劉春曉+陶連金+邊金+王會(huì)勝+張恒
摘 要:為了研究不同位置的液化土層對(duì)地下結(jié)構(gòu)地震反應(yīng)的影響,采用PL-Fin土體液化本構(gòu)模型,使用FLAC3D進(jìn)行了研究,總結(jié)了液化土層發(fā)生液化大變形時(shí)刻液化區(qū)分布、孔隙水壓力與超靜孔隙水壓力比變化規(guī)律及差異、地下結(jié)構(gòu)的位移及差異沉降規(guī)律,并與非液化場(chǎng)地下的地下結(jié)構(gòu)地震反應(yīng)進(jìn)行了對(duì)比.主要結(jié)論有:當(dāng)結(jié)構(gòu)底部存在液化土層時(shí),引起的結(jié)構(gòu)位移最大,使結(jié)構(gòu)下沉;結(jié)構(gòu)兩側(cè)的土體液化會(huì)引起結(jié)構(gòu)上浮,并使側(cè)墻水平向向?qū)娱g位移和頂?shù)装遑Q向?qū)娱g位移增加;結(jié)構(gòu)整體位于液化土層中時(shí),土體位移、結(jié)構(gòu)位移和結(jié)構(gòu)層間位移差都不是最大值,僅研究結(jié)構(gòu)整體位于液化土層的規(guī)律存在不足;結(jié)構(gòu)周圍、兩側(cè)、底部、底部45°位置、左右兩側(cè)和底部45°位置以及底部和底部45°位置存在液化土層(B+C)位置共計(jì)6種工況下結(jié)構(gòu)頂板y向?qū)娱g位移變化規(guī)律基本一致,但車站不同位置存在液化土層,土層液化的反應(yīng)和對(duì)結(jié)構(gòu)的影響存在一定差異;液化大變形發(fā)生在孔隙水壓力和超孔壓比突增后的1~3 s后,因此可由孔隙水壓力和超孔壓比的突變判斷是否發(fā)生液化大變形.
關(guān)鍵詞:液化;地下結(jié)構(gòu); PL-Fin模型;地震反應(yīng)
中圖分類號(hào):TU 93 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674-2974(2017)05-0143-14
Abstract:In order to study the seismic response of underground structures when liquefied soil layer is located in different positions, the PL-Fin constitutive model proposed and developed in FLAC3D was used in this paper. The time when large deformation occurred, liquefied area distribution, the law and difference of pore water pressure and excess pore water pressure ratio, the law of the displacement characteristics, and differential settlement of structure were summarized. Their differences were also compared and analyzed when the structure is on non-liquefied soil layer. The primary conclusions are as follows: the displacement of structure was the largest when liquefied soil layer was under structure and caused the structure sink; the liquefied soil on both sides of the structure caused the structure float upward, and increased the displacement between the layers of side walls in the horizontal direction as well as between the roofs and floors in the vertical direction; the soil displacement and the displacement and differential settlement of structure were all not the largest when structure was all located over the liquefied soil, so it was not enough to only study the law when structure was embedded in liquefied soil; the law of the y-displacement of story drift on top plate was similar when the liquefied soil was located at six different positions including around the structure, on its two sides, in its bottom, in 45 degrees at the bottom of the location, on its two sides and 45 degrees at the bottom of the location, and in its bottom and 45 degrees at the bottom of the location, but the response of liquefied soil and the influence on the structure performance were different; and the large deformation caused by liquefaction occurred in 1 to 3 seconds after the jump of pore water pressure and the excess pore water pressure ratio, so their mutation can be considered as judgement on whether the large deformation occurred or not.
Key words:liquefaction; underground structure; PL-Fin model; seismic response
許多學(xué)者對(duì)地下結(jié)構(gòu)在非液化場(chǎng)地下的地震反應(yīng)分析作了研究[1-4].大規(guī)模的軌道交通建設(shè),使地鐵車站結(jié)構(gòu)不可避免地穿越可液化土層,也有許多學(xué)者對(duì)此作了研究.劉華北等[5-6]采用軟件DIANA SWANDYNE-Ⅱ?qū)梢夯鼗蠁螌与p跨矩形斷面地下結(jié)構(gòu)的地震反應(yīng)進(jìn)行了初步的研究;王剛等[7]對(duì)阪神地震中破壞的大開車站進(jìn)行了分析;陳蘇等[8]對(duì)可液化場(chǎng)地上三拱立柱式地鐵地下結(jié)構(gòu)的地震反應(yīng)特性進(jìn)行了振動(dòng)臺(tái)試驗(yàn)研究.
