国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

諧波減速器柔輪冷滾工藝及殘余應(yīng)力數(shù)值模擬*

2017-06-05 14:14:34吳上生喻鐘鳴
關(guān)鍵詞:柔輪齒廓齒根

吳上生 喻鐘鳴

(華南理工大學(xué) 機(jī)械與汽車工程學(xué)院, 廣東 廣州 510640)

諧波減速器柔輪冷滾工藝及殘余應(yīng)力數(shù)值模擬*

吳上生 喻鐘鳴

(華南理工大學(xué) 機(jī)械與汽車工程學(xué)院, 廣東 廣州 510640)

針對(duì)柔輪工作性能的特殊要求,分析并優(yōu)化了傳統(tǒng)柔輪冷滾壓工藝模型,柔輪采用雙圓弧齒廓曲線模型;依據(jù)修正的Johnson-Cook本構(gòu)模型建立柔輪冷滾壓成形有限元模型并加以驗(yàn)證。仿真結(jié)果表明,采用該模型能得到清晰的雙圓弧齒形和較均勻的等效應(yīng)變分布。文中還分析了不同工藝參數(shù)(進(jìn)給速度、滾輪轉(zhuǎn)速及摩擦系數(shù))對(duì)柔輪輪齒表面殘余應(yīng)力的影響,結(jié)果表明:增大進(jìn)給速度會(huì)降低輪齒表面的殘余應(yīng)力最大值,過(guò)大的進(jìn)給速度會(huì)造成“凸起”;適當(dāng)降低滾輪轉(zhuǎn)速和進(jìn)給速度,可提高殘余應(yīng)力分布的均勻性;摩擦系數(shù)與殘余壓應(yīng)力分布深度正相關(guān).

柔輪;冷滾壓工藝模型;數(shù)值模擬;殘余應(yīng)力;工藝參數(shù)

諧波減速器應(yīng)用于機(jī)器人、導(dǎo)彈巡航系統(tǒng)、雷達(dá)與航天器等領(lǐng)域,柔輪是諧波減速器核心部件.由于其長(zhǎng)期工作在高速及柔性變形條件下,壽命往往僅有1~2年,故其制造工藝是近年來(lái)的研究熱點(diǎn).傳統(tǒng)柔輪制造工藝(滾、切齒等)效率低下,雖然有人提出了慢走絲線切割加工方法[1],但該方法對(duì)工件裝夾定位精度要求很高,加工時(shí)間亦較長(zhǎng).冷滾壓能極大提高柔輪加工效率.與切削加工相比,滾壓過(guò)程中金屬組織晶粒流線未被割斷,使得金屬加工表面組織緊致,并產(chǎn)生殘余壓應(yīng)力,抑制齒面裂紋產(chǎn)生及擴(kuò)展[2- 3],提高了柔輪輪齒的抗疲勞性與壽命.柔輪小模數(shù)、多齒數(shù)及毛坯材料塑性較好的特性,使?jié)L輪模具使用壽命相對(duì)較長(zhǎng),體現(xiàn)了滾壓工藝對(duì)于柔輪加工的優(yōu)適性.傳統(tǒng)齒輪冷滾壓工藝中借助運(yùn)動(dòng)補(bǔ)償強(qiáng)迫控制滾輪與毛坯軸同步,并精確定位滾輪位置;以及通過(guò)滾壓成形彈塑性變形計(jì)算,進(jìn)而得出進(jìn)給量修正量,都可以有效提高成形精度[4- 5].

