王會(huì)仁, 曹 露, 江立波, 林 紅, 李熙雷, 董 健
復(fù)旦大學(xué)附屬中山醫(yī)院骨科,上海 200032
·論 著·
穩(wěn)定過表達(dá)生長(zhǎng)分化因子5基因大鼠脂肪干細(xì)胞系的建立
王會(huì)仁, 曹 露, 江立波, 林 紅, 李熙雷, 董 健*
復(fù)旦大學(xué)附屬中山醫(yī)院骨科,上海 200032
目的: 探討慢病毒介導(dǎo)的穩(wěn)定過表達(dá)生長(zhǎng)分化因子5(GDF-5)基因大鼠脂肪干細(xì)胞(ASCs)的構(gòu)建條件和方法。方法: 取大鼠腹股溝脂肪墊組織,采用Ⅰ型膠原酶消化貼壁法分離培養(yǎng)大鼠ASCs。倒置相差顯微鏡觀察細(xì)胞形態(tài),CCK-8法測(cè)定細(xì)胞生長(zhǎng)曲線,流式細(xì)胞儀鑒定細(xì)胞表型。制備帶GDF-5/GFP融合基因的慢病毒載體系統(tǒng),探索不同感染復(fù)數(shù)(MOI=1、5、10、20、40、60、80、100)的轉(zhuǎn)染效率,選擇最佳MOI,采用流式細(xì)胞儀檢測(cè)轉(zhuǎn)染效率。對(duì)轉(zhuǎn)染細(xì)胞行流式細(xì)胞篩選,測(cè)定篩選后轉(zhuǎn)染細(xì)胞的陽(yáng)性率。篩選出的細(xì)胞行細(xì)胞爬片,DAPI染色,形態(tài)學(xué)上進(jìn)一步驗(yàn)證細(xì)胞陽(yáng)性率;并采用CCK-8法檢測(cè)轉(zhuǎn)染后細(xì)胞活力。結(jié)果: 成功培養(yǎng)大鼠ASCs,流式細(xì)胞免疫表型鑒定:間充質(zhì)干細(xì)胞表面抗原(CD90、CD29、CD44、CD105)表達(dá)陽(yáng)性,造血細(xì)胞表面抗原(CD45、CD34)和骨髓干細(xì)胞表面抗原(CD106)表達(dá)陰性。成功構(gòu)建GDF-5過表達(dá)慢病毒載體系統(tǒng),慢病毒轉(zhuǎn)染大鼠ASCs最佳MOI為40,轉(zhuǎn)染率為65%。采用GFP熒光流式細(xì)胞篩選技術(shù)篩選后陽(yáng)性率可提高至96%。CCK-8法顯示,轉(zhuǎn)染后細(xì)胞活力、生長(zhǎng)曲線與未轉(zhuǎn)染細(xì)胞無明顯差異。結(jié)論: 膠原酶消化法可成功培養(yǎng)大鼠ASCs,流式細(xì)胞篩選技術(shù)可顯著提高轉(zhuǎn)染細(xì)胞陽(yáng)性率,且對(duì)細(xì)胞系活力無顯著影響。
脂肪干細(xì)胞;慢病毒;生長(zhǎng)分化因子5;轉(zhuǎn)染
椎間盤退變重要的原因是椎間盤髓核細(xì)胞退變及細(xì)胞外基質(zhì)(extracellular matrix, ECM)成分的改變[1]。補(bǔ)充髓核細(xì)胞數(shù)目和提高細(xì)胞活力是抗椎間盤退變的關(guān)鍵。脂肪來源干細(xì)胞(adipose-derived stem cells,ASCs)與髓核細(xì)胞同發(fā)生于中胚層,具有同源性,與骨髓間充質(zhì)干細(xì)胞(BMSCs)相比,可避免骨髓取材帶來的諸多問題[2]。多種細(xì)胞因子,如轉(zhuǎn)化生長(zhǎng)因子(TGF-β)、骨形態(tài)發(fā)生蛋白(BMPs)、胰島素樣生長(zhǎng)因子(IGF-1)、Sox-9、生長(zhǎng)分化因子 5(growth differentiation factor-5,GDF-5)等被證實(shí)具有促進(jìn)蛋白多糖和Ⅱ型膠原合成的作用,其中GDF-5對(duì)椎間盤髓核細(xì)胞的促進(jìn)增殖和改善活力最為顯著[3]。但GDF-5是水溶性誘導(dǎo)因子,半衰期相對(duì)較短,且易擴(kuò)散。通過基因轉(zhuǎn)染使負(fù)責(zé)表達(dá)誘導(dǎo)因子的基因轉(zhuǎn)入靶細(xì)胞中,使其持續(xù)表達(dá),產(chǎn)生相應(yīng)的誘導(dǎo)因子,從而達(dá)到持續(xù)誘導(dǎo)作用。