以上研究基本都把結(jié)構(gòu)置于全液化場(chǎng)地中,實(shí)際工程中,液化土層有可能位于地下結(jié)構(gòu)的任意部位,對(duì)于地下結(jié)構(gòu)不同位置存在液化土層的影響目前研究較少,對(duì)地震作用下結(jié)構(gòu)在液化土層和非液化土層中的不同反應(yīng)差異研究也不多.
基于此,本文設(shè)計(jì)將非液化土層作為對(duì)比工況,分析地下結(jié)構(gòu)完全位于液化土層、底部位于液化土層、兩側(cè)位于液化土層、底部45°位置處存在液化土層、左右兩側(cè)和底部45°位置存在液化土層以及底部和底部45°位置存在液化土層6種典型情況.考慮液化后大變形,通過FLAC3D軟件,采用陳育民[9]提出并在FLAC3D中開發(fā)的PL-Fin本構(gòu)模型進(jìn)行數(shù)值模擬,研究地下結(jié)構(gòu)在6種不同液化條件下的地震反應(yīng)規(guī)律,并設(shè)計(jì)非液化場(chǎng)地作為對(duì)比工況進(jìn)行比較.
1 FLAC計(jì)算模型的建立
1.1 模型尺寸
本次試驗(yàn)以典型單層雙跨地鐵區(qū)間結(jié)構(gòu)來(lái)確定模型的尺寸和內(nèi)部結(jié)構(gòu).其中頂?shù)装搴蛡?cè)墻的厚度分別為900 mm,900 mm和750 mm,中板厚度為420 mm,結(jié)構(gòu)模型長(zhǎng)為19.92 m,高度為9 m,結(jié)構(gòu)模型的具體尺寸如圖1所示.
計(jì)算模型長(zhǎng)為180 m,高度為50 m,根據(jù)規(guī)范[10],地面以下15~20 m范圍內(nèi)土層的液化,可能引起地下車站結(jié)構(gòu)和區(qū)間的嚴(yán)重破壞或上浮,因此對(duì)地面以下20 m土層進(jìn)行液化判別是非常必要的.本計(jì)算模型中把液化地層取到地表以下20 m處,如圖2所示,其中所標(biāo)注A,B,C區(qū)域?yàn)橐夯瘏^(qū)范圍.針對(duì)本文所研究的6種工況所對(duì)應(yīng)的液化分布為地下結(jié)構(gòu)完全位于液化土層(A+B+C)、底部位于液化土層(C)、兩側(cè)位于液化土層(A)、底部45°位置處存在液化土層(B)、左右兩側(cè)和底部45°位置存在液化土層(A+B)以及底部和底部45°位置存在液化土層(B+C).模型的動(dòng)力邊界為FLAC3D中的自由場(chǎng)邊界[11],確定計(jì)算模型共8 968個(gè)節(jié)點(diǎn),4 329個(gè)單元.網(wǎng)格劃分如圖3所示,圖4所示為可液化土層中的孔隙水壓力分布.
1.2 參數(shù)選取
計(jì)算模型中,非液化區(qū)域的土采用黏土,液化區(qū)域的土采用飽和砂土,其物理力學(xué)參數(shù)及結(jié)構(gòu)模型尺寸參數(shù)見表1和表2.
1.3 地震波輸入及工況設(shè)置
本文采用水平向(模型中的X向)振動(dòng),圖5選取峰值為0.1g的某液化場(chǎng)場(chǎng)地波.
2 不同工況下土體液化情況分析
FLAC3D中的拉格朗日元方法遵循連續(xù)介質(zhì)的假定,允許大變形,能夠反映幾何的非線性特性.在大變形計(jì)算過程中,節(jié)點(diǎn)坐標(biāo)會(huì)隨時(shí)步自動(dòng),當(dāng)位移較大時(shí)會(huì)導(dǎo)致網(wǎng)格畸形而無(wú)法進(jìn)行下去,本文以此作為判據(jù),認(rèn)為網(wǎng)格畸形處土體產(chǎn)生液化大變形后的破壞,對(duì)此時(shí)刻不同工況下的地震反應(yīng)進(jìn)行分析.