文獻(xiàn)[5- 7]提出了諧波齒輪冷軋工藝模型,并研究齒距變化對(duì)冷滾壓成形精度的影響;朱小星等[8]提出了滾軋齒輪過(guò)程中齒廓間相對(duì)滑動(dòng)系數(shù)數(shù)值模型,采用實(shí)驗(yàn)加仿真的方法研究了齒廓間相對(duì)滑動(dòng)對(duì)齒廓金屬流動(dòng)方向的影響;Wang等[9]利用DEFORM-3D建立齒輪冷滾有限元模型,分析了成形載荷、應(yīng)變分布;李泳嶧等[10]研究了軸動(dòng)力增量式花鍵軸冷滾壓過(guò)程中分齒精度的影響因素;Reimund、Kamouneh等[11- 12]提出了錐齒輪冷滾壓成形的加工硬化預(yù)測(cè)模型;Kamouneh、吳上生等[13- 14]分析了齒廓間隙及冷滾壓機(jī)結(jié)構(gòu)對(duì)齒輪精密近凈成形精度的影響.但截至目前,針對(duì)小模數(shù)非標(biāo)齒輪冷滾壓成形殘余應(yīng)力分布及影響因素的分析還鮮見報(bào)道.本研究采用雙圓弧柔輪齒廓;通過(guò)約束滾輪初始?jí)喝肓恳蕴岣叻铸X精度;通過(guò)DEFORM-3D軟件;對(duì)柔輪冷滾壓成型過(guò)程進(jìn)行有限元分析,得到柔輪冷滾壓過(guò)程中的應(yīng)變分布以及不同工藝參數(shù)(進(jìn)給速度、滾輪轉(zhuǎn)速、摩擦系數(shù))條件下的殘余應(yīng)力分布,為后續(xù)的冷滾壓柔輪表面殘余應(yīng)力分布控制和加工參數(shù)優(yōu)化提供了參考依據(jù).

1 柔輪冷滾壓模型與工藝

1.1 柔輪齒廓建模

柔輪齒形對(duì)諧波減速器負(fù)載能力及傳動(dòng)精度的影響很大.文中所述柔輪采用雙圓弧齒形.圓弧齒形的加工同漸開線齒形一樣簡(jiǎn)易,然而圓弧齒輪的承載能力卻優(yōu)于漸開線齒輪;雙圓弧齒形的承載能力較單圓弧提高約40%[15],其齒廓曲線如圖1所示.

圖1 柔輪輪齒齒廓曲線

柔輪雙圓弧齒形參數(shù)方程為:

上圓弧AB段,

Ra=(ρa(bǔ)cosα-la)i+sinαj

(1)

下圓弧BC段,

Rr=(lf-ρfcosβ)i+(ρfsinα+bf)j

(2)

齒根過(guò)渡圓弧CD段,

(3)

柔輪設(shè)計(jì)模型如圖2所示.

圖2 柔輪二維設(shè)計(jì)模型示意圖

除柔輪齒頂圓直徑da及齒根圓直徑df外,杯壁內(nèi)徑d1與杯壁高h(yuǎn)1也是對(duì)柔輪設(shè)計(jì)很重要的參數(shù);杯壁底部有16個(gè)直徑3.5 mm的沉孔,用于與減速器外殼固連.

柔輪輪齒設(shè)計(jì)參數(shù)如表1所示.

表1 柔輪輪齒設(shè)計(jì)參數(shù)

根據(jù)范成法原理,容易得到滾輪模具和柔輪是一對(duì)共軛齒廓.建立滾輪三維模型,通過(guò)Inventor軟件面積計(jì)算功能易得柔輪單齒齒廓面積為0.546 96 mm2.根據(jù)金屬塑性成形體積不變?cè)瓌t計(jì)算毛坯尺寸,輸入三維軟件得模具模型.

1.2 柔輪滾壓成形工藝系統(tǒng)

滾壓過(guò)程中,柔輪毛坯固定在芯軸軸肩上,芯軸一端與機(jī)床主驅(qū)動(dòng)軸固連,另一端緊貼頂尖以保證主驅(qū)動(dòng)軸回轉(zhuǎn)剛度.兩滾輪模具位于毛坯兩側(cè),三軸線平行且位于同一平面內(nèi).兩滾輪繞自身軸線做同向、同轉(zhuǎn)速轉(zhuǎn)動(dòng),同時(shí)通過(guò)滾珠絲桿-滑座系統(tǒng)向毛坯軸線方向進(jìn)給,毛坯軸與滾輪軸反向.滾壓工藝原理如圖3所示.

圖3 柔輪冷滾壓工藝過(guò)程模型

工藝過(guò)程分5個(gè)階段:(1)咬入階段;(2)分齒階段,滾輪模具無(wú)徑向進(jìn)給運(yùn)動(dòng),相對(duì)于毛坯做周向轉(zhuǎn)動(dòng);(3)連續(xù)進(jìn)給階段,滾輪既有徑向進(jìn)給又有周向轉(zhuǎn)動(dòng),此過(guò)程完成70%的進(jìn)給量;(4)精整階段,按一定角速度繞毛坯往復(fù)轉(zhuǎn)動(dòng);(5)分離階段.