慢病毒作為一種高效穩(wěn)定的轉(zhuǎn)錄載體系統(tǒng),常被用于建立穩(wěn)定表達(dá)特定蛋白因子的細(xì)胞系[4]。但目前GDF-5基因慢病毒載體轉(zhuǎn)染ASCs效率和穩(wěn)定性不高。因此,本研究進(jìn)一步利用GDF-5與綠色熒光蛋白(green fluorescent protein,GFP)組成嵌合基因,通過流式細(xì)胞篩選技術(shù)篩選出穩(wěn)定轉(zhuǎn)染的陽(yáng)性細(xì)胞,建立GDF-5基因高純度穩(wěn)定轉(zhuǎn)染細(xì)胞系,為后續(xù)研究奠定基礎(chǔ)。
1.1 主要材料、試劑及器材 清潔級(jí)2個(gè)月齡SD大鼠(復(fù)旦大學(xué)動(dòng)物實(shí)驗(yàn)部),Ⅰ型膠原酶、L-DMEM、胎牛血清(Gibco,美國(guó)),青、鏈霉素(上海國(guó)藥集團(tuán)),CCK-8(日本同仁化學(xué)研究所),0.25%胰酶-EDTA消化液(Sigma,美國(guó)),過表達(dá)GDF-5基因慢病毒載體系統(tǒng)(上海吉?jiǎng)P生物基因公司構(gòu)建),F(xiàn)ITC同型對(duì)照抗體、PE同型對(duì)照抗體(BioLegend,美國(guó)),CD29、CD45、CD90抗體(BioLegend,美國(guó)),CD44抗體(eBioscience,美國(guó)), CD34抗體(Novus Biologicals,美國(guó)),CD105抗體(Bioss Inc.,美國(guó)),CD106抗體(Raybiotech,美國(guó)),CO2培養(yǎng)箱(NAPCO,Model 5410),DL-5型低速離心機(jī)(上海安亭科學(xué)儀器廠),倒置相差顯微鏡(CKX31;Olympus,日本),正置熒光顯微鏡(BX41;Olympus,日本),流式細(xì)胞儀FACSclibur(Becton Dickinson公司,美國(guó))。
1.2 大鼠脂肪來源干細(xì)胞(ASCs)的分離與培養(yǎng) 參照文獻(xiàn)[5],采用膠原酶消化貼壁培養(yǎng)法培養(yǎng)大鼠ASCs。2個(gè)月齡SD大鼠無菌條件下取腹股溝脂肪組織,剔除筋膜和毛細(xì)血管,PBS液沖洗,剪碎至糊狀,0.1%Ⅰ型膠原酶溶液消化。濾網(wǎng)過濾消化液,收集濾液,離心,棄上清。將細(xì)胞接種于L-DMEM培養(yǎng)基(含10%胎牛血清,青霉素100 U/mL,鏈霉素1 mg/mL)培養(yǎng)瓶(25 cm2)中,置于37℃、5%CO2、95%濕度的培養(yǎng)箱中培養(yǎng)。每2~3 d換液1次,待細(xì)胞融合成單層后傳代培養(yǎng)。在倒置相差顯微鏡下觀察細(xì)胞情況。細(xì)胞生長(zhǎng)融合至80%~90%時(shí)可進(jìn)行傳代。按照說明書方法采用CCK-8法檢測(cè)細(xì)胞生長(zhǎng)曲線。
1.3 細(xì)胞表型鑒定 取第3代生長(zhǎng)接近融合的細(xì)胞,用PBS溶液洗滌細(xì)胞2次,0.25%胰蛋白酶消化,收集細(xì)胞。每個(gè)樣品收集細(xì)胞數(shù)量約1×106,離心,PBS洗滌細(xì)胞。細(xì)胞重懸,在細(xì)胞沉淀中(細(xì)胞數(shù)量約1×106)分別加入PE-CD44熒光抗體、FITC-CD29熒光抗體、FITC-CD105熒光抗體、FITC-CD90熒光抗體、FITC-CD45熒光抗體、FITC-CD34熒光抗體、FITC-CD106熒光抗體及同型對(duì)照抗體,各2 μL,37℃溫箱中孵育30 min。再離心,PBS緩沖液清洗,重復(fù)2遍洗去殘存的未與細(xì)胞結(jié)合的抗體。最后沉淀加入100 μL預(yù)冷的PBS,搖勻使細(xì)胞重懸。上機(jī)測(cè)定抗原的陽(yáng)性率。