2.1 液化土層破壞的位置
圖6中土體網(wǎng)格區(qū)域里黑色斑點(diǎn)處為土體產(chǎn)生液化大變形破壞位置.由圖6可知, 當(dāng)車站底部存在液化土層時(shí),發(fā)生液化大變形土體距離車站最近,兩側(cè)存在液化土層時(shí),液化大變形位置處土體距離車站最遠(yuǎn),因此車站底部存在液化土?xí)r,地鐵受液化大變形影響較大,需引起重視.
2.2 液化場(chǎng)對(duì)比非液化場(chǎng)位移矢量
圖7為各工況研究區(qū)域土體位移矢量圖.由圖7可見,對(duì)于非液化土層,土體的運(yùn)動(dòng)以水平向?yàn)橹?,而液化土層中,土體存在上下方向的運(yùn)動(dòng),所以土體運(yùn)動(dòng)方向不僅局限于水平向,土體最大位移為6.693×10-3 m,液化土層6種工況下土體位移最大值分別為1.352 m,1.054 m,1.693 m,1.807 m,1.70 5 m,1.684 m.可見,僅A區(qū)存在液化土層時(shí),土體位移最小,液化程度也最輕微,這與結(jié)構(gòu)緊鄰兩側(cè)土體孔隙水壓力容易消散有關(guān);結(jié)構(gòu)底部即C區(qū)存在液化土層時(shí),土體位移最大;當(dāng)除了B區(qū)之外的其他區(qū)域存在液化土層時(shí),土體的位移反而會(huì)減小,當(dāng)A區(qū)域和其他區(qū)域存在液化土層時(shí),往往靠近底部的土體首先出現(xiàn)較大位移,A區(qū)域土體位移較小.從土體位移情況可判斷需要引起人們重視的液化區(qū)域位置為C區(qū)>B區(qū)>A區(qū).
2.3 液化區(qū)分布
與之相對(duì)應(yīng)時(shí)刻液化區(qū)分布如圖8所示.對(duì)應(yīng)于上文所述位移矢量圖,土體液化的位置對(duì)應(yīng)于土體發(fā)生較大位移的位置.當(dāng)存在液化土層時(shí),可以用土體的位移簡(jiǎn)單判斷土體的液化情況;且土體變形畸形時(shí)刻正對(duì)應(yīng)當(dāng)前液化狀態(tài),此處也處在液化后區(qū)域,即網(wǎng)格大變形產(chǎn)生位置處土體曾發(fā)生過液化,后期液化再次產(chǎn)生的時(shí)刻伴隨著大變形,即為液化后大變形.可以簡(jiǎn)單證明,液化大變形是在液化產(chǎn)生后的一段時(shí)間內(nèi)才發(fā)生的,這與國(guó)內(nèi)外許多地震震害調(diào)查結(jié)果表明的,液化引起的地基或者建筑物破壞通常發(fā)生在地震結(jié)束后幾分鐘甚至幾天后的結(jié)論相一致.
2.4 超孔壓比和孔隙水壓力變化
圖9所示為各工況土體大變形破壞時(shí)刻孔隙水壓力分布云圖.對(duì)應(yīng)于圖8和圖6,當(dāng)前液化區(qū)域孔隙水壓力都會(huì)比較高,且此處也是土體大變形破壞區(qū)域.
在數(shù)值計(jì)算中[12],由于計(jì)算精度的影響,常用超孔壓比的概念來(lái)描述液化.
當(dāng)計(jì)算過程中單元的平均有效應(yīng)力為零即超孔壓比達(dá)到1時(shí),可簡(jiǎn)單判斷飽和砂土發(fā)生液化.本文也以此為依據(jù),選取產(chǎn)生液化大變形位置的監(jiān)測(cè)點(diǎn),即圖6所示土體網(wǎng)格中黑色斑點(diǎn)處,調(diào)取其超孔壓比時(shí)程曲線,觀察其從初始液化狀態(tài)到產(chǎn)生液化大變形狀態(tài)期間,超孔壓比和孔隙水壓力的變化情況,如圖10和圖11所示.可見土體孔隙水壓力的變化和超孔壓比的變化規(guī)律基本一致,隨著時(shí)間的增長(zhǎng)逐漸增加且在液化大變形產(chǎn)生的前1~3 s會(huì)出現(xiàn)突增,由此可判斷液化大變形的產(chǎn)生.
