国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

砂泥互層地層斷裂帶結(jié)構(gòu)特征及控油作用

2017-06-27 08:13劉宗堡郭林源付曉飛劉云燕王海學(xué)孟令東
關(guān)鍵詞:斷裂帶油層泥巖

劉宗堡, 郭林源, 付曉飛, 張 東, 劉云燕,方 慶, 王海學(xué), 孟令東

(1.東北石油大學(xué)地球科學(xué)學(xué)院,黑龍江大慶 163318; 2.大慶油田有限責(zé)任公司第四采油廠,黑龍江大慶 163511;3.大慶油田有限責(zé)任公司第八采油廠,黑龍江大慶 163514; 4.大慶油田有限責(zé)任公司第二采油廠,黑龍江大慶 163414)

砂泥互層地層斷裂帶結(jié)構(gòu)特征及控油作用

劉宗堡1, 郭林源1, 付曉飛1, 張 東2, 劉云燕3,方 慶4, 王海學(xué)1, 孟令東1

(1.東北石油大學(xué)地球科學(xué)學(xué)院,黑龍江大慶 163318; 2.大慶油田有限責(zé)任公司第四采油廠,黑龍江大慶 163511;3.大慶油田有限責(zé)任公司第八采油廠,黑龍江大慶 163514; 4.大慶油田有限責(zé)任公司第二采油廠,黑龍江大慶 163414)

通過露頭區(qū)解剖、三維地震解釋、測井曲線識(shí)別、巖心觀察和薄片鑒定,對(duì)松遼盆地杏北油田葡萄花油層砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)特征進(jìn)行研究;建立基于測井曲線綜合響應(yīng)的斷層破碎帶厚度預(yù)測模型,進(jìn)而探討斷裂帶結(jié)構(gòu)特征對(duì)斷層邊部剩余油富集和開采的控制作用。結(jié)果表明:斷裂帶由斷層核和破碎帶兩部分組成,其中斷層核發(fā)育泥巖涂抹的分段生長結(jié)構(gòu),破碎帶發(fā)育破碎、滑動(dòng)和變形3種特征;斷層垂向上在葡 Ⅰ4小層發(fā)生分段,造成系統(tǒng)取心井鉆遇3個(gè)斷點(diǎn),其中斷點(diǎn)1發(fā)育砂巖變形帶的斷層端部破碎帶,斷點(diǎn)2發(fā)育泥巖涂抹的主斷層核,斷點(diǎn)3發(fā)育泥質(zhì)角礫巖和方解石充填泥巖裂縫的次斷層核;斷層面兩側(cè)隨著距斷層核距離增加破碎帶微構(gòu)造密度和碳酸鹽含量逐漸降低。

砂泥互層地層; 斷裂帶結(jié)構(gòu)特征; 控油作用; 葡萄花油層; 杏北油田; 松遼盆地

中國東部陸上主力油田目前都已經(jīng)進(jìn)入高含水開發(fā)后期,其整體表現(xiàn)為高含水、高采出程度、高采油速度、低儲(chǔ)采比和低采收率的“三高二低”特征[1],其中受斷層分割影響的斷塊油田約為1/3,占中國探明已開發(fā)儲(chǔ)量的30%和探明未開發(fā)儲(chǔ)量的40%[2]。斷塊油田高含水期斷層邊部受斷層封擋和鉆井少等因素影響剩余油十分富集[3],而以往針對(duì)其剩余油研究主要考慮微幅度構(gòu)造[4]、儲(chǔ)層非均質(zhì)性[5]、微觀驅(qū)替實(shí)驗(yàn)[6]和井網(wǎng)注采關(guān)系[7]等,嚴(yán)重忽視了斷裂帶結(jié)構(gòu)特征及其形成的斷層封閉性和破碎帶微構(gòu)造對(duì)剩余油形成和開采的影響,如油田勘探開發(fā)過程中多發(fā)生鉆井液泄漏、井網(wǎng)套損、斷層兩盤串水漏油和注采失衡等事故。筆者選取松遼盆地杏北油田葡萄花油層為靶區(qū),依托中國第一口過斷裂帶系統(tǒng)取心井(杏7-20-斜632井—斷層兩側(cè)系統(tǒng)取心125 m),建立砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)地質(zhì)模型及巖電關(guān)系綜合響應(yīng)圖版,進(jìn)而分析其對(duì)斷層邊部剩余油富集規(guī)律和開發(fā)方式的控制作用。