2 柔輪冷滾壓有限元模型及驗(yàn)證

2.1 柔輪冷滾壓有限元模型

常用的柔輪材料為30CrMnSiA和40CrNiMoA.文中選用40CrNiMoA,新建材料導(dǎo)入數(shù)據(jù)庫(kù),其力學(xué)性能參數(shù)如表2所示.材料屈服準(zhǔn)則為Von-Mises,本構(gòu)關(guān)系選擇式(4)所示的修正的Johnson-Cook模型,相關(guān)參數(shù)如表3所示.

(4)

表2 40CrNiMoA力學(xué)性能參數(shù)

表3 修正的Johnson-Cook模型參數(shù)

定義毛坯材料為彈塑性體,其余部件為剛體. 為提高計(jì)算速度,截取柔輪毛坯1/50模型,設(shè)置相應(yīng)對(duì)稱面;略去連接法蘭部分,只保留杯壁及輪齒.劃分得約39 000個(gè)元素,對(duì)毛坯齒廓部分網(wǎng)格局部細(xì)分,網(wǎng)格最小尺寸0.127 mm.由于材料塑性成形總流向約束阻力較小的方向,設(shè)置柔輪端面軸向速度約為零,材料只產(chǎn)生周向及徑向變形.摩擦系數(shù)為0.08(庫(kù)倫摩擦).模具轉(zhuǎn)速為60 r/min.模具進(jìn)給量每隔半周就應(yīng)調(diào)整一次,為保證模具首次壓入時(shí)毛坯分齒的準(zhǔn)確性,必須對(duì)首次進(jìn)給量進(jìn)行約束[16],計(jì)算公式如式(5)所示.

(5)

式中:Z1為柔輪設(shè)計(jì)齒數(shù);θ為柔輪單齒對(duì)應(yīng)圓心角;r0是毛坯初始外圓半徑;l0是毛坯到滾輪的中心距;Ra為滾輪模具的齒頂圓半徑.

由式(5)計(jì)算得fmin>0.049mm,設(shè)置初始?jí)喝肓繛?.1mm.

2.2 有限元模型驗(yàn)證

鑒于柔輪輪齒尺寸特性,傳統(tǒng)殘余應(yīng)力測(cè)試方法(盲孔法等)已不適用[17].文中采用無(wú)損X射線衍射技術(shù)測(cè)試輪齒表面殘余應(yīng)力分布情況.設(shè)備為iXRD便攜式X射線殘余應(yīng)力測(cè)試分析儀,測(cè)量位置為輪齒齒頂圓徑向部位.實(shí)際加工參數(shù)參照有限元模型設(shè)置.試驗(yàn)參數(shù)為:輻射靶材CuKα,管壓25kV,管流4mA,衍射晶面(311),測(cè)試方法為固定法,曝光時(shí)間2s,每個(gè)衍射角位曝光20次.測(cè)試點(diǎn)取相同坐標(biāo),采用“點(diǎn)追蹤”功能沿徑向依次取3點(diǎn)與試驗(yàn)值比較,如表4所示.

表4 仿真值與實(shí)測(cè)值的對(duì)比

試驗(yàn)值比模擬值略大,不同測(cè)量深度誤差均值約為8.3%.經(jīng)分析,產(chǎn)生誤差的原因可能是:(1)模擬過(guò)程中未考慮模具與毛坯接觸面摩擦產(chǎn)生的熱效應(yīng);(2)滾輪徑向進(jìn)給導(dǎo)致其回轉(zhuǎn)中心發(fā)生變化.

她結(jié)識(shí)了很多男男女女。有個(gè)妹子騙了別呦呦,說(shuō)她母親死了,急需一筆錢,別呦呦把身上的錢都給她了。而妹子拿了錢,再也沒回來(lái)。

3 數(shù)值模擬及分析

3.1 變形分析

圖4表示咬入階段、分齒階段及連續(xù)進(jìn)給階段柔輪毛坯等效應(yīng)變分布云圖.可以看出,分齒階段,齒頂部分有少量“隆起”,這是金屬流動(dòng)造成的;連續(xù)進(jìn)給階段結(jié)束后得到的雙圓弧齒形清晰,即實(shí)現(xiàn)了柔輪滾壓成形的效果.毛坯的變形量和回彈量在實(shí)測(cè)滾壓件中也能得到驗(yàn)證,從另一方面說(shuō)明了有限元模型的可信度.