3 結(jié)構(gòu)位移變形分析
3.1 結(jié)構(gòu)位移矢量
土體破壞時(shí)刻結(jié)構(gòu)的位移矢量情況如圖12所示.從量值上來(lái)看,非液化土層中結(jié)構(gòu)的最大位移為6.2 mm,6種液化工況對(duì)應(yīng)最大結(jié)構(gòu)位移分別為26.1 mm,8.3 mm,18 mm,19.9 mm,29.8 mm和20.4 mm.
從結(jié)構(gòu)運(yùn)動(dòng)方向來(lái)看,非液化場(chǎng)地中,結(jié)構(gòu)只呈現(xiàn)水平左右向的運(yùn)動(dòng).結(jié)構(gòu)兩側(cè)的液化土層會(huì)導(dǎo)致結(jié)構(gòu)的上浮運(yùn)動(dòng),但是位移量較小,結(jié)構(gòu)底部的液化土層會(huì)引起結(jié)構(gòu)的下沉,且結(jié)構(gòu)底部存在液化土層時(shí),結(jié)構(gòu)的整體位移較大.結(jié)構(gòu)整體位于液化土層中時(shí),結(jié)構(gòu)的位移并非最大,結(jié)構(gòu)產(chǎn)生最大位移是在B區(qū)和C區(qū)都存在液化土層時(shí),因此僅研究結(jié)構(gòu)整體位于液化土層中地下結(jié)構(gòu)的反應(yīng)規(guī)律是存在不足的.
3.2 結(jié)構(gòu)變形
3.2.1 結(jié)構(gòu)變形圖
圖13所示為各個(gè)工況下結(jié)構(gòu)變形圖,為了便于分析,將圖例的變形放大至實(shí)際變形的1 000倍.
由圖13可知,結(jié)構(gòu)在液化后土體中處于三向受力的狀態(tài),且頂?shù)装?、左右?cè)墻之間存在差異,不同于結(jié)構(gòu)處于非液化場(chǎng)地中時(shí),結(jié)構(gòu)主要產(chǎn)生x向的層間位移.下面對(duì)結(jié)構(gòu)的層間位移差進(jìn)行分析.
3.2.2 結(jié)構(gòu)層間位移差
結(jié)構(gòu)層間位移監(jiān)測(cè)點(diǎn)布置圖見圖14.結(jié)構(gòu)x向、z向?qū)娱g位移見圖15.
由圖15可知,結(jié)構(gòu)處于液化和非液化地層中時(shí),側(cè)墻從上到下距離頂部x向位移差和頂?shù)装鍙淖蟮接揖嚯x左端的z向的層間位移差變化狀態(tài)基本上保持一致,側(cè)墻相對(duì)頂部位移從上到下隨位置變化呈梯度的增加,頂板相對(duì)于左端從左到右隨位置變化呈梯度的增加.即可以把左右側(cè)墻的x向運(yùn)動(dòng)以及頂?shù)装宓膠向運(yùn)動(dòng)視為整體運(yùn)動(dòng).
從圖15不同工況下側(cè)墻層間位移差曲線圖可以發(fā)現(xiàn),局部存在液化土層時(shí),結(jié)構(gòu)的x向和z向?qū)娱g位移差為A區(qū)>B區(qū)>C區(qū),說明結(jié)構(gòu)兩側(cè)存在液化土層是引起結(jié)構(gòu)的x向、z向?qū)娱g差異變形大于非液化土層的主要原因,底部的液化土層導(dǎo)致了結(jié)構(gòu)的整體位移.結(jié)構(gòu)整體位于液化土層中時(shí),結(jié)構(gòu)的以上2種層間位移差都不是最大值.
對(duì)比左右兩圖可知,結(jié)構(gòu)處于全液化場(chǎng)地時(shí),結(jié)構(gòu)頂?shù)装?、左右?cè)墻位置y向位移差異很大;非液化場(chǎng)地下,結(jié)構(gòu)頂?shù)装濉⒆笥覀?cè)墻位置y向位移基本保持一致而且變動(dòng)數(shù)值是很微小的,可以忽略不計(jì).下面對(duì)液化場(chǎng)地各工況下結(jié)構(gòu)頂?shù)装?、左右?cè)墻y向?qū)娱g位移差進(jìn)行匯總比較,見圖17.
由圖17可知,6種工況下結(jié)構(gòu)頂板y向?qū)娱g位移變化規(guī)律基本一致, B區(qū)存在液化土層時(shí),其量值最大,而C區(qū)液化土層的存在會(huì)導(dǎo)致頂板出現(xiàn)彎曲,即頂板y方向位移變化方向不一致.