1.4 慢病毒轉(zhuǎn)染ASCs的最適感染復(fù)數(shù)(MOI)的確定 慢病毒轉(zhuǎn)染前24 h,將第2代ASCs以1×105/孔鋪到24孔板中。細(xì)胞接種后第2天,觀察細(xì)胞形態(tài),若細(xì)胞形態(tài)良好,用含有6 μg/mL polybrene的2 mL新鮮不含血清的L-DMEM培養(yǎng)基替換原培養(yǎng)基,加入不同濃度的病毒液(MOI分別為1、5、10、20、40、60、80、100)。置培養(yǎng)箱中繼續(xù)培養(yǎng)。繼續(xù)培養(yǎng)24 h后,用新鮮L-DMEM全培養(yǎng)基替換含有病毒的培養(yǎng)基,繼續(xù)培養(yǎng)。轉(zhuǎn)染后96 h,熒光顯微鏡下觀察細(xì)胞熒光情況,選取熒光最佳時(shí)的MOI的病毒液在培養(yǎng)瓶中感染ASCs。96 h后流式細(xì)胞儀檢測(cè)轉(zhuǎn)染效率。
1.5 流式細(xì)胞儀篩選轉(zhuǎn)染后細(xì)胞 按照BD公司流式細(xì)胞儀FACSclibur細(xì)胞篩選操作說明進(jìn)行。準(zhǔn)備足量的無菌PBS(約3 L)和去離子水(約10 L)。細(xì)胞收集區(qū)、上樣區(qū)及管道先行消毒,調(diào)整機(jī)器參數(shù):Precision Mode設(shè)置為purify,Target Events設(shè)置為continuous,獲取速度為每秒2 000~4 000 events,調(diào)節(jié)drop delay,使屏幕左邊方框中的數(shù)值為98%以上。轉(zhuǎn)染后的ASCs胰酶消化、離心、洗滌后,加1 mL PBS重懸,轉(zhuǎn)入無菌流式細(xì)胞儀試管,上機(jī)進(jìn)行篩選。裝有3 mL L-DMEM完全培養(yǎng)基的無菌離心管作為接受管。篩選完畢后,進(jìn)行流式細(xì)胞檢測(cè)。篩選后細(xì)胞按5×104/mL細(xì)胞密度接種。置于37℃、5%CO2、95%濕度的培養(yǎng)箱中培養(yǎng)。8 h后換液去除未貼壁細(xì)胞。篩選后細(xì)胞爬片,DAPI染色,熒光顯微鏡下觀察細(xì)胞熒光情況。
1.6 Real-time PCR檢測(cè) GDF-5基因轉(zhuǎn)染后表達(dá)效果 細(xì)胞分為兩組,ASCs-GDF-5組:流式細(xì)胞儀篩選后轉(zhuǎn)染GDF-5/GFP嵌合基因的ASCs;ASCs-GFP組:作為空白對(duì)照,只轉(zhuǎn)染GFP,不轉(zhuǎn)染GDF-5基因。根據(jù)Invitrogen公司的TRIzol操作說明書進(jìn)行總RNA抽提,RNA反轉(zhuǎn)錄獲cDNA,置于-80℃保存?zhèn)溆谩?yīng)用Primer 5.0,設(shè)計(jì)檢測(cè)基因引物,內(nèi)參基因?yàn)棣?actin。分別檢測(cè)6個(gè)樣本,每個(gè)樣本重復(fù)3次,進(jìn)行結(jié)果分析。β-actin引物序列,F(xiàn):5′-GTA AAG ACC TCT ATG CCA ACA-3′,R:5′-GGA CTC ATC GTA CTC CTG CT-3′;GDF-5引物序列F:5′-GGT CAC AGC GGC AGA TAA-3′,R:5′-CCG AAC ATA CGA TTG GGT-3′。
1.7 統(tǒng)計(jì)學(xué)處理 采用SPSS 19.0(IBM SPSS公司,USA)統(tǒng)計(jì)軟件,組間比較采用t檢驗(yàn)。檢驗(yàn)水準(zhǔn)(α)為0.05。
2.1 倒置相差顯微鏡下觀察大鼠ASCs 形態(tài) 倒置相差顯微鏡下見培養(yǎng)的大鼠ASCs細(xì)胞傳代前已達(dá)90%融合,見細(xì)胞呈紡錘形或短梭形,有一定極性,細(xì)胞排列成螺旋形(圖1)。ASCs體外可正常傳代至少5代。
2.2 CCK-8法測(cè)定ASCs生長(zhǎng)曲線 結(jié)果(圖2)表明:P1、P3、P5ASCs細(xì)胞生長(zhǎng)曲線相似,均為“S”型,細(xì)胞在接種當(dāng)天處于適應(yīng)期,接種后1 d進(jìn)入加速生長(zhǎng)期,接種后2 d為對(duì)數(shù)生長(zhǎng)期,3 d為減速生長(zhǎng)期,4 d后進(jìn)入平臺(tái)期。因此采用細(xì)胞數(shù)1∶2~1∶3傳代時(shí),可在第3天再次傳代。
圖1 倒置相差顯微鏡下觀察第3代大鼠ASCs
B為A虛線方框內(nèi)的放大觀. Original magnification: ×100(A);×200(B)
