李偉峰劉云于小龍魏浩光
1.延長油田股份有限公司勘探開發(fā)研究中心;2.西北大學(xué)地質(zhì)系;3.延長石油集團(tuán)研究院鉆采所; 4.中國石化石油工程技術(shù)研究院
致密油儲層巖石孔喉比與滲透率、孔隙度的關(guān)系
李偉峰1,2劉云1于小龍3魏浩光4
1.延長油田股份有限公司勘探開發(fā)研究中心;2.西北大學(xué)地質(zhì)系;3.延長石油集團(tuán)研究院鉆采所; 4.中國石化石油工程技術(shù)研究院
孔喉比是致密油儲層巖石最重要的微觀物性之一,對儲層的剩余油分布與驅(qū)替壓力影響很大。利用復(fù)合毛細(xì)管模型,考慮儲層巖石的孔喉比、配位數(shù)、孔隙半徑和喉道半徑等孔隙結(jié)構(gòu)參數(shù),建立了致密油儲層巖石的微觀物性與宏觀物性孔隙度、滲透率之間的理論關(guān)系式。并用44組板橋地區(qū)長6油層組致密油儲層巖心的恒速壓汞實驗數(shù)據(jù)進(jìn)行擬合。結(jié)果表明:致密油儲層巖石孔隙度φ主要受孔隙半徑影響,喉道半徑控制巖石的滲透率k,孔喉比與φ0.5/k0.25間具有確定的函數(shù)關(guān)系。利用2組滲透率接近、孔隙度差異較大的巖心驅(qū)油實驗,證實φ0.5/k0.25值大的致密砂巖,水驅(qū)油阻力大。
致密油;孔喉比;孔隙度;滲透率;驅(qū)油阻力;恒速壓汞實驗
致密儲層巖石的儲集空間主體為納米級孔喉系統(tǒng),具有小孔微喉或者細(xì)孔微喉的特征,孔喉比能達(dá)到幾十甚至數(shù)百,賈敏效應(yīng)嚴(yán)重[1-5]。楊正明等[6-7]通過對比研究長慶與大慶外圍儲層物性,發(fā)現(xiàn)大慶外圍孔喉比大是導(dǎo)致開發(fā)難度大的主要因素之一。微觀模擬驅(qū)油實驗表明,油滴在孔道變徑處被卡斷是形成剩余油的主要方式之一,且孔喉比越大,越容易被卡斷[8]。一旦形成剩余油,將無法建立起有效的壓力梯度將其驅(qū)出。數(shù)值模擬也表明無論巖石是水濕、油濕或中性潤濕,隨著孔喉比增加,孔隙中存在剩余油的概率就越大,油水兩相共流區(qū)越窄[9]。所以,孔喉比是致密油儲層巖石最重要的孔隙結(jié)構(gòu)參數(shù)之一。筆者利用復(fù)合毛管束模型,研究致密油儲層巖石孔喉比與孔隙度、滲透率之間的關(guān)系,并用恒速壓汞實驗數(shù)據(jù)進(jìn)行分析。通過室內(nèi)水驅(qū)油實驗,研究了孔喉比、孔隙度、滲透率對致密油儲層注水壓力的影響。
Theoretical calculation
1.1 復(fù)合毛管模型
Composite capillary model
理想巖石模型主要有土壤模型、毛細(xì)管束模型、球管模型、網(wǎng)絡(luò)模型、復(fù)合毛管束模型等[10]。復(fù)合毛管束模型是由粗細(xì)不同的毛細(xì)管串聯(lián)而成的毛細(xì)管組合[11],該模型與毛細(xì)管束模型相比的優(yōu)點是能體現(xiàn)出孔隙和喉道的差異,與其他模型相比結(jié)構(gòu)簡單,能用于解析計算。圖1為板橋地區(qū)長6油層組致密油儲層巖心的掃描電鏡圖(滲透率為0.51 mD,孔隙度為11.8%)。
圖1 板橋長6油層巖心掃描照片F(xiàn)ig.1 Scanning picture of cores taken from Change 6 oil layer in Banqiao area
致密油儲層巖石的膠結(jié)作用很強烈,面孔率很低,孔隙之間只能依靠細(xì)長的喉道相連接。這個孔喉特征可以簡化為復(fù)合毛細(xì)管束模型。前人在應(yīng)用復(fù)合毛管束模型時,沒有考慮配位數(shù)的問題,而本文所建立的孔喉模型(圖2)考慮了配位數(shù)。
圖2 致密油儲層巖石理論孔喉模型Fig.2 Theoretical pore throat model of tight oil reservoir rock
1.2 孔隙度
Porosity
圖2所示的復(fù)合毛細(xì)管模型中,長方形表示孔隙的剖面,與長方形相連的細(xì)線代表喉道。單孔由一個孔隙與λ個喉道相連,孔隙半徑為rp,喉道半徑為rt,孔喉比為rpt;孔隙長為lp,喉道長為lt,孔喉長度比為lpt,則單孔體積V為
假設(shè)理想巖石的截面積為A,單孔的面密度為n,則理想巖石的孔隙度φ為
利用板橋地區(qū)長6油層組致密油儲層巖心恒速壓汞實驗,對孔隙度、滲透率、孔喉比等數(shù)學(xué)表達(dá)式進(jìn)行擬合驗證,44組巖心滲透率分布為(0.10~5.46)mD,孔隙度分布為9.2%~20.1%,平均孔隙半徑分布為103.7~180.3 μm,孔喉比分布為47.4~334.5。致密油儲層巖石的平均配位數(shù)為2~3,孔喉比大,由式(2)可知:孔隙度與孔隙半徑大小相關(guān)性較好(圖3),孔隙度與孔喉比的關(guān)系不明顯(圖4)。