1 區(qū)域地質(zhì)概況

杏北油田構(gòu)造上位于松遼盆地大慶長垣杏樹崗構(gòu)造北部,油田開發(fā)層系包括薩爾圖油層、葡萄花油層和高臺(tái)子油層,其中姚家組一段葡萄花油層為區(qū)內(nèi)主力產(chǎn)油層位[8]。葡萄花油層儲(chǔ)層發(fā)育盆地北部物源控制下的三角洲相沉積體,整體表現(xiàn)為強(qiáng)物源快速充填的砂泥巖薄互層沉積序列,垂向上細(xì)分為2個(gè)油層組、20個(gè)小層和37個(gè)單元,其中葡Ⅰ212-葡Ⅰ33單元為三角洲分流平原亞相沉積,其他單元為三角洲前緣亞相沉積[9]。葡萄花油層斷層全部為正斷層,走向以北西向?yàn)橹?平面延伸長度介于2~5 km,斷距介于30~60 m,斷層傾角介于40°~60°;斷層平面上具有側(cè)列疊覆特征,組成5條北西向斷層帶把研究區(qū)分割成6個(gè)斷塊;斷層密度南部高于北部,構(gòu)造西翼高于東翼(圖1)[10]。杏北油田葡萄花油層自1966年投入開發(fā)以來,一直采用高壓注水保持油層壓力的開采原則,目前形成4套井網(wǎng)分注分采,截至2013年底,油層年注采比為1.19,可采儲(chǔ)量動(dòng)用程度為79.18%,綜合含水率為92.96%[11]。

圖1 杏北油田葡萄花油層構(gòu)造特征Fig.1 Structure character of Putaohua reservoir in Xingbei Oilfield

2 砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)特征地質(zhì)模型

斷裂帶是多次地震滑動(dòng)產(chǎn)生的地質(zhì)構(gòu)造,一般具有斷層核和破碎帶二元結(jié)構(gòu)[12-16]。斷層核由多個(gè)地震滑動(dòng)面及其之間卷入的圍巖組成,通常在脆性地層中形成核,而在塑性地層中發(fā)育泥巖涂抹的分段生長結(jié)構(gòu)。破碎帶是斷層形成和發(fā)育過程中斷層面兩側(cè)圍巖發(fā)生變形產(chǎn)生的微構(gòu)造區(qū)域,劃分為圍巖破碎帶、連接破碎帶和端部破碎帶三種類型;破碎帶受圍巖、斷距、成巖階段等因素影響,通常在高孔隙度砂巖中發(fā)育變形帶,在低孔隙度砂巖中發(fā)育裂縫,泥巖中主要發(fā)育泥巖涂抹帶和裂縫[17-19]。露頭區(qū)表明斷裂帶結(jié)構(gòu)通常發(fā)育不對(duì)稱完整型、對(duì)稱完整型和不完整型[20],并且其規(guī)模與斷距呈正相關(guān)關(guān)系[21]。杏北油田葡萄花油層斷裂帶結(jié)構(gòu)特征見圖2。

圖2 杏北油田葡萄花油層斷裂帶結(jié)構(gòu)特征Fig.2 Fault zone structure feature of Putaohua reservoir in Xingbei oilfield

