国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

油菜精量排種器種子流傳感裝置設(shè)計(jì)與試驗(yàn)

2017-06-27 01:31:07丁幼春楊軍強(qiáng)張莉莉周雅文廖慶喜
關(guān)鍵詞:種器精量壓電

丁幼春,楊軍強(qiáng),朱 凱,張莉莉,周雅文,廖慶喜

?

油菜精量排種器種子流傳感裝置設(shè)計(jì)與試驗(yàn)

丁幼春,楊軍強(qiáng),朱 凱,張莉莉,周雅文,廖慶喜

(華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢430070)

針對油菜精量播種過程中缺乏小粒徑種子流傳感而導(dǎo)致播量監(jiān)測困難的問題,設(shè)計(jì)了一種油菜精量排種器種子流傳感裝置。運(yùn)用高速攝影技術(shù)及碰撞動(dòng)力學(xué)模型,記錄并分析油菜種子與聚偏氟乙烯壓電薄膜的碰撞軌跡,為傳感裝置的導(dǎo)管、壓電薄膜傾角、出種口位置等關(guān)鍵結(jié)構(gòu)參數(shù)提供依據(jù)?;谟筒朔N子與壓電薄膜的碰撞信號(hào)特征分析,設(shè)計(jì)了沉槽基板-壓電薄膜感應(yīng)結(jié)構(gòu),將碰撞信號(hào)的衰減時(shí)間從9縮短至1 ms,提高了對高頻種子流檢測的時(shí)間分辨率,同時(shí)能夠有效抵抗機(jī)械振動(dòng)帶來的干擾影響。對微弱碰撞信號(hào)進(jìn)行放大、半波整流、電壓比較、單穩(wěn)態(tài)觸發(fā)轉(zhuǎn)化為單脈沖信號(hào),通過單片機(jī)定時(shí)計(jì)數(shù)采集處理,實(shí)現(xiàn)油菜種子流排種頻率與排種總量的實(shí)時(shí)檢測,并利用無線收發(fā)模塊定時(shí)發(fā)送給監(jiān)測顯示終端,實(shí)現(xiàn)播量數(shù)據(jù)的實(shí)時(shí)顯示與保存。油菜精量排種器臺(tái)架及數(shù)粒儀高頻排種試驗(yàn)表明:在排種頻率8.1~32.9 Hz范圍內(nèi),檢測準(zhǔn)確率不低于99.5%。田間播種試驗(yàn)表明傳感裝置能夠?qū)崟r(shí)檢測精量排種器的排種頻率與排種總量,在無排種時(shí)計(jì)數(shù)為零,正常播種狀態(tài)時(shí)檢測準(zhǔn)確率不低于99.1%,機(jī)械振動(dòng)及粉塵對傳感裝置沒有影響。該傳感裝置為油菜精量播種過程播量監(jiān)測、漏播檢測以及補(bǔ)種提供有效支撐。

機(jī)械化;設(shè)計(jì);監(jiān)測;油菜精量排種器;油菜種子流;碰撞;傳感裝置

0 引 言

精量播種能夠省種、降低勞動(dòng)強(qiáng)度、提高作業(yè)效率、增加農(nóng)民收益,是智能農(nóng)機(jī)發(fā)展的重要環(huán)節(jié)。播種過程中播量監(jiān)測、播種狀態(tài)圖生成是精量播種智能化發(fā)展的趨勢之一。中國是世界油菜生產(chǎn)大國,年種植面積和總產(chǎn)量均居世界前列。目前油菜精量播種的播量指標(biāo)主要是通過種箱內(nèi)種量變化或排種器轉(zhuǎn)速及型孔數(shù)推算間接獲得,究其原因是缺少油菜等小粒徑種子流傳感裝置。研究一種油菜精量排種器種子流傳感裝置對于實(shí)現(xiàn)油菜精量播種過程播量監(jiān)測、漏播檢測以及實(shí)時(shí)補(bǔ)種、提升油菜精量播種智能化水平具有重要的現(xiàn)實(shí)意義。