圖2 CCK-8法測(cè)定細(xì)胞生長(zhǎng)曲線
2.3 流式細(xì)胞儀檢測(cè)ASCs細(xì)胞表型 細(xì)胞表型鑒定結(jié)果(圖3)表明:間充質(zhì)干細(xì)胞標(biāo)志物CD90、CD29、CD44、CD105表達(dá)呈陽(yáng)性,而造血干細(xì)胞標(biāo)志物CD45、CD34和骨髓干細(xì)胞標(biāo)志物CD106呈陰性。各種標(biāo)志物表達(dá)率分別為:CD90 96.76% 、CD29 95.12% 、CD44 95.67% 、CD105 88.42%、 CD45 4.62% 、CD34 4.86% 、CD106 4.93%。
2.4 不同MOI慢病毒轉(zhuǎn)染96 h后熒光表達(dá)情況 倒置熒光顯微鏡觀察結(jié)果(圖4)表明:當(dāng)MOI=1時(shí),ASCs幾乎無熒光;MOI=5時(shí),少許ASCs表達(dá)GDF-5,并且熒光強(qiáng)度較弱;MOI=10時(shí),陽(yáng)性ASCs數(shù)目和熒光強(qiáng)度均增加;當(dāng)MOI=20時(shí),熒光強(qiáng)度和陽(yáng)性ASCs數(shù)仍在增加;當(dāng)MOI=40時(shí),熒光強(qiáng)度和陽(yáng)性細(xì)胞數(shù)顯著增加,并且陽(yáng)性細(xì)胞仍保持了紡錘形或短梭形形態(tài),細(xì)胞融合后呈螺旋形排列,細(xì)胞活力好;當(dāng)MOI=60時(shí),熒光強(qiáng)度和陽(yáng)性細(xì)胞數(shù)無明顯增加;當(dāng)MOI=80和MOI=100時(shí),轉(zhuǎn)染的ASCs形態(tài)發(fā)生改變,死亡細(xì)胞增多,且陽(yáng)性細(xì)胞數(shù)和熒光強(qiáng)度無明顯增加。結(jié)果提示,MOI=40時(shí),慢病毒轉(zhuǎn)染大鼠ASCs的轉(zhuǎn)染率較高。流式細(xì)胞儀測(cè)定MOI=40時(shí)的轉(zhuǎn)染率,結(jié)果(圖5)可見,流式細(xì)胞圖呈雙峰,表明流式細(xì)胞儀檢測(cè)有效,但轉(zhuǎn)染率為65.3%,遠(yuǎn)低于穩(wěn)定轉(zhuǎn)染陽(yáng)性率要求。
2.5 流式細(xì)胞儀篩選建立穩(wěn)定轉(zhuǎn)染ASCs 單純慢病毒轉(zhuǎn)染大鼠ASCs效率僅為65%,達(dá)不到后續(xù)實(shí)驗(yàn)要求,利用轉(zhuǎn)染后ASCs自發(fā)綠色熒光,可使用流式細(xì)胞儀篩選技術(shù)對(duì)其篩選(fluorescence activated cells sorting,F(xiàn)ACS),提高轉(zhuǎn)染細(xì)胞純度。篩選后傳代細(xì)胞爬片的DAPI復(fù)染后,熒光照片可見轉(zhuǎn)染后表達(dá)GFP-5的ASCs比例接近100%,細(xì)胞形態(tài)形態(tài)良好,仍為紡錘形或短梭形,螺旋形排列;流式細(xì)胞儀檢測(cè)示轉(zhuǎn)染率高達(dá)96%(圖6)。
圖3 流式細(xì)胞儀檢測(cè)培養(yǎng)的ASCs細(xì)胞表型圖
圖4 不同MOI慢病毒轉(zhuǎn)染96 h后ASCs GDF-5表達(dá)情況
圖5 流式細(xì)胞儀測(cè)定MOI=40時(shí)轉(zhuǎn)染率
2.6 流式細(xì)胞儀篩選后轉(zhuǎn)基因ASCs的光鏡下形態(tài)觀和細(xì)胞生長(zhǎng)曲線測(cè)定 流式細(xì)胞儀篩選轉(zhuǎn)基因ASCs后,于細(xì)胞接種第3天在倒置相差顯微鏡下觀察細(xì)胞形態(tài),可見細(xì)胞形態(tài)無明顯變化,仍呈紡錘形,有細(xì)胞極性,細(xì)胞生長(zhǎng)狀況良好,視野內(nèi)無明顯死細(xì)胞或異型細(xì)胞(圖7A)。CCK-8法測(cè)定篩選后細(xì)胞生長(zhǎng)曲線,并與非轉(zhuǎn)染細(xì)胞生長(zhǎng)曲線作對(duì)比,可見篩選后的細(xì)胞(ASCs-GDF-5組)與未轉(zhuǎn)染細(xì)胞(ASCs組)生長(zhǎng)曲線無明顯改變,篩選后細(xì)胞生長(zhǎng)曲線仍呈“S”型,在接種后第2天進(jìn)入對(duì)數(shù)生長(zhǎng)期,接種后第3天,進(jìn)入減速生長(zhǎng)期,第4天后進(jìn)入平臺(tái)期(圖7B)。結(jié)果表明經(jīng)慢病毒轉(zhuǎn)染及流式細(xì)胞儀篩選后,細(xì)胞活力和生長(zhǎng)未造成明顯影響。