對(duì)于砂泥互層地層而言,砂巖通常是脆性的,泥巖是塑性的[22]。首先進(jìn)行野外露頭區(qū)解剖、三維地震精細(xì)解釋、系統(tǒng)取心井觀察描述和巖石薄片鑒定,明確斷層平面和垂向分段生長機(jī)制,進(jìn)而開展斷層(平面位置、斷失層位、斷點(diǎn)分布和組合樣式等)質(zhì)量校正[23],然后多尺度綜合厘定斷裂帶內(nèi)部結(jié)構(gòu)特征,最終建立杏北油田葡萄花油層275斷層(杏7-20—斜632井穿過斷層)斷裂帶內(nèi)部結(jié)構(gòu)地質(zhì)模型:①斷層核和破碎帶規(guī)模較小,其中斷層核受圍巖影響(砂泥互層和泥質(zhì)含量高)發(fā)育泥巖涂抹的分段生長結(jié)構(gòu),破碎帶發(fā)育破碎、滑動(dòng)和變形3種特征[24];②系統(tǒng)取心井共鉆遇3個(gè)斷點(diǎn),其中斷點(diǎn)1為斷層端部破碎帶(1 267.65~1 276.65 m),發(fā)育大量單條或簇狀砂巖變形帶,斷點(diǎn)2為主斷層泥巖涂抹斷層核(1 318.89~1 326.09 m),發(fā)育大量小斷層和泥巖裂縫,具有明顯拖拽變形特征,斷點(diǎn)3為次級(jí)斷層泥質(zhì)角礫巖斷層核(1 326.09~1 327.34 m),發(fā)育大量泥巖裂縫,裂縫內(nèi)脈狀方解石充填膠結(jié);③三維地震精細(xì)解釋表明斷層垂向上普遍發(fā)育分段生長特征,并且斷層消失和分段層位主要分布在泥質(zhì)含量高的葡Ⅰ4小層,造成取心井鉆進(jìn)方向與地層傾向小角度相交且?guī)r心沿層理面破裂;④破碎帶發(fā)育3種類型微構(gòu)造,其中純凈砂巖中發(fā)育變形帶,呈單條或簇狀出現(xiàn)造成儲(chǔ)層物性降低,具有肋狀突出特征,泥巖中發(fā)育單條或多條共軛型裂縫造成儲(chǔ)層物性增高,具有典型滑擦面特征,混雜砂巖中發(fā)育相互切割的變形帶(砂巖)和裂縫(泥巖)組合,具有一定的破裂和變形特征,巖心統(tǒng)計(jì)表明隨著距斷層核距離增加微構(gòu)造密度和規(guī)模逐漸降低[25];⑤斷裂帶附近碳酸鹽含量較高,見層狀介形蟲灰?guī)r、方解石脈充填泥巖裂縫和砂巖鈣質(zhì)團(tuán)塊膠結(jié),且隨距斷層核距離增加,碳酸鹽含量逐漸減低[26](圖3)。

圖3 275斷層斷裂帶內(nèi)部結(jié)構(gòu)地質(zhì)模型Fig.3 Geological model of fault zone internal structure of fault 275

3 砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)巖電響應(yīng)關(guān)系及定量識(shí)別

斷裂帶結(jié)構(gòu)識(shí)別主要依靠露頭、巖心和地球物理等資料[27]。通過對(duì)杏7-20-斜632井厘米級(jí)巖心精細(xì)觀察描述及測井曲線綜合響應(yīng)特征分析,建立了砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)巖心-測井曲線響應(yīng)模型:泥巖涂抹斷層核聲波時(shí)差變低、深淺側(cè)向低值、密度變高和井徑一般無擴(kuò)徑現(xiàn)象;破碎帶泥巖裂縫聲波時(shí)差變高、深淺側(cè)向低值低幅差、密度低值和井徑明顯擴(kuò)大,但當(dāng)泥巖裂縫被碳酸鹽膠結(jié)聲波時(shí)差降低和密度增高;破碎帶砂巖變形帶聲波時(shí)差微齒化、深淺側(cè)向高幅齒化和密度變低(圖4、5)[28-29]。通過對(duì)研究區(qū)鉆遇斷裂帶的21口井測井曲線對(duì)比和識(shí)別,分別采用聲波時(shí)差、深淺側(cè)向、密度和井徑等測井曲線構(gòu)建反映斷裂帶結(jié)構(gòu)特征的測井響應(yīng)模型[30-32],最終發(fā)現(xiàn)深淺側(cè)向曲線變化率與斷裂帶結(jié)構(gòu)樣式吻合度較高,能較好反映斷裂帶結(jié)構(gòu)類型及規(guī)模,但要去除儲(chǔ)集層中夾層干擾(圖6)。首先采用五點(diǎn)法合成深淺側(cè)向曲線變化率LCR值:

(1)

式中,Xi為測井曲線某點(diǎn)的測井值;Xi+j為測井曲線某點(diǎn)前后2點(diǎn)的測井值。

圖4 杏北油田葡萄花油層斷裂帶結(jié)構(gòu)測井響應(yīng)特征Fig.4 Fault zone structure logging response characteristic of Putaohua reservoir in Xingbei Oilfield