B區(qū)、C區(qū)存在液化土層會(huì)導(dǎo)致底板彎曲,C區(qū)存在液化土層對(duì)應(yīng)工況4時(shí),底板y向?qū)娱g位移差最大.
B區(qū)存在液化土層時(shí),左側(cè)墻會(huì)彎曲,B區(qū)、C區(qū)同時(shí)存在液化土層時(shí),結(jié)構(gòu)左右側(cè)墻y向?qū)娱g位移差最大;A 區(qū)、B區(qū)存在液化土層時(shí),左右側(cè)墻y向?qū)娱g位移差值都很小.
4 結(jié) 論
本文分析了車站不同位置處存在液化土層,產(chǎn)生液化大變形網(wǎng)格畸形時(shí)刻,土和結(jié)構(gòu)的地震反應(yīng)規(guī)律,并同非液化場(chǎng)地下的反應(yīng)進(jìn)行對(duì)比,得出的主要結(jié)論如下:
1)根據(jù)土體位移情況可判斷需要引起人們重視的液化區(qū)域位置為C區(qū)>B區(qū)>A區(qū);不同區(qū)域液化引起的結(jié)構(gòu)整體位移也為C區(qū)>B區(qū)>A區(qū),當(dāng)B區(qū)和C區(qū)同時(shí)存在液化土層時(shí),結(jié)構(gòu)整體位移最大.
2)結(jié)構(gòu)兩側(cè)的液化土層會(huì)加大結(jié)構(gòu)左右側(cè)墻x向?qū)娱g位移和頂?shù)装鍅向?qū)娱g位移,是引起結(jié)構(gòu)這兩種層間位移差的主要原因.結(jié)構(gòu)整體都位于液化土層中時(shí),土體位移、結(jié)構(gòu)位移和結(jié)構(gòu)層間位移差都不是最大值,因此平時(shí)只研究結(jié)構(gòu)整體位于液化土層的規(guī)律是存在不足的.
3)6種工況下結(jié)構(gòu)頂板y向?qū)娱g位移變化規(guī)律基本一致, B區(qū)存在液化土層時(shí),其量值最大,而C區(qū)液化土層的存在會(huì)導(dǎo)致頂板出現(xiàn)彎曲;B區(qū)、C區(qū)存在液化土層會(huì)導(dǎo)致底板彎曲,C區(qū)存在液化土層對(duì)應(yīng)工況4時(shí),底板y向?qū)娱g位移差最大;B區(qū)存在液化土層時(shí),左側(cè)墻會(huì)彎曲,B區(qū)、C區(qū)同時(shí)存在液化土層時(shí),結(jié)構(gòu)左右側(cè)墻y向?qū)娱g位移差最大;A 區(qū)、B區(qū)存在液化土層時(shí),左右側(cè)墻y向?qū)娱g位移差值都很小.
4)結(jié)構(gòu)兩側(cè)的液化土體會(huì)引起結(jié)構(gòu)的上浮,結(jié)構(gòu)底部的液化土體會(huì)引起結(jié)構(gòu)的下沉.
5)土體位移較大區(qū)域?qū)?yīng)當(dāng)前液化區(qū)域,也是液化后區(qū)域,且此處孔隙水壓力會(huì)比較高,孔隙水壓力和超孔壓比突增后的1~3 s會(huì)有液化大變形的產(chǎn)生,可以由孔隙水壓力和超孔壓比的變化判斷液化大變形的發(fā)生.
參考文獻(xiàn)
[1] 楊林德,王國(guó)波,鄭永來(lái),等.地鐵車站結(jié)構(gòu)振動(dòng)臺(tái)試驗(yàn)及地震響應(yīng)的三維數(shù)值模擬[J].巖土力學(xué)與工程學(xué)報(bào),2007,26(8):1439-1445.
YANG Linde, WANG Guobo, ZHENG Yonglai, et al. Shaking table test on metro-station structure and 3D numerical simulation of seismic response[J].Chinese Journal of Rock Mechanics and Engineering, 2007,26(8):1439-1445.(In Chinese)
[2] 莊海洋,龍慧,陳國(guó)興.復(fù)雜大型地鐵地下車站結(jié)構(gòu)非線性地震反應(yīng)分析[J].地震工程與工程振動(dòng),2013,33(2):192-199.