圖6 篩選后傳代細(xì)胞DAPI復(fù)染免疫熒光染色及流式細(xì)胞儀鑒定
圖7 轉(zhuǎn)基因ASCs光鏡觀察及CCK-8法測(cè)定細(xì)胞生長(zhǎng)曲線
A:轉(zhuǎn)基因ASCs第3天光鏡照片;B:CCK-8法測(cè)定篩選后轉(zhuǎn)染細(xì)胞與非轉(zhuǎn)染細(xì)胞生長(zhǎng)曲線. Original magnification:×100(A)
2.7 Real-time PCR檢測(cè)5代后ASCs-GDF-5的GDF-5基因表達(dá) 結(jié)果(圖8)表明:ASCs-GDF-5組的GDF-5基因的轉(zhuǎn)錄水平較未轉(zhuǎn)染組升高了約20倍,差異有統(tǒng)計(jì)學(xué)意義(P<0.001)。結(jié)果提示目的轉(zhuǎn)錄的GDF-5基因表達(dá)有效,成功建立穩(wěn)定過表達(dá)GDF-5基因的ASCs。
圖8 Real-time PCR檢測(cè)結(jié)果n=3,
椎間盤退變的病理生理機(jī)制復(fù)雜。椎間盤內(nèi)髓核細(xì)胞數(shù)目減少、活力降低,引起細(xì)胞外基質(zhì),如Ⅱ型膠原、蛋白聚糖等合成減少和成分改變,是導(dǎo)致椎間盤退變的病理基礎(chǔ)[1]。研究[6]表明,在退變腰椎間盤中,髓核細(xì)胞的凋亡率達(dá)(61.3±24.5)%,而正常椎間盤中髓核細(xì)胞凋亡率僅為(5.6±6.8)%。因此,補(bǔ)充細(xì)胞數(shù)目,改善細(xì)胞活力,是治療退變性椎間盤疾病的關(guān)鍵。
ASCs是一種極具前景的應(yīng)用于修復(fù)椎間盤退變的種子細(xì)胞, 具有取材方便、來源充分、分離容易,擴(kuò)增速度快的優(yōu)點(diǎn)[5, 7-10]。與骨髓基質(zhì)干細(xì)胞相比,ASCs在骨科臨床應(yīng)用中有較大優(yōu)勢(shì),可避免骨髓取材帶來的諸多問題。而且體外大量實(shí)驗(yàn)也證實(shí),脂肪來源干細(xì)胞可以轉(zhuǎn)化為髓核樣細(xì)胞[11-12]。研究還發(fā)現(xiàn),脂肪來源間充質(zhì)干細(xì)胞分化為髓核細(xì)胞在細(xì)胞表型檢測(cè)上優(yōu)于傳統(tǒng)的骨髓間充質(zhì)干細(xì)胞[11]。本研究中采用脂肪組織塊酶消化貼壁法成功培養(yǎng)了大鼠ASCs,經(jīng)CCK-8方法測(cè)定,培養(yǎng)的ASCs活力好、增殖快,在體外培養(yǎng)5代時(shí)細(xì)胞形態(tài)和細(xì)胞活力無明顯改變。流式細(xì)胞儀鑒定細(xì)胞表面抗原標(biāo)志物也表明,培養(yǎng)的ASCs間充質(zhì)干細(xì)胞表面標(biāo)志物(CD90、CD29、CD44、CD105)表達(dá)呈陽(yáng)性,而造血干細(xì)胞標(biāo)志物(CD45、CD34)表達(dá)陰性,排除了造血干細(xì)胞污染的可能,同時(shí)骨髓間充質(zhì)標(biāo)志物CD106表達(dá)陰性,也排除了骨髓來源可能。這與文獻(xiàn)[7,12-13]報(bào)道類似。通過膠原酶消化脂肪組織貼壁法雖然可獲得脂肪多能干細(xì)胞,但其實(shí)是混合細(xì)胞群,主要為ASCs,同時(shí)還有極少量的造血細(xì)胞、內(nèi)皮細(xì)胞、平滑肌細(xì)胞和周圍細(xì)胞,但隨著不斷傳代,這些混雜的非間充質(zhì)干細(xì)胞類型細(xì)胞會(huì)消失,尤其是造血細(xì)胞和內(nèi)皮細(xì)胞。本研究培養(yǎng)的ASCs經(jīng)流式細(xì)胞儀鑒定表明非間充質(zhì)干細(xì)胞類型較少,可能是以下原因:在取材過程中盡可能減少血液污染脂肪組織標(biāo)本,PBS液反復(fù)沖洗脂肪組織塊,顯微鏡下盡可能將脂肪組織中的血管和筋膜組織剔除干凈。