圖5 斷層破碎帶微構(gòu)造類型測井曲線交匯圖Fig.5 Logging curve intersection of fault fracture zone microstructural types

統(tǒng)計(jì)表明斷層破碎帶層段深淺側(cè)向曲線變化率LCR值均大于1,而非斷層破碎帶層段LCR值均小于1,其中砂巖層段更明顯,如杏2-2-32井?dāng)鄬悠扑閹佣蜭CR值大于1.15,而在非斷層破碎帶層段LCR值小于0.6。上述斷裂帶內(nèi)部結(jié)構(gòu)測井曲線識(shí)別和統(tǒng)計(jì)表明研究區(qū)發(fā)育2種類型斷裂帶:①對(duì)稱完整型7條,破碎帶-斷層核-破碎帶;②不對(duì)稱完整型14條,破碎帶-斷層核。

斷層破碎帶厚度與斷距具有正相關(guān)性,考慮葡萄花油層早成巖階段晚期泥巖塑性和砂巖脆性特征,為了消除砂泥互層地層巖性對(duì)斷層破碎帶厚度影響,建立了不同巖性斷層破碎帶厚度與斷距關(guān)系圖版:泥巖段斷層破碎帶厚度與斷距正相關(guān)性較差,砂巖段斷層破碎帶厚度與斷距正相關(guān)性較好,如杏3-1-31井?dāng)鄬悠扑閹帱c(diǎn)深度為1 132.4 m,斷失層位為葡Ⅰ33-葡Ⅱ9單元,斷距為61.8 m,破碎帶視厚度為21.2 m,破碎帶真厚度為13 m。為了預(yù)測每條斷層不同斷距條件下的斷層破碎帶厚度,構(gòu)建了斷層破碎帶臨界厚度與斷距相關(guān)性的內(nèi)外包絡(luò)線,計(jì)算葡萄花油層最大斷距118.4 m處斷層破碎帶最大厚度約為40 m(圖7)。

圖6 F214斷層破碎帶厚度測井曲線識(shí)別Fig.6 Logging curve identify of fracture zone thickness of F214 fault

圖7 斷層破碎帶厚度與斷距關(guān)系Fig.7 Correlation of fault fracture zone thickness and displacement

4 砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)特征及控油作用

砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)特征對(duì)斷層邊部剩余油控制作用主要體現(xiàn)在4個(gè)方面:① 斷層分段生長性決定斷層封閉性及其邊部剩余油是否存在;②斷儲(chǔ)配置關(guān)系及斷距變化形成的正向構(gòu)造決定斷層邊部剩余油富集部位;③斷層破碎帶厚度及微構(gòu)造類型決定斷層邊部有效鉆井范圍,如砂巖變形帶使儲(chǔ)層物性降低和泥巖裂縫使儲(chǔ)層物性增高;④斷層穩(wěn)定性決定斷層邊部井網(wǎng)類型和開采強(qiáng)度[33]?;谏鲜鲅芯砍晒孕颖庇吞锲咸鸦ㄓ蛯覨250斷層為例,首先開展三維地震精細(xì)解釋(1 km×1 km),確定斷層分段生長點(diǎn)和微幅度構(gòu)造范圍,然后利用斷距值和經(jīng)驗(yàn)公式厘定斷層破碎帶最大厚度,進(jìn)而考慮儲(chǔ)層砂體垂向演化序列和重點(diǎn)時(shí)間單元井網(wǎng)注采關(guān)系刻畫出剩余油空間分布范圍,2013—2014年在該斷層邊部布署4口大位移度定向井,初期含水率均小于80%,日產(chǎn)油量為周邊直井2.5倍,且產(chǎn)能遞減速率明顯較慢,其研究對(duì)陸相盆地?cái)鄩K油田高含水期增儲(chǔ)穩(wěn)產(chǎn)具有指導(dǎo)重要意義。

5 結(jié) 論

(1)砂泥互層地層斷裂帶普遍發(fā)育斷層核和破碎帶二元結(jié)構(gòu),其中斷層核在脆性地層中形成核,在塑性地層中發(fā)育泥巖涂抹的分段生長結(jié)構(gòu);破碎帶在高孔隙度砂巖中發(fā)育變形帶,在低孔隙度砂巖中發(fā)育裂縫,在泥巖中發(fā)育泥巖涂抹帶和裂縫。