3.2 滾壓加工參數(shù)對(duì)殘余應(yīng)力的影響

3.2.1 進(jìn)給速度的影響規(guī)律

總進(jìn)給量0.350 3 mm,取摩擦系數(shù)為0.08,滾輪轉(zhuǎn)速n=60 r/min,進(jìn)給速度v分別為0.1、0.2、0.3 mm/s時(shí),輪齒表面殘余應(yīng)力分布如圖5所示.

圖4 各階段毛坯等效應(yīng)變?cè)茍DFig.4 Equivalent strain contour of rolling blank at different stages

由圖5可知,隨進(jìn)給速度v增大,加工表面殘余壓應(yīng)力和殘余拉應(yīng)力的最大值都有所降低;同時(shí),過(guò)大的進(jìn)給速度會(huì)使擠壓產(chǎn)生的塑性流變作用在接觸點(diǎn)形成明顯“凸起”,在加工表面產(chǎn)生較大的殘余拉應(yīng)力,致使殘余應(yīng)力分布不均勻,齒面形成彎曲等.

齒根處不同徑向深度的殘余應(yīng)力隨進(jìn)給速度的變化曲線如圖6所示.

圖5 不同進(jìn)給速度下柔輪表面徑向殘余應(yīng)力分布

Fig.5 Surface radial residual stress distribution of flexspline at different feed rates

圖6 齒根處徑向殘余應(yīng)力隨進(jìn)給速度的變化

Fig.6 Radial residual stress of tooth root at different feed rates

齒根處不同周向深度的殘余應(yīng)力隨進(jìn)給速度的變化曲線如圖7所示.

圖7 齒根處周向殘余應(yīng)力隨進(jìn)給速度變化

Fig.7 Circumferential residual stress of tooth root at different feed rates

齒根處周向殘余應(yīng)力對(duì)柔輪工作載荷的抵消作用很大.由圖7知,周向殘余應(yīng)力在柔輪齒根處都為壓應(yīng)力,在表面附近呈最大值,并隨著周向深度的增大而減??;在進(jìn)給速度為0.2 mm/s附近呈最大值.

3.2.2 滾輪轉(zhuǎn)速對(duì)殘余應(yīng)力分布的影響

選取v=0.1 mm/s,摩擦系數(shù)為0.12.滾輪轉(zhuǎn)速n分別取30、45、60 r/min時(shí),柔輪表面徑向殘余應(yīng)力分布如圖8所示.

由圖8知,當(dāng)進(jìn)給速度一定時(shí),一定程度增大滾輪轉(zhuǎn)速,相當(dāng)于增加滾壓道次,有利于殘余應(yīng)力均勻性,減少“凸起”點(diǎn)殘余拉應(yīng)力的產(chǎn)生;但是,增大滾輪轉(zhuǎn)速加速滾壓成形過(guò)程,工件變形區(qū)塑性降低,加工硬化程度提高.過(guò)高的滾輪轉(zhuǎn)速,不僅會(huì)提高金屬變形抗力,增加滾壓過(guò)程的成形力;還會(huì)使金屬流動(dòng)阻力增加,工件成形效果不佳.過(guò)低的滾輪轉(zhuǎn)速,成形力會(huì)很低,相應(yīng)齒廓接觸面正壓力降低,可能會(huì)產(chǎn)生“打滑”現(xiàn)象.

3.2.3 摩擦系數(shù)對(duì)柔輪表面徑向殘余應(yīng)力分布的影響

選取v=0.1 mm/s,滾輪轉(zhuǎn)速n=60 r/min,摩擦系數(shù)分別取0.08、0.12、0.20時(shí),齒頂處徑向殘余應(yīng)力、齒根處徑向和齒根處周向殘余應(yīng)力分布如圖9-11所示.