雖然多項(xiàng)研究表明,ASCs具有分化為髓核樣細(xì)胞的能力,但尋找合適的誘導(dǎo)因子對(duì)ASCs定向分化過程極為重要。在多個(gè)細(xì)胞因子中GDF-5對(duì)椎間盤髓核細(xì)胞的促進(jìn)增殖和改善活力最為顯著[3,14-15]。此外,GDF-5還可促進(jìn)蛋白多糖和Ⅱ型膠原的生成,同時(shí)提高髓核和纖維環(huán)細(xì)胞增生活力[14]。Walsh等[15]發(fā)現(xiàn),GDF-5主要作用于內(nèi)層纖維環(huán)細(xì)胞,并可使其向髓核細(xì)胞方向分化。用GDF-5處理人退變髓核細(xì)胞可以增強(qiáng)蛋白聚糖和Ⅱ型膠原的表達(dá)[16]。更值得一提的是,GDF-5作用于人間充質(zhì)干細(xì)胞后,不表達(dá)成骨細(xì)胞表型,因此不必?fù)?dān)心成骨問題[17]。因此,相比較其他細(xì)胞因子,GDF-5可能會(huì)成為臨床上應(yīng)用生物方法抑制或逆轉(zhuǎn)椎間盤退變的一種理想細(xì)胞因子。
細(xì)胞因子直接注射于椎間盤髓核內(nèi)進(jìn)行修復(fù)存在一定的弊端,如:直接注射到退變髓核內(nèi),在未與退變細(xì)胞有機(jī)結(jié)合之前有些細(xì)胞因子已經(jīng)滲漏出來;這些蛋白有半衰期,不能起到長(zhǎng)期作用效果,需要反復(fù)注射,會(huì)大大增加椎間盤退變的風(fēng)險(xiǎn)。借助載體可在退變椎間盤內(nèi)持續(xù)表達(dá)細(xì)胞因子,因此轉(zhuǎn)基因技術(shù)治療成為了熱點(diǎn)[18]。慢病毒載體近年來在腫瘤治療研究、轉(zhuǎn)基因動(dòng)物制作、蛋白生產(chǎn)及疫苗開發(fā)中得到了廣泛應(yīng)用。慢病毒載體具有轉(zhuǎn)移基因片段容量大、無毒性且不易誘發(fā)宿主免疫反應(yīng),安全性較好,不僅能轉(zhuǎn)染分裂細(xì)胞,且能轉(zhuǎn)染終末分化細(xì)胞和非分裂細(xì)胞,可使整合于靶細(xì)胞基因組的目的基因長(zhǎng)期、穩(wěn)定表達(dá)[19-20]。本研究成功構(gòu)建了攜帶GDF-5/GFP嵌合基因的慢病毒載體系統(tǒng),并發(fā)現(xiàn)轉(zhuǎn)染大鼠ASCs最佳MOI為40。但由于大鼠ASCs難以轉(zhuǎn)染,流式細(xì)胞儀檢測(cè)轉(zhuǎn)染效率僅為65%,需要對(duì)轉(zhuǎn)染細(xì)胞進(jìn)行篩選和純化。
本研究未采用傳統(tǒng)的藥物壓力篩選,如G418篩選等,主要是考慮到此方法需要細(xì)胞多次傳代進(jìn)行篩選,會(huì)造成ASCs的分化功能降低,且藥物本身會(huì)對(duì)細(xì)胞活力產(chǎn)生一定影響。本研究通過流式細(xì)胞儀熒光細(xì)胞篩選技術(shù),對(duì)GFP陽(yáng)性細(xì)胞進(jìn)行篩選,對(duì)轉(zhuǎn)染GDF-5基因的細(xì)胞進(jìn)行純化,發(fā)現(xiàn)可大大提高篩選效率,不需多次傳代,且對(duì)細(xì)胞活力影響較小。經(jīng)流式細(xì)胞儀篩選后,GFP陽(yáng)性細(xì)胞率可高達(dá)96%,且可穩(wěn)定傳代。本研究體外傳代5代后仍能高表達(dá)GDF-5,基本建立了穩(wěn)定轉(zhuǎn)染的ASCs細(xì)胞系。因流式篩選后GFP陽(yáng)性細(xì)胞比例已很高,本研究未對(duì)篩選后的細(xì)胞進(jìn)行單克隆化,盡量減少對(duì)細(xì)胞的影響和干擾。通過CCK-8法檢測(cè)及顯微鏡下觀察,流式細(xì)胞儀篩選后的轉(zhuǎn)染GDF-5基因ASCs細(xì)胞活力無明顯改變。對(duì)于轉(zhuǎn)染GDF-5對(duì)ASCs分化的影響,我們后續(xù)將進(jìn)一步通過分析過表達(dá)GDF-5的ASCs在體外培養(yǎng)過程中細(xì)胞形態(tài)及髓核細(xì)胞相關(guān)基因蛋白表達(dá)情況來探討。此外,后續(xù)研究會(huì)將細(xì)胞與溫敏性水凝膠支架結(jié)合構(gòu)建仿生髓核,進(jìn)行體內(nèi)實(shí)驗(yàn)嘗試修復(fù)大鼠退變椎間盤。