(2)建立杏北油田葡萄花油層砂泥互層地層斷裂帶內(nèi)部結(jié)構(gòu)地質(zhì)模型:斷層核發(fā)育泥巖涂抹的分段生長結(jié)構(gòu),破碎帶發(fā)育破碎、滑動(dòng)和變形3種特征;斷層垂向上在泥質(zhì)含量高的葡Ⅰ4小層發(fā)生分段,造成過斷層面系統(tǒng)取心井鉆遇3個(gè)斷點(diǎn);破碎帶發(fā)育純凈砂巖變形帶、泥巖裂縫和混雜砂巖變形帶-裂縫切割3種類型微構(gòu)造,且斷層面兩側(cè)隨著距斷層核距離增加微構(gòu)造密度-規(guī)模和碳酸鹽含量逐漸減低。

(3)杏北油田葡萄花油層主要發(fā)育對(duì)稱完整型和不對(duì)稱完整型2類斷裂帶結(jié)構(gòu),其中巖性和斷距是影響砂泥互層地層斷層破碎帶厚度的主要因素,通常大斷距條件下的砂巖層段斷層破碎帶厚度較大。斷裂帶結(jié)構(gòu)特征對(duì)斷層邊部剩余油分布部位、富集程度和開采方式具有重要影響。

[1] 胡文瑞.論老油田實(shí)施二次開發(fā)工程的必要性與可行性[J].石油勘探與開發(fā),2008,35(1):1-5. HU Wenrui. Necessity and feasibility of PetroChina mature field redevelopment [J]. Petroleum Exploration and Development, 2008,35(1):1-5.

[2] 韓大匡.中國油氣田開發(fā)現(xiàn)狀、面臨的挑戰(zhàn)和技術(shù)發(fā)展方向[J].中國工程科學(xué),2010,12(5):51-57. HAN Dakuang. Status and challenges for oil and gas field development in China and directions for the development of corresponding technologies [J]. Engineering Sciences, 2010,12(5):51-57.

[3] 毛偉漢,周長利.大慶油田斷層破碎帶大斜度定向井仿油基鉆井液技術(shù)[J].價(jià)值工程,2014,18:28-30. MAO Weihan, ZHOU Changli. High angle directional well imitated oil-base drilling fluid technology in the fault fracture zone of Daqing oilfield [J]. Value Engineering, 2014,18:28-30.

[4] 曹彤,郭少斌.精細(xì)地震構(gòu)造解釋在油田開發(fā)中的應(yīng)用[J].地球物理學(xué)進(jìn)展,2013,28(4):1893-1899. CAO Tong, GUO Shaobin. The application of refined seismic structure interpretation in reservoir development [J]. Progress in Geophysics, 2013,28(4):1893-1899.

[5] 封從軍,單啟銅,時(shí)維成,等.扶余油田泉四段儲(chǔ)層非均質(zhì)性及對(duì)剩余油分布的控制[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,37(1):1-7. FENG Congjun, SHAN Qitong, SHI Weicheng, et al. Reservoirs heterogeneity and its control on remaining oil distribution of K1q4, Fuyu Oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013,37(1):1-7.

[6] 侯建,邱茂鑫,陸努,等.采用CT技術(shù)研究巖心剩余油微觀賦存狀態(tài)[J].石油學(xué)報(bào),2014,35(2):319-325. HOU Jian, QIU Maoxin, LU Nu, et al. Characterization of residual oil microdistribution at pore scale using computerized tomography [J]. Acta Petrolei Sinica, 2014,35(2):319-325.

[7] 閆百泉,張鑫磊,于利民,等. 基于巖心及密井網(wǎng)的點(diǎn)壩構(gòu)型與剩余油分析[J].石油勘探與開發(fā),2014,41(5):597-604. YAN Baiquan, ZHANG Xinlei, YU Limin, et al. Point bar configuration and residual oil analysis based on core and dense well pattern[J]. Petroleum Exploration and Development, 2014,41(5):597-604.