ZHUANG Haiyang, LONG Hui, CHEN Guoxing. Analysis of the nonlinear earthquake response of a large complicated subway underground station[J].Journal of Earthquake Engineering and Engineering Vibration, 2013,33(2):192-199.(In Chinese)
[3] 劉晶波,王文暉,趙冬冬.地下結(jié)構(gòu)橫截面抗震設(shè)計(jì)分析方法綜述[J].施工技術(shù), 2010,39(6): 91-95.
LIU Jingbo, WANG Wenhui, ZHAO Dongdong. Review of methods for seismic design and analysis of underground structure cross-section[J]. Construction Technology, 2010,39(6): 91-95. (In Chinese)
[4] 谷音, 鐘華,卓衛(wèi)東.地震作用下大型地鐵車站結(jié)構(gòu)三維動(dòng)力反應(yīng)分析[J].巖石力學(xué)與工程學(xué)報(bào), 2013,32(11): 2290-2299.
GU Yin, ZHONG Hua, ZHUO Weidong. Analysis of dynamic interaction between soil and large subway station structure under seismic excitation based on 3D model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(11): 2290-2299. (In Chinese)
[5] 劉華北,宋二祥. 可液化土中地鐵結(jié)構(gòu)的地震響應(yīng)[J].巖土力學(xué),2005,26(3):381-386.
LIU Huabei, SONG Erxiang. Earthquake induced liquefaction response of subway structure in liquefiable soil[J]. Rock and Soil Mechanics, 2005, 26(3): 381-386.(In Chinese)
[6] 劉華北,宋二祥.埋深對(duì)地下結(jié)構(gòu)地震液化響應(yīng)的影響[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版, 2005,45(3): 301-305.
LIU Huabei, SONG Erxiang. Effects of burial depth on the liquefaction response of underground structures during an earthquake excitation[J]. Journal of Tsinghua University: Science & Technology, 2005, 45(3): 301-305. (In Chinese)
[7] 王剛, 張建民,魏星.可液化土層中地下車站的地震反應(yīng)分析[J].巖土工程學(xué)報(bào), 2011,33(10): 1623-1627.
WANG Gang, ZHANG Jianmin,WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering,2011,33(10): 1623-1627. (In Chinese)
[8] 陳蘇, 陳國(guó)興,戚承志,等.可液化場(chǎng)地上三拱立柱式地鐵地下車站結(jié)構(gòu)地震反應(yīng)特性振動(dòng)臺(tái)試驗(yàn)研究[J].巖土力學(xué), 2015,36(7): 1899-1914.
CHEN Su, CHEN Guoxing, QI Chengzhi, et al. A shaking table-based experimental study of seismic response of three-arch types underground subway station in liquefiable ground[J]. Rock and Soil Mechanics,2015,36(7): 1899-1914. (In Chinese)
[9] 陳育民.砂土液化后流動(dòng)大變形試驗(yàn)與計(jì)算方法研究[D].南京:河海大學(xué)巖土工程研究所,2007:73-87.
CHEN Yumin. Study of experimental and calculation method on large deformation of sand after liquefaction[D]. Nanjing: Institute of Geotechnical Engineering, Hohai University,2007:73-87. (In Chinese)
[10]GB 50909—2014 城市軌道交通結(jié)構(gòu)抗震設(shè)計(jì)規(guī)范[S]. 北京:中國(guó)計(jì)劃出版社,2014:121-122.
GB 50909—2014 Code for seismic design of urban rail transit structures[S]. Beijing: China Planning Press,2014:121-122.(In Chinese)
[11]潘旦光,樓夢(mèng)麟,董聰. 土層地震行波反應(yīng)分析中側(cè)向人工邊界的影響[J].巖土工程學(xué)報(bào), 2005,27(3): 308-312.
PAN Danguang, LOU Menglin,DONG Cong. Effect of vertical artificial boundary on seismic response of soil layer under traveling wave excitations[J].Chinese Journal of Geotechnical Engineering, 2005,27(3): 308-312. (In Chinese)
[12]陳育民,徐鼎平. FLAC/FLAC3D基礎(chǔ)與工程實(shí)例[M]. 北京:中國(guó)水利水電出版社,2013:303-305.
CHEN Yumin, XU Dingping. The foundation and engineering examples of FLAC/FLAC3D[M]. Beijing: China Water Power Press,2013:303-305.(In Chinese)