綜上所述,通過慢病毒轉(zhuǎn)染結(jié)合流式細(xì)胞篩選技術(shù)可得到高純度的穩(wěn)定過表達(dá)GDF-5基因的ASCs,且對(duì)細(xì)胞活力和形態(tài)無顯著影響,為后續(xù)組織工程技術(shù)奠定了基礎(chǔ)。
[ 1 ] TOKTAS Z O, EKSI M S, YILMAZ B, et al. Association of collagen Ⅰ, Ⅸ and vitamin D receptor gene polymorphisms with radiological severity of intervertebral disc degeneration in Southern European Ancestor[J].Eur Spine J,2015,24(11): 2432-2441.
[ 2 ] SHI J, LIANG J, GUO B, et al. Adipose-derived stem cells cocultured with chondrocytes promote the proliferation of chondrocytes [J]. Stem Cells Int, 2017.
[ 3 ] YANG X, LI X. Nucleus pulposus tissue engineering: a brief review [J].Eur Spine J, 2009, 18(11): 1564-1572.
[ 4 ] 周 磊, 陳 婕, 徐 欣, 等.利用重組慢病毒載體建立穩(wěn)定表達(dá)綠色熒光蛋白細(xì)胞系[J].中國(guó)臨床醫(yī)學(xué), 2009, 16(2): 305-308.
[ 5 ] ESTES B T, DIEKMAN B O, GIMBLE J M, et al. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype [J].Nat Protoc, 2010, 5(7): 1294-1311.
[ 6 ] KOHYAMA K, SAURA R, DOITA M, et al. Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration [J]. Kobe J Med Sci, 2000, 46(6): 283-295.
[ 7 ] BUEHRER B M, CHEATHAM B. Isolation and Characterization of human adipose-derived stem cells for use in tissue engineering [J]. Methods Mol Biol, 2013, 1001: 1-11.
[ 8 ] WU C H, LEE F K, SURESH KUMAR S, et al. The isolation and differentiation of human adipose-derived stem cells using membrane filtration [J].Biomaterials, 2012, 33(33): 8228-8239.
[ 9 ] SHINGYOCHI Y, ORBAY H, MIZUNO H. Adipose-derived stem cells for wound repair and regeneration [J]. Expert Opin Biol Ther, 2015, 15(9): 1285-1292.
[10] TREMP M, MENZI N, TCHANG L, et al. Adipose-derived stromal cells from lipomas: isolation, characterisation and review of the literature[J].Pathobiology. 2016,83(5): 258-266.