[8] 宋保全,李音,席國興,等.儲(chǔ)層精細(xì)描述技術(shù)在杏北油田開發(fā)調(diào)整中的應(yīng)用[J].石油學(xué)報(bào),2001,22(1):72-77. SONG Baoquan, LI Yin, XI Guoxing, et al. The application of detailed description reservoir techniques in Xingbei area [J]. Acta Petrolei Sinica, 2001,22(1):72-77.

[9] 單敬福,張東,陳岑,等.大慶油田杏樹崗杏一、二區(qū)東部葡I332a-葡I11細(xì)層沉積體系再認(rèn)識(shí)[J].現(xiàn)代地質(zhì),2011,25(2):297-307. SHAN Jingfu, ZHANG Dong, CHEN Cen, et al. Recognition PI332a-P I11 sublayers depositional system of Xing 1 and 2 eastern area in Xingshugang, Daqing Oilfield [J]. Geoscience, 2011,25(2):297-307.

[10] 劉威,王玉祥,王興剛,等.杏北油田構(gòu)造特征與油水井套管損壞之間的關(guān)系[J].大慶石油學(xué)院學(xué)報(bào),2003,27(1):7-9. LIU Wei, WANG Yuxiang, WANG Xinggang, et al. Relationship between structure and casing sheer in Xingbei Oilfield [J]. Journal of Northeast Petroleum University, 2003,27(1):7-9.

[11] 周超,尹太舉,楊樂.杏樹崗油田檢查井水洗規(guī)律研究:以X6-12-JE24井為例[J].長江大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,10(8):73-76. ZHOU Chao, YIN Taiju, YANG Le. Study on water-wash law in Xingshugang oilfield—as well X6-12-JE24 [J]. Journal of Yangtze University (Natural Science Edition), 2013,10(8):73-76.

[12] VERMILYE J M, SCHOLZ C H. Fault propagation and segmentation:insight from the microstructural examination of a small fault [J]. Journal of Structural Geology, 1999,21(11):1623-1636.

[13] MCGRATH A G, DAVISON I. Damage zone geometry around fault tips [J]. Journal of Structural Geology, 1995,17(7):1011-1024.

[14] CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure [J]. Geology, 1996,24:1025-1028.

[15] BERG S S, SKAR T. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah [J]. Journal of Structural Geology, 2005,27(10):1803-1822.

[16] FAULKNER D R, MITCHELL T M, HEALY D, et al. Slip onweakfaults by the rotation of regional stress in the fracture damage zone [J]. Nature, 2006,444(7121):922-925.

[17] COWIE P A, SCHOLZ C H. Displacement-length scaling relationship for faults: data synthesis and discussion[J]. Journal of Structural Geology, 1992,14(10):1149-1156.

[18] KNIPE R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs [J]. AAPG, 1997,81(2):187-195.

[19] KIM Y S, PEACOCK D C P, SANDERSON D J. Fault damage zones [J]. Journal of Structural Geology, 2004,26(3):503-517.

[20] FLODIN E, AYDIN A. Faults with asymmetric damage zones in sandstone, Valley of Fire State Park, southern Nevada[J]. Journal of Structural Geology, 2004,26(5):983-988.

[21] CHILDS C, MANZOCCHI T, WALSH J J, et al. A geometric model of fault zone and fault rock thickness variations [J]. Journal of Structural Geology, 2009,31(2):117-127.

[22] 付曉飛,方德慶,呂延防,等.從斷裂帶內(nèi)部結(jié)構(gòu)出發(fā)評(píng)價(jià)斷層垂向封閉性的方法[J].地球科學(xué)——中國地質(zhì)大學(xué)學(xué)報(bào),2005,30(3):328-336. FU Xiaofei, FANG Deqing, Lü Yanfang, et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones [J]. Earth Science —Journal of China University of Geosciences, 2005,30(3):328-336.

[23] 王海學(xué),呂延防,付曉飛,等.斷裂質(zhì)量校正及其在油氣勘探開發(fā)中的作用[J].中國礦業(yè)大學(xué)學(xué)報(bào),2014,43(3):482-490. WANG Haixue, Lü Yanfang, FU Xiaofei, et al. Fault quality correction and its role in the oil and gas exploration and development [J]. Journal of China University of Mining & Technology, 2014,43(3):482-490.