圖8 不同滾輪轉(zhuǎn)速下柔輪表面徑向殘余應(yīng)力分布

Fig.8 Surface radial residual stress distribution of flexspline at different roller rotational speed

圖9 齒頂處徑向殘余應(yīng)力隨摩擦系數(shù)的變化

Fig.9 Radial residual stress of addendum at different friction coefficient

圖10 齒根處徑向殘余應(yīng)力隨摩擦系數(shù)變化

Fig.10 Radial residual stress of tooth root at different friction coefficients

圖11 齒根處周向殘余應(yīng)力隨摩擦系數(shù)的變化

Fig.11 Circumferential residual stress of tooth root at different friction coefficient

摩擦系數(shù)主要影響加工表面切向殘余應(yīng)力分布.由圖9-11知,當(dāng)摩擦系數(shù)較大時(shí),易產(chǎn)生殘余壓應(yīng)力;反之,則易產(chǎn)生殘余拉應(yīng)力.當(dāng)摩擦系數(shù)增大時(shí),殘余拉應(yīng)力層越來(lái)越遠(yuǎn)離加工表面.輪齒是在左右兩側(cè)齒面擠壓作用下形成,兩側(cè)加工表面會(huì)形成較大殘余壓應(yīng)力值.隨著摩擦系數(shù)增大,殘余壓應(yīng)力層深度逐漸增大,最后致使齒頂圓表面附近也形成殘余壓應(yīng)力.齒頂圓齒向0.15 mm處開始有殘余壓應(yīng)力產(chǎn)生,殘余壓應(yīng)力層厚度約為0.45 mm.齒根處徑向和周向殘余壓應(yīng)力最大值都在表面處.齒根處周向殘余壓應(yīng)力值隨著摩擦系數(shù)增大幾乎呈線性增長(zhǎng).輪齒加工表面產(chǎn)生了均勻的周向殘余壓應(yīng)力和徑向殘余壓應(yīng)力,能夠抵消柔輪工作載荷下由于輪齒彎曲和摩擦產(chǎn)生的彎曲拉應(yīng)力.在齒向一定深度下,不同摩擦系數(shù)下殘余應(yīng)力值趨于飽和.

綜上所述,擇優(yōu)選取v=0.1 mm/s、滾輪轉(zhuǎn)速n=60 r/min、摩擦系數(shù)為0.20進(jìn)行仿真計(jì)算,讓模具離開毛坯并設(shè)置足夠長(zhǎng)的反應(yīng)時(shí)間.易得柔輪表面等效殘余應(yīng)力最大值663 MPa,此為拉應(yīng)力.

4 結(jié)論

(1)柔輪設(shè)計(jì)模型采用雙圓弧齒廓,通過(guò)齒廓法線法設(shè)計(jì)滾輪模具,計(jì)算得到模具初咬入最小進(jìn)給量為0.1 mm/s,以提高分齒精度.

(2)總進(jìn)給量0.350 3 mm,當(dāng)進(jìn)給速度分別取0.1、0.2、0.3 mm/s時(shí),齒根表面殘余拉應(yīng)力值分別為282、382、547 MPa.過(guò)大進(jìn)給量會(huì)產(chǎn)生“凸起”現(xiàn)象,降低殘余應(yīng)力分布均勻性.隨著進(jìn)給量增大,殘余壓應(yīng)力與殘余拉應(yīng)力最大值都有所下降;增加滾壓次數(shù)以及分階段減小模具進(jìn)給量,有利于改善齒面殘余壓應(yīng)力分布均勻性;增大摩擦系數(shù),提高殘余壓應(yīng)力層深度.

(3)從仿真結(jié)果來(lái)看,滾壓成形完成卸去載荷后,輪齒表面等效殘余拉應(yīng)力最大值為663 MPa,遠(yuǎn)小于材料屈服極限,回彈后不會(huì)對(duì)柔輪后期工作疲勞特性產(chǎn)生不良影響;而殘余壓應(yīng)力能提升柔輪疲勞強(qiáng)度,是有益的.

[1] 吳偉國(guó),于鵬飛,侯月陽(yáng).短筒柔輪諧波齒輪傳動(dòng)新設(shè)計(jì)新工藝與實(shí)驗(yàn) [J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2014,46(1):40- 46. WU Wei-guo,YU Peng-fei,HOU Yue-yang.New design,new process of harmonic drive with short flexspline and its experiment [J].Journal of Harbin Institute of Technology,2014,46(1):40- 46.