國外播種監(jiān)測技術(shù)研究較早,并逐步實(shí)現(xiàn)了規(guī)?;a(chǎn)應(yīng)用。美國內(nèi)布拉斯加大學(xué)研究的由24對發(fā)光二極管和光電晶體管組成的矩形光柵塊(124 mm×92 mm)能夠?qū)崿F(xiàn)甜菜、菊苣種子(2.8~4.5 mm)排種均勻性的快速檢測[1]。Karayel等[2-3]分別設(shè)計(jì)的高速攝像系統(tǒng)和電容傳感裝置實(shí)現(xiàn)對小麥、大豆以及甘蔗坯精密播種排種粒距均勻性及落種速度的檢測。Precision Planting公司所研制的WaveVision檢測器能夠克服排種過程中連續(xù)2粒或多粒種子被認(rèn)為1粒種子、塵土可能被檢測為種子等技術(shù)難題,其檢測對象為玉米、大豆、谷物等種子,難以實(shí)現(xiàn)對油菜等小粒徑種子的檢測[4]。近年來,中國針對馬鈴薯、玉米、小麥、谷物等大中粒徑種子的精量播種監(jiān)測研究力度逐步增大。劉洪強(qiáng)等[5-10]通過選用紅外發(fā)光二極管、激光二極管、紅外光敏二極管、硅光電池等作為發(fā)射端和接收端,并優(yōu)化排列方式提高檢測區(qū)域覆蓋率及增加內(nèi)置自清潔除塵裝置設(shè)計(jì)的光電傳感器,能夠?qū)崿F(xiàn)對小麥、玉米、水稻等作物精量排種器排種性能的檢測。高速攝影法[11-15]有很高的檢測準(zhǔn)確率,但設(shè)備成本較高,系統(tǒng)結(jié)構(gòu)復(fù)雜,且受田間振動(dòng)和塵土的干擾較大,一般僅用于實(shí)驗(yàn)室環(huán)境下的排種檢測。周利明等[16-18]利用種子介電性質(zhì)及電容器的電容隨極板間介質(zhì)質(zhì)量變化而發(fā)生變化的原理設(shè)計(jì)了基于電容信號(hào)的排種性能檢測系統(tǒng),能夠?qū)崿F(xiàn)玉米或小麥播種機(jī)排種量的在線檢測。一些專家學(xué)者也利用壓電傳感法對播量監(jiān)測進(jìn)行了一些探索,張霖等[19]利用典型的彈簧-質(zhì)量-阻尼系統(tǒng)理論對懸臂式壓電陶瓷片的振動(dòng)頻率和阻尼進(jìn)行分析,選擇合適的粘彈性材料和安裝方式,提出了一種針對綠豆種子的壓電傳感種子數(shù)粒系統(tǒng)。黃東巖等[20]也針對玉米精量播種機(jī)設(shè)計(jì)了一種基于聚偏氟乙烯壓電薄膜的排種監(jiān)測系統(tǒng),種子碰撞信號(hào)脈沖寬度5 ms,檢測準(zhǔn)確率達(dá)96%,滿足玉米排種監(jiān)測要求。

油菜等小粒徑種子(平均粒徑1.5~2.2 mm)質(zhì)量輕、精量播種排種頻率較高,針對通過光信號(hào)點(diǎn)對點(diǎn)發(fā)射與接收的傳感裝置,依靠種子隔斷光路實(shí)現(xiàn)對種子感應(yīng)的檢測方式存在較大檢測盲區(qū),對塵土污染較為敏感,更難保證田間檢測準(zhǔn)確率。針對油菜等小粒徑種子流的檢測,丁幼春等[21-23]利用光纖傳感器對油菜精量排種器的性能檢測、漏播檢測與補(bǔ)種進(jìn)行了研究,但光纖傳感器價(jià)格昂貴,實(shí)現(xiàn)油菜精量直播機(jī)六行播量實(shí)時(shí)監(jiān)測的硬件成本高于直播機(jī)本身,嚴(yán)重制約著油菜等小粒徑種子播量監(jiān)測的應(yīng)用推廣。