[24] 付曉飛,肖建華,孟令東.斷裂在純凈砂巖中的變形機(jī)制及斷裂帶內(nèi)部結(jié)構(gòu)[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2014,44(1):25-37. FU Xiaofei, XIAO Jianhua, MENG Lingdong. Fault deformation mechanisms and internal structure characteristics of fault zone in pure sandstone[J].Journal of Jilin University (Earth Science Edition), 2014,44(1):25-37.

[25] 付曉飛,尚小鈺,孟令東.低孔隙巖石中斷裂帶內(nèi)部結(jié)構(gòu)及與油氣成藏[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,44(6):2428-2438. FU Xiaofei, SHANG Xiaoyu, MENG Lingdong. Internal structure of fault zone and oil/gas reservior in low-porosity rock[J]. Journal of Central South University (Science and Technology), 2013,44(6):2428-2438.

[26] 高麗華,韓作振,韓豫,等.斷層對(duì)砂巖膠結(jié)物和砂巖物性變化的控制作用:以惠民凹陷臨南洼陷夏 503 井?dāng)鄬訛槔齕J].中國科學(xué):地球科學(xué),2014,44(3):445-456. GAO Lihua, HAN Zuozhen, HAN Yu, et al. Controlling of cements and physical property of sandstone by fault as observed in well Xia503 of Huimin sag, Linnan sub-depression [J]. Science China: Earth Sciences, 2014,44(3):445-456.

[27] 樊計(jì)昌,劉明軍.確定斷裂帶內(nèi)部結(jié)構(gòu)和物性參數(shù)的一種方法[J].石油地球物理勘探,2007,42(2):164-169. FAN Jichang, LIU Mingjun. An approach determining internal structure and physical parameters of fractural zone [J]. Oil Geophysical Prospecting, 2007,42(2):164-169.

[28] 吳智平,陳偉,薛雁,等.斷裂帶的結(jié)構(gòu)特征及其對(duì)油氣的輸導(dǎo)和封堵性 [J].地質(zhì)學(xué)報(bào),2010,84(4):570-578. WU Zhiping, CHEN Wei, XUE Yan, et al. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas [J]. Acta Geologica Sinica, 2010,84(4):570-578.

[29] 陳偉,吳智平,侯峰,等.斷裂帶內(nèi)部結(jié)構(gòu)特征及其與油氣運(yùn)聚關(guān)系[J].石油學(xué)報(bào),2010,31(5):774-780. CHEN Wei, WU Zhiping, HOU Feng, et al. Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 2010,31(5):774-780.

[30] 高松洋. 測井資料在裂縫識(shí)別中的應(yīng)用:以H地區(qū)砂巖儲(chǔ)層為例[J].石油天然氣學(xué)報(bào),2009,31(2):272-274. GAO Songyang. Application of well logging data to fracture distinguishing-as sandstone reservoir in H area [J]. Journal of Oil and Gas Technology, 2009,31(2):272-274.

[31] 金強(qiáng),周進(jìn)峰,王端平,等.斷層破碎帶識(shí)別及其在斷塊油田開發(fā)中的應(yīng)用[J].石油學(xué)報(bào),2012,33(1):82-89. JIN Qiang, ZHOU Jinfeng, WANG Duanping, et al. Identification of shattered fault zones and its application in development of fault-block oilfields [J]. Acta Petrolei Sinica, 2012,33(1):82-89.

[32] 劉偉,朱留方,許東暉,等.斷裂帶結(jié)構(gòu)單元特征及其測井識(shí)別方法研究[J].測井技術(shù),2013,37(5):495-498. LIU Wei, ZHU Liufang, XU Donghui, et al. On features and logging recognition method of structure unit in fracture belt [J]. Well Logging Technology, 2013,37(5):495-498.

[33] 雍岐東,付建紅,肖芳淳,等.大位移井鉆井技術(shù)風(fēng)險(xiǎn)評(píng)價(jià)與分析[J].石油學(xué)報(bào),2002,23(1):83-84. YONG Qidong, FU Jianhong, XIAO Fangchun, et al. Risk assessment and analysis for extended reach drilling technique [J]. Acta Petrolei Sinica, 2002,23(1):83-84.