1.3 滲透率
Penetration
令單孔兩端壓差為Δp,孔隙兩端壓差記為Δpp,
喉道兩端壓差記為Δpt,流體黏度為μ,單孔流量q為
圖3 孔隙度與孔隙半徑的關(guān)系Fig.3 Relationship between porosity and pore radius
壓力關(guān)系為
單孔中的流量可表示為
理想巖石的流量Q為
依據(jù)達(dá)西定律,理想巖石的流量表示為
聯(lián)立式(6)與(7)得
聯(lián)立式(2)與(8)得
考慮真實巖石與理想巖石的差別,引入迂曲度τ進(jìn)行修正
式(10)說明影響致密油儲層巖石滲透率的因素很多,例如:配位數(shù)、迂曲度、單孔的面密度、孔隙度以及孔喉比等。微小的喉道控制著流體在巖石中的滲流能力,所以平均喉道半徑、孔喉比與致密油儲層巖石滲透率相關(guān)性好,見圖5與圖6。
圖5 滲透率與孔喉比的關(guān)系Fig.5 Relationship between permeability and pore-throat ratio
圖6 滲透率與平均喉道半徑的關(guān)系Fig.6 Relationship between permeability and average throat radius
1.4 孔喉比與孔隙度、滲透率的理論關(guān)系
Theoretical relationship of pore-throat ratio vs.porosity and permeability
將式(10)改寫成孔喉比與孔隙度、滲透率的關(guān)系為
致密油儲層巖石孔喉比大,配位數(shù)小。式(11)等號左邊第1項遠(yuǎn)大于第2項,省略第2項,開方得
對式(12)開方得
式(13)表明致密油儲層巖石的微觀物性孔喉比與宏觀物性孔隙度、滲透率之間成函數(shù)關(guān)系。對44組恒速壓汞實驗數(shù)據(jù)進(jìn)行擬合得B=0.000 25,C=7.1,相關(guān)性系數(shù)R2=0.843 9(圖7)。
圖7 φ0.5/k0.25與孔喉比的關(guān)系Fig.7 Relationship betweenφ0.5/k0.25and pore-throat ratio
Effect of pore-throat ratio on waterflooding development
水驅(qū)油過程中,連續(xù)油相在通道變徑處容易被卡斷,形成不連續(xù)的油滴,驅(qū)替壓力必須克服油滴變形所帶來的毛管阻力,即賈敏效應(yīng)??缀肀仍酱螅〝嘈?yīng)與賈敏效應(yīng)作用越顯著,油水滲流阻力就越大。為了排除滲透率的影響,選用滲透率接近的2組巖心進(jìn)行水驅(qū)油實驗,基本物性參數(shù)見表1。巖心潤濕性均為水濕,飽和油后以0.05 mL/min的速度進(jìn)行恒速水驅(qū)油實驗,直至含水率達(dá)到98%時結(jié)束。
表1 巖石基本物性參數(shù)Table 1 Basic petrophysical parameters
對比2組實驗的水驅(qū)壓力特征圖可以發(fā)現(xiàn)(圖8),在注水初期,由于巖石滲透率接近,1號樣品的注水壓力梯度為0.32 MPa/cm,2號樣品的注水壓力梯度為0.29 MPa/cm,2組實驗的注水壓力梯度相差不大;在注水的中后期,1號樣品的注水壓力梯度大幅度增加,穩(wěn)定時為0.88 MPa/cm,而2號樣品的注水壓力梯度僅有小幅度增加,穩(wěn)定時不及1號樣品的一半,只有0.37 MPa/cm。因為1號樣品的孔喉比大得多,連續(xù)油相在流經(jīng)孔隙與喉道連接處時,更容易被卡斷成油滴,這些油滴所產(chǎn)生的賈敏效應(yīng)是水驅(qū)油的主要阻力。這說明致密油儲層巖石的φ0.5/k0.25越大,孔喉比越大,則水驅(qū)油阻力增加。所以,孔喉比大是致密油儲層注水開發(fā)難以建立有效驅(qū)動壓差的一個主要因素。
圖8 水驅(qū)油壓力特征圖Fig.8 Characteristic diagram of water displacing oil pressure
孔隙度表征了儲層巖石的儲集性能,其值越大越好。但致密油儲層孔隙度太大,將導(dǎo)致孔喉比增加,開采時將很難建立有效的驅(qū)動壓差。因此,儲層評價時需要從儲集性與滲流角度綜合評價巖石的孔隙度。
Conclusions