[11] MINOGUE B M, RICHARDSON S M, ZEEF L A, et al. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation [J]. Arthritis Rheum, 2010, 62(12): 3695-3705.
[12] HOOGENDOORN R, DOULABI B Z, HUANG C L, et al. Molecular changes in the degenerated goat intervertebral disc [J]. Spine, 2008, 33(16): 1714-1721.
[13] GAETANI P,TORRE M L,KLINGER M,et al.Adipose-derived stem cell therapy for intervertebral disc regeneration: aninvitroreconstructed tissue in alginate capsules [J].Tissue Eng Part A, 2008, 14(8): 1415-1423.
[14] CHUJO T, AN H S, AKEDA K, et al. Effects of growth differentiation factor-5 on the intervertebral disc--invitrobovine study andinvivorabbit disc degeneration model study [J]. Spine, 2006, 31(25): 2909-2917.
[15] WALSH A J, BRADFORD D S, LOTZ J C.Invivogrowth factor treatment of degenerated intervertebral discs [J]. Spine, 2004, 29(2): 156-163.
[16] LE MAITRE C L, FREEMONT A J, HOYLAND J A. Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells [J].Arthritis Res Ther, 2009, 11(5): R137.
[17] KOCH H, JADLOWIEC J A, FU F H, et al.The effect of growth/differentiation factor-5 (GDF-5) on genotype and phenotype in human adult mesenchymal stem cells[J].Z Orthop Ihre Grenzgeb, 2004, 142(2): 248-253.
[18] LIU Y, YU T, MA X X, et al. Lentivirus-mediated TGF-β3, CTGF and TIMP1 gene transduction as a gene therapy for intervertebral disc degeneration in aninvivorabbit model.[J]. Exp Ther Med,2016,11(4): 1399-1404.
[19] CHIRA S, JACKSON C S, OPREA I, et al. Progresses towards safe and efficient gene therapy vectors [J].Oncotarget, 2015, 6(31): 30675-30703.
[20] 楊春杰, 丁志文, 龔 惠, 等. 慢病毒介導(dǎo)2型阿諾堿受體RN A干擾有效靶序列的篩選[J].中國(guó)臨床醫(yī)學(xué), 2016, 23(3): 399-401.
[本文編輯] 廖曉瑜, 賈澤軍
Establishment of stable GDF-5 gene over-expressed rat adipose stem cells
WANG Hui-ren, CAO Lu, JIANG Li-bo, LIN Hong, LI Xi-lei, DONG Jian*
Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Objective: To explore the construction conditions and methods of lentivirus-mediated GDF-5 gene over-expressed rat adipose stem cells (ASCs-GDF-5). Methods: Rat ASCs were isolated and cultured using collagenase digestion method. The cell morphology was observed with the growth curve being tested. Besides, the cell phenotypes were identified. Lentiviral vector system with GDF-5/GFP chimeric gene was prepared and the infection efficiency was explored under series of MOI (1, 5, 10, 20, 40, 60, 80, 100). The optimal MOI was determined and the infection efficiency was tested using FCM. High-purified ASCs-GDF-5 were obtained through fluorescence activated cell sorting with FCM. The positive rate of infected cells was verified further with DAPI staining. The viability of infected cells was evaluated with CCK-8 assay. Results: Rat ASCs were successfully isolated and cultured. The markers (CD90, CD29, CD44, CD105) expressed in mesenchymal stem cell were positive in cultured cells. In contrast, the hematopoietic cell surface antigens (CD45, CD34) and bone marrow stem cell surface antigen (CD106) were negative. GDF-5 gene over-expressed lentiviral vector system was successfully constructed. The optimal MOI was 40, with the infection rate of 65%. The positive rate of infected cells was increased to 96% through fluorescence activated cell sorting using FCM. There was no significant difference in the viability and growth curve between infected and non-infected cells with CCK-8 assay. Conclusions: Rat ASCs can be cultured using collagenase digestion method. Without significant effect on cell viability, the positive rate of infected cells can be significantly increased through fluorescence activated cell sorting using FCM.
adipose-derived stem cells; lentivirus; growth and differentiation factor-5; transfection
2017-02-06 [接受日期] 2017-02-22
國(guó)家自然科學(xué)基金(31170925),國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃子課題(2009CB930002). Supported by National Natural Science Foundation of China (31170925) and National Basic Research Program of China (973 Program,2009CB930002).
王會(huì)仁,博士,住院醫(yī)師. E-mail: wanghuiren340@163.com
*通信作者(Corresponding author). Tel: 021-64041990, E-mail: dong.jian@zs-hospital.sh.cn
10.12025/j.issn.1008-6358.2017.20170084
R -33
A