(編輯 徐會(huì)永)

Sandstone-mudstone interbed fault zones structure feature and controlling oil effect

LIU Zongbao1, GUO Linyuan1, FU Xiaofei1, ZHANG Dong2, LIU Yunyan3, FANG Qing4, WANG Haixue1, MENG Lingdong1

(1.GeoscienceCollegeofNortheastPetroleumUniversity,Daqing163318,China;2.NO.4OilProductionPlantofDaqingOilfieldLimitedLiabilityCompany,Daqing163511,China;3.NO.8OilProductionPlantofDaqingOilfieldLimitedLiabilityCompany,Daqing163514,China;4.NO.2OilProductionPlantofDaqingOilfieldLimitedLiabilityCompany,Daqing163414,China)

By using outcrop dissection, 3-D seismic interpretation, logging curve comparison, core observation and rock thin section identification, we studied the internal structure of the fault zones in sandstone-mudstone interbed strata of the Putaohua reservoir in northern Xingbei Oilfield, Songliao Basin. Based on the comprehensive responses of well logging, a model to predict fault zone thickness was established; with it we discussed how the fault structure controlled the distribution and enrichment of remaining oil along the fault edges. Our results reveal that the fault zones are mainly composed of a fault core and the damage zones; the fault core develops segmented structure of shale smear, while damage zones show features of crushing, sliding and deformation; the fault segments vertically into PI4 stratigraphic horizon, causing the three breakpoints in the coring well drills, where breakpoint 1 develops fault tip damage zones of sandstone deformation band, breakpoint 2 develops the major fault core of shale smear, and breakpoint 3 develops argillaceous breccia and minor fault core of mudstone fractures filled by calcite. With increasing distance to the fault core, the density of minor fractures and carbonate content are gradually reduced.

Sandstone-mudstone interbed; fault zones structure feature; controlling oil effect; Putaohua reservoir; Xingbei Oilfield; Songliao Basin

2016-10-11

國家自然科學(xué)基金項(xiàng)目(41502136);國家科技重大專項(xiàng)(2016ZX05054009);中國博士后基金項(xiàng)目(2014M551214);黑龍江省青年科學(xué)基金項(xiàng)目(QC2014C039)

劉宗堡(1982-),男,教授,博士生導(dǎo)師,研究方向?yàn)閮?chǔ)層沉積學(xué)與油氣成藏機(jī)理。E-mail:lzbdqpi@163.com。

1673-5005(2017)02-0021-09

10.3969/j.issn.1673-5005.2017.02.003

TE 122.1

A

劉宗堡,郭林源,付曉飛,等.砂泥互層地層斷裂帶結(jié)構(gòu)特征及控油作用[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,41(2):21-29.

LIU Zongbao, GUO Linyuan, FU Xiaofei, et al. Sandstone-mudstone interbed fault zones structure feature and controlling oil effect[J].Journal of China University of Petroleum(Edition of Natural Science),2017,41(2):21-29.

猜你喜歡
斷裂帶油層泥巖
泥巖路基填料抗剪性能實(shí)驗(yàn)研究
不同pH條件下紅層泥巖崩解特性研究
冷凍斷裂帶儲(chǔ)層預(yù)測研究
依蘭—伊通斷裂帶黑龍江段構(gòu)造運(yùn)動(dòng)特征
綜合物化探在招平斷裂帶中段金礦深部找礦的應(yīng)用
延長油田N 區(qū)長6 差薄油層注水開發(fā)效果分析
董事會(huì)團(tuán)隊(duì)斷裂帶對(duì)家族企業(yè)傳承后多元化戰(zhàn)略的影響
勝利油田墾119區(qū)塊塑性泥巖鉆井模式研究
油層重力分異對(duì)泡沫驅(qū)氣液比的影響
松遼盆地葡萄花油層低阻特征及成因機(jī)理研究
海伦市| 博爱县| 确山县| 永仁县| 湘潭市| 辽源市| 杂多县| 泸定县| 启东市| 桂东县| 图木舒克市| 民丰县| 醴陵市| 甘孜县| 霍城县| 北安市| 石狮市| 偃师市| 徐州市| 张家口市| 葫芦岛市| 余江县| 阜阳市| 平谷区| 子洲县| 雅江县| 齐河县| 新民市| 清新县| 长阳| 延吉市| 开平市| 东乡族自治县| 都安| 扎鲁特旗| 祁东县| 广汉市| 秦皇岛市| 太和县| 五原县| 泾川县|