(1)致密油儲層巖石孔隙度主要受孔隙半徑影響,與孔喉比的相關(guān)性很小。致密油儲層巖石的微小的喉道是滲透率低的主因。
(2)通過復(fù)合毛細(xì)管模型建立了致密油儲層巖石孔喉比與φ0.5/k0.25之間數(shù)學(xué)關(guān)系,并用44組致密油儲層巖石的壓汞數(shù)據(jù)進(jìn)行了擬合。
(3)室內(nèi)水驅(qū)油實驗表明,滲透率接近時,φ0.5/k0.25大的特低滲油藏,水驅(qū)油過程中卡斷效應(yīng)與賈敏效應(yīng)的作用強,所需驅(qū)替壓力梯度顯著增加。所以,φ0.5/k0.25能合理描述致密油儲層巖石的孔喉比。儲層評價時需要從儲集性與滲流角度綜合評價巖石的孔隙度。
References:
[1]鄒才能,朱如凱,吳松濤,楊智,陶士振.常規(guī)與非常規(guī)油氣聚集類型、特征、機(jī)理及展望——以中國致密油和致密氣為例[J].石油學(xué)報,2012,33(2):173-187.ZOU Caineng,ZHU Rukai,WU Songtao,YANG Zhi,TAO Shizhen.Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33(2): 173-187.
[2]李衛(wèi)成,張艷梅,王芳,朱靜,葉博.應(yīng)用恒速壓汞技術(shù)研究致密油儲層微觀孔喉特征——以鄂爾多斯盆地上三疊統(tǒng)延長組為例[J].巖性油氣藏,2012,24(6):60-65.LI Weicheng,ZHANG Yanmei,WANG Fang,ZHU Jing,YE Bo.Application of constant-rate mercury penetration technique to study of pore throat characteristics of tight reservoir: a case study from the Upper Triassic Yanchang Formation in Ordos Basin[J].Lithologic Reservoirs,2012,24(6): 60-65.
[3]張忠義,陳世加,楊華,付金華,姚涇利.鄂爾多斯盆地三疊系長7段致密油成藏機(jī)理[J].石油勘探與開發(fā),2016,43(4):590-598.ZHANG Zhongyi,CHEN Shijia,YANG Hua,FU Jingli.Tight oil accumulation mechanisms of Triassic Yanchang Formation Chang 7 Member,Ordos Basin,China[J].Petroleum Exploration and Development,2016,43(4): 590-598.
[4]公言杰,柳少波,趙孟軍,謝紅兵,劉可禹.核磁共振與高壓壓汞實驗聯(lián)合表征致密油儲層微觀孔喉分布特征[J].石油實驗地質(zhì),2016,38(3):389-394.GONG Yanjie,LIU Shaobo,ZHAO Mengjun,XIE Hongbing,LIU Keyu.Characterization of micro pore throat radius distribution in tight oil reservoirs by NMR and high pressure mercury injection[J].Petroleum Geology &Experiment,2016,38(3): 389-394.
[5]韋青,李治平,白瑞婷,張?zhí)鹛?,南珺祥.微觀孔隙結(jié)構(gòu)對致密砂巖滲吸影響的試驗研究[J].石油鉆探技術(shù),2016,44(5):109-116.WEI Qing,LI Zhiping,BAI Ruiting,ZHANG Tiantian,NAN Junxiang.An Experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J].Petroleum Drilling Techniques,2016,44(5): 109-116.
[6]楊正明,張英芝,郝明強,劉先貴,單文文.低滲透油田儲層綜合評價方法[J].石油學(xué)報,2006,27(2):64-67.YANG Zhengming,ZHANG Yingzhi,HAO Mingqiang,LIU Xiangui,SHAN Wenwen.Comprehensive evaluation of reservoir in low permeability oilfields[J].Acta Petroiei Sinica,2006,27(2): 64-67.