[2] 王生武,溫愛玲,邴世君,等.滾壓強(qiáng)化的殘余應(yīng)力的數(shù)值仿真及工藝分析 [J].計(jì)算力學(xué)學(xué)報(bào),2009,26(1):113- 118. WANG Sheng-wu,WEN Ai-ling,BING Shi-jun,et al.FE simulation of residual stresses by surface rolling and analysis of rolling process [J].Chinese Journal of Computational Mechanics,2009,26(1):113- 118.

[3] 劉福超,雷麗萍,曾攀.滾壓有限元模型數(shù)值模擬 [J].塑性工程學(xué)報(bào),2012,19(2):17- 21. LIU Fu-chao,LEI Li-ping,ZENG Pan.Surface rolling FE model for numerical simulation [J].Journal of Plasticity Engineering,2012,19(2):17- 21.

[4] 楊建璽,崔鳳奎,王曉強(qiáng),等.冷滾軋滾輪設(shè)計(jì)理論及實(shí)驗(yàn)修正 [J].中國(guó)機(jī)械工程,2004,15(24):2168- 2171. YANG Jian-xi,CUI Feng-kui,WANG Xiao-qiang,et al.Design theory and experimental amends of involute spline roller [J].China Mechanical Engineering,2004,15(24):2168- 2171.

[5] 楊向紅,林樹忠.冷滾軋諧波齒輪分齒精度的影響因素分析 [J].制造業(yè)自動(dòng)化,2011,33(13):65- 68. YANG Xiang-hong,LIN Shu-zhong.Affect factor analyze towards the tooth accuracy of the cold-rolling harmonic gears [J].Manufacturing Automation,2011,33(13):65- 68.

[6] YANG X,LIN S.Factors affecting cold-rolling accuracy of harmonic gears [J].International Conference on Mechanic Automation & Control Engineering,2010:3891- 3894.

[7] 林樹忠,袁盛治,玉忠林,等.冷軋諧波齒輪成形工藝及質(zhì)量分析 [J].燕山大學(xué)學(xué)報(bào),1986(1):46- 51. LIN Shu-zhong,YUAN Sheng-zhi,YU Zhong-lin,et al.Analysis on the forming process and quality the cold-rolling harmonic gears [J].Journal of Yanshan University,1986(1):46- 51.

[8] 朱小星,王寶雨,楊樂毅,等.齒廓間相對(duì)滑動(dòng)對(duì)滾軋齒輪齒廓金屬流動(dòng)的影響 [J].北京科技大學(xué)學(xué)報(bào),2014,36(2):246- 249. ZHU Xiao-xing,WANG Bao-yu,YANG Le-yi,et al.Effect of relative sliding on tooth profiles metal flow during gear roll forming [J].Journal of University of Science & Technology Beijing,2014,36(2):246- 249.

[9] WANG Zhi-kui,ZHANG Qing.Numerical simulation of involutes spline shaft in cold rolling forming [J].Journal of Central South University of Technology,2010,15(S2):278- 283.

[10] 李泳嶧,趙升噸,范淑琴,等.花鍵軸動(dòng)力增量式滾軋成形工藝數(shù)值分析 [J].材料科學(xué)與工藝,2013,21(3):26- 32. LI Yong-yi,ZHAO Sheng-dun,FAN Shu-qin,et al.Numerical analysis on the power-type incremental rolling forming process of spline shaft [J].Material Science & Technology,2013,21(3):26- 32.

[11] REIMUND N,DIRK K,UDO H.Description of the interactions during gear rolling as a basis for a method for the prognosis of the attainable quality parameters [J].Production Engineering,2007,1(3):253- 257.

[12] KAMOUNEH A A,NI J,STEPHENSON D,et al.Investigation of work hardening of flat-rolled helical-involute gears through grain-flow analysis,FE-modeling,and strain signature [J].International Journal of Machine Tools & Manufacture,2007,47(7):1285- 1291.

[13] KAMOUNEH A A,NI J,STEPHENSON D,et al.Diagnosis of involute metric issues in flat rolling of external helical gears through the use of finite-element models [J].International Journal of Machine Tools & Manufacture,2007,47(7):1257- 1262.

[14] 吳上生,黃澤星,陸振威,等.軸向推力滾子激振式振動(dòng)臺(tái)設(shè)計(jì)研究及仿真分析 [J].振動(dòng)與沖擊,2014,33(2):64- 68. WU Shang-sheng,HUANG Ze-xing,LU Zhen-wei,et al.Design and simulation of axial thrust roller-exciting vibration table [J].Journal of Vibration and Shock,2014,33(2):64- 68.

