in the Xiangxi River watershed [J]. China Population, Resources and Environment, 2013,22(2):164-171. [20] 喬飛,孟偉,鄭丙輝,等.長江流域污染負(fù)荷核算及來源分析[J].環(huán)境科學(xué)研究,2013,26(1):80-87. QIAO F, MENG W, ZHENG B H, et al. Pollutant accounting and source analyses in the Yangtze River Basin[J]. Research of Environmental Sciences,2013, 26(1):80-87. [21] 荊紅衛(wèi),華蕾,郭婧,等. 北京市水環(huán)境非點(diǎn)源污染監(jiān)測與負(fù)荷估算研究[J].中國環(huán)境監(jiān)測,2012,28(6):106-111. JING H W,HUA L,GUO J,et al. Non-point source pollution monitoring and its loads estimation study on surface water environment in Beijing[J]. Environmental Monitoring in China,2012,28(6):106-111. [22] MA G W, WANG Y Y, BAO X, et al. Nitrogen pollution characteristics and source analysis using the stable isotope tracing method in Ashi River, northeast China[J]. Environmental Earth Sciences,2015,73(8):4 831-4 839. [23] 楊育紅. 吉林省地表水非點(diǎn)源氨氮污染負(fù)荷研究[D].長春:吉林大學(xué),2007. YANG Y H. Study on surface water nonpoint sources NH3-N pollution loading in Jilin province [D].Changchun: Jilin University,2007. [24] 任德記, 趙大友, 朱忠榮.改進(jìn)埃特金插值法在監(jiān)測數(shù)據(jù)補(bǔ)差中的應(yīng)用[J].人民長江, 2001, 32(1): 44-46. REN D J,ZHAO D Y,ZHU Z R.Application of improved Aitkin method in the makeup of the monitoring data[J].Yangtze River,2001,32(1): 44-46. [25] 徐磊磊,劉敬林,金昌杰,等. 水文過程的基流分割方法研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào), 2011,22(11):3 073-3 080. XU L L, LIU J L, JIN C J, et al. Baseflow separation methods in hydrological process research: A review[J]. Chinese Journal of Applied Ecology, 2011,22(11):3 073-3 080. [26] SMAKHTIN V U. Low flow hydrology: A review[J]. Journal of Hydrology,2001,240(3):147-186. [27] 董曉華,鄧霞,薄會(huì)娟,等.平滑最小值法與數(shù)字濾波法在流域徑流分割中的應(yīng)用比較[J].三峽大學(xué)學(xué)報(bào):自然科學(xué)版,2010,32(2):1-4. DONG X H, DENG X, BO H J,et al.A comparison between smoothed minimma and digital filtering methods applied to catchment baseflow separation[J]. China Three Gorges Univ. (Natural Sciences),2010,32(2):1-4. [28] 黨素珍,王中根,劉昌明. 黑河上游地區(qū)基流分割及其變化特征分析[J].資源科學(xué),2011,33(12):1-8. DANG S Z, WANG Z G, LIU C M. Baseflow separation and its characteristics analysis in the Upstream of Heihe River Basin[J]. Resources Science,2011,33(12):1-8. [29] 鄭丙輝, 王麗婧, 龔斌. 三峽水庫上游河流入庫面源污染負(fù)荷研究[J].環(huán)境科學(xué)研究, 2009, 22(2): 125-131. ZHENG B H, WANG L J, GONG B. Load of non-point source pollutants from Upstream Rivers into Three Gorges Reservoir[J]. Research of Environmental Sciences,2009,22(2):125-131. [30] 涂安國,李英,莫明浩,等. 基于水文分割法的鄱陽湖入湖面源污染研究[J].人民長江, 2012, 43(1):63-66. TU A G, LI Y, MO M H, et al. Study on non-point source pollution from rivers into Poyang Lake based on hydrological base flow segmentation method[J]. Yangtze River,2012,43(1):63-66. Non-point Source Pollution Output Characteristics of Nitrogen and Phosphorus in the Ashi River at High Latitudes MA Guangwen1,WANG Yeyao1,XIANG Bao2,SUBUDA2,HU Yu2,YU Yang1,WANG Guang1 1.State Environment Protection key Laboratory of Environmental Monitoring Quality Control, China National Environmental Monitoring Centre,Beijing 100012,China2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,Beijing 100012,China The improved Aitkin and correlation fitting interpolation method were used to complemented missing data by limited monitoring conditions, the base flow segmentation method were then used to estimated non-point source of nitrogen and phosphorus pollution output load of the Ashi River into the Songhua River, its pollution characteristics were analyzed, based on monitoring data of water quality and flow in the Ashi River from 2008 to 2010. The results showed that total nitrogen (TN) about 5 436.6 t, ammonia (NH+4-N) about 3 057.8 t, total phosphorus (TP) about 554.8 t of the Ashi River were discharged into the Songhua River per year, which point source pollution were 2 775.8, 1440.7 and 250.8 t, non-point source pollution were 2 660.7, 1 630.7, 304.1 t respectively, non-point source pollution accounts for about 50% of the total output. Ashi River pollution output amount emerged TP reduce, TN and NH+4-N added feature from 2008 to 2010. The TP, TN and NH+4-N amount of the Ashi River into the Songhua River were comprehensively analyzed each month from 2008 to 2010, the pollution output peaked in March-May or July-September, mainly caused by the spring flood or summer flood, when the peak pollution source was non-point source pollution generally. monitoring data;high latitudes;nitrogen and phosphorus pollution;base flow separation;output 2016-04-20; 2016-05-25 國家自然科學(xué)基金(31400449);國家水體污染控制與治理科技重大專項(xiàng)(2014ZX07201-009-01) 馬廣文(1980-),男,內(nèi)蒙古呼和浩特人,博士,高級(jí)工程師。 王業(yè)耀 X824 A 1002-6002(2017)02- 0047- 08 10.19316/j.issn.1002-6002.2017.02.082 結(jié)果與討論
3 結(jié)論