[7]賈培鋒,楊正明,肖前華,盛倩,熊生春.致密油藏儲層綜合評價新方法[J].特種油氣藏,2015,22(4):33-36.JIA Peifeng,YANG Zhengming,XIAO Qianhua,SHENG Qian,XIONG Shengchun.A new method to evaluate tight oil reservoirs[J].Special Oil &Gas Reservoirs,2015,22(4):33-36.
[8]李振泉,侯健,曹緒龍,陳月明,宋新旺,王克文.儲層微觀參數(shù)對剩余油分布影響的微觀模擬研究[J].石油學(xué)報,2005,26(6):69-73.LI Zhengquan,HOU Jian,CAO Xulong,CHEN Yueming,Wang Kewen.Microscopic simulation for influence of microscopic reservoir parameters on remaining oil distribution[J].Acta Petroiei Sinica,2005,26(6): 69-73.
[9]高慧梅,姜漢橋,陳民鋒.儲層孔隙結(jié)構(gòu)對油水兩相相對滲透率影響微觀模擬研究[J].西安石油大學(xué)學(xué)報(自然科學(xué)版),2007,22(2):56-59.GAO Huimei,JIANG Hanqiao,CHEN Mingfeng.Simulation study on the effect of the microscopic parameters of reservoir pore structure on oil-water relative permeability[J].Journal of Xi’an Shiyou University(Nature Science Edition),2007,22(2): 56-59.
[10]楊勝來,魏俊之.油層物理學(xué)[M].北京:石油工業(yè)出版社,2004:143-159.YANG Shenglai,WEI Junzhi.Reservoir physics[M].Beijing: Petroleum Industry Press,2004: 143-159.
[11]羅蟄潭,王允誠.油氣儲集層的孔隙結(jié)構(gòu)[M].北京:科學(xué)出版社,1986:25-46.LUO Zhetan,WANG Yuncheng.Pore structure of oil-gas reservoir[M].Beijing: Science Press,1986: 25-46.
(修改稿收到日期 2017-02-10)
〔編輯 朱 偉〕
Relationship of pore-throat ratio vs.permeability and porosity of tight oil reservoir rock
LI Weifeng1,2,LIU Yun1,YU Xiaolong3,WEI Haoguang4
1.Exploration and Development Research Center,Yanchang Oil Field Co.,Ltd.,Yan’an716000,Shaanxi,China;
2.Department of Geology,Northwest University,Xi’an710069,Shaanxi,China;
3.Drilling and Production Department of Research Institute,Shaanxi Yanchang Petroleum(Group)Co.,Ltd.,Xi’an710075,Shaanxi,China;
4.Research Institute of Petroleum Engineering,SINOPEC,Beijing100101,China
Pore-throat ratio is one of the most important microscopic physical properties of tight oil reservoir rocks and it has great effect on the remaining oil distribution and displacement pressure of reservoirs.After pore structure parameters of reservoir rocks were analyzed,such as pore-throat ratio,coordinate number,pore radius and throat radius,the theoretical relation between microscopic physical properties and macroscopic physical properties (porosity and permeability) of tight oil reservoir rocks was established by using the composite capillary model.Then,constant-rate mercury injection experiment data of 44 suites of cores taken from Chang 6 oil formation in Banqiao area were used for fitting.It is indicated that the porosity (φ) and permeability (k) of tight oil reservoir rocks are controlled by pore radius and throat radius,respectively.There is a good mathematical relationship between pore-throat ratio andφ0.5/k0.25.Oil displacement experiment was performed on two suites of cores whose permeabilities are close and porosities are more different.It is verified that the water displacing oil resistance in tight sandstones with higherφ0.5/k0.25is higher.
tight oil;pore-throat ratio;porosity;permeability;oil displacement resistance;constant-rate mercury injection experiment
李偉峰,劉云,于小龍,魏浩光.致密油儲層巖石孔喉比與滲透率、孔隙度的關(guān)系[J].石油鉆采工藝,2017,39(2):125-129.
TE311
:A
1000-7393(2017)02-0125-05
10.13639/j.odpt.2017.02.001
: LI Weifeng,LIU Yun,YU Xiaolong,WEI Haoguang.Relationship of pore-throat ratio vs.permeability and porosity of tight oil reservoir rock[J].Oil Drilling &Production Technology,2017,39(2): 125-129.
國家科技重大專項 “高壓低滲油氣藏固井完井技術(shù)”(編號:2016ZX05021-005)。
李偉峰(1983-),畢業(yè)于西安石油大學(xué)油氣田開發(fā)工程專業(yè),西北大學(xué)在職博士研究生,主要研究方向為復(fù)雜結(jié)構(gòu)井鉆完井工藝及儲層地質(zhì)研究,工程師。通訊地址:(716000)陜西省延安市棗園路中段。E-mail:liweifeng0913@126.com