[15] 辛洪兵.雙圓弧諧波齒輪傳動(dòng)基本齒廓設(shè)計(jì) [J].中國(guó)機(jī)械工程,2001,22(6):656- 662. XIN Hong-bing.Design for basic rack of harmonic drive with double-circular-arc tooth profile [J].Chinese Journal of Mechanical Engineering,2001,22(6):656- 662.

[16] 于杰,王寶雨,胡正寰.齒輪軸齒形軋制成形的模具設(shè)計(jì)與實(shí)驗(yàn) [J].北京科技大學(xué)學(xué)報(bào),2011,33(12):1544- 1549. YU Jie,WANG Bao-yu,HU Zheng-huan.Die design and experiment for forming the teeth of shafts by rolling [J].Journal of University of Science and Technology Beijing,2011,33(12):1544- 1549.

[17] 張霞.無(wú)損應(yīng)力測(cè)試在17Cr2Ni2Mo鋼汽車齒輪中的應(yīng)用 [J].熱加工工藝,2016(4):243- 244. ZHANG Xia.Application of non-destructive stress mea-surement in 17Cr2Ni2Mo steel automobile gear [J].Hot Working Technology,2016(4):243- 244.

Cold Rolling Process and Numerical Simulation of Residual Stress for Flexspline of Harmonic Reducer

WUShang-shengYUZhong-ming

(School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640,Guangdong,China)

By taking into consideration the special requirements for function and property of flexspline, the traditional cold rolling process model is analyzed and optimized based on the double-circle-arc model for flexspline. Then, a finite element model describing the cold rolling process is established according to the modified Johnson-Cook constitutive model and is finally verified. Simulated results show that, with the help of the established model, clear double-circle-arc tooth profile and uniform equivalent strain distribution can both be obtained. Moreover, by analyzing the influences of such parameters as feed rate, roller’s rotation rate and friction coefficient on the residual stress distribution on gear tooth surface, it is found that (1) increasing the feed rate may reduce the maximum residual stress on tooth surface, but excessive feed rate may result in “bulge” on the surface; (2) properly reducing the rotation speed and feed rate of the roller may improve the uniformity of residual stress distribution; and (3) the friction coefficient positively correlates with the distribution depth of residual compressive stress.

flexspline;cold-rolling process model;numerical simulation;residual stress;process parameter

2016- 05- 29

廣東省科技計(jì)劃項(xiàng)目(201605131317517) Foundation item: Supported by the Guangdong Province Science and Technology Planning Project(201605131317517)

吳上生(1963-),男,博士,教授,主要從事機(jī)械裝備自動(dòng)控制理論與應(yīng)用研究. E-mail:shshwu@scut.edu.cn

1000- 565X(2017)02- 0052- 07

TG 306

10.3969/j.issn.1000-565X.2017.02.008

猜你喜歡
柔輪齒廓齒根
一種新型的昆蟲仿生齒廓設(shè)計(jì)
下期要目
筒形柔輪的結(jié)構(gòu)優(yōu)化與有限元分析
諧波齒輪傳動(dòng)柔輪的應(yīng)力和疲勞強(qiáng)度分析*
基于ISO 1328-1:2013的齒廓偏差評(píng)定方法研究*
基于ANSYS齒根裂紋對(duì)斜齒輪接觸應(yīng)力影響分析
漸開線齒廓鏈輪梳齒刀的設(shè)計(jì)
六圓弧齒廓螺旋齒輪及其嚙合特性
基于圖解法的壓力機(jī)變位齒輪齒根過(guò)渡圓弧分析
塑料諧波齒輪柔輪的結(jié)構(gòu)和模具設(shè)計(jì)
宜黄县| 高安市| 韶关市| 明光市| 海兴县| 鄯善县| 错那县| 临沭县| 赣榆县| 江口县| 维西| 寿宁县| 乐陵市| 涪陵区| 美姑县| 宝坻区| 长治县| 安图县| 扶沟县| 中宁县| 灵武市| 佛教| 荥经县| 米易县| 郓城县| 曲沃县| 蓝田县| 威海市| 丹凤县| 湘潭县| 晋城| 当涂县| 乐昌市| 同德县| 云霄县| 怀集县| 潞西市| 互助| 清水县| 页游| 游戏|