針對氣力式油菜等小粒徑排種器排種種子流感應(yīng)困難的問題,本文提出利用種子下落時(shí)與壓電敏感材料碰撞產(chǎn)生的尖脈沖信號(hào)獲得種子流序列信息,實(shí)現(xiàn)小粒徑種子流的傳感,在此基礎(chǔ)上設(shè)計(jì)了油菜精量排種器種子流傳感裝置,并對其進(jìn)行了試驗(yàn)。

1 傳感裝置工作原理

1.1 PVDF壓電薄膜

聚偏氟乙烯(polyvinylidene fluoride,PVDF)壓電薄膜是由壓電高分子材料聚偏氟乙烯制作而成的30~500m厚度薄膜,其具有壓電電壓常數(shù)高、頻響寬、成本低等優(yōu)點(diǎn),在電聲、水聲超聲測量、醫(yī)療電子、機(jī)器人等領(lǐng)域有著廣泛的應(yīng)用[24-30]。經(jīng)過油菜種子與多種壓電薄膜碰撞試驗(yàn)對信號(hào)進(jìn)行對比分析,最終選用MEAS公司的LDT0-028K壓電薄膜作為壓電敏感元件,其厚度0.2 mm,最小感應(yīng)力為0.01 N。

1.2 傳感裝置結(jié)構(gòu)及工作原理

油菜精量排種器種子流傳感裝置主要包括入種口1、導(dǎo)管2、沉槽基板3、壓電薄膜4、出種口5、碰撞腔6等。傳感裝置結(jié)構(gòu)如圖1a所示。

工作時(shí),將傳感裝置安裝于油菜精量排種器下方合適位置,排種器投種口下落的油菜種子流經(jīng)入種口、導(dǎo)管落至傾斜向下的壓電薄膜,與之發(fā)生碰撞后從傳感裝置出種口流出。傳感裝置在結(jié)構(gòu)設(shè)計(jì)時(shí)考慮油菜種子盡可能只實(shí)現(xiàn)一次碰撞,維持投種的均勻性。壓電薄膜在種子撞擊作用下發(fā)生極化,產(chǎn)生衰減脈沖電壓信號(hào),經(jīng)信號(hào)調(diào)理電路的放大、半波整流、電壓比較、單穩(wěn)態(tài)觸發(fā)等環(huán)節(jié)處理,產(chǎn)生與種子流序列對應(yīng)的矩形脈沖序列信號(hào)。通過單片機(jī)定時(shí)計(jì)數(shù)采集處理,實(shí)現(xiàn)油菜種子流排種頻率與排種總量的實(shí)時(shí)檢測,并利用無線收發(fā)模塊定時(shí)發(fā)送給監(jiān)測顯示終端,實(shí)現(xiàn)播量數(shù)據(jù)的實(shí)時(shí)顯示與保存。

2 傳感裝置主要結(jié)構(gòu)及參數(shù)

油菜精量排種器種子流傳感裝置的關(guān)鍵結(jié)構(gòu)為感應(yīng)結(jié)構(gòu)部件、導(dǎo)管、壓電薄膜傾角與出種口位置,直接影響油菜種子與壓電薄膜的有效碰撞及種子通過傳感裝置的流暢性。

2.1 感應(yīng)結(jié)構(gòu)部件

試驗(yàn)發(fā)現(xiàn)僅由懸臂式無基板壓電薄膜作為油菜種子感應(yīng)結(jié)構(gòu)時(shí),油菜種子碰撞壓電薄膜后致使薄膜產(chǎn)生自由振蕩,繼而產(chǎn)生周期性衰減電壓信號(hào),收斂時(shí)間長,不利于對高頻種子流的檢測。為此設(shè)計(jì)了一種沉槽基板-壓電薄膜結(jié)構(gòu),在基板上開出與壓電薄膜有效感應(yīng)區(qū)域(11 mm×16 mm)一致的矩形沉槽,沉槽深度1 mm(試驗(yàn)發(fā)現(xiàn)深度大于1 mm后壓電輸出信號(hào)特征無顯著區(qū)別)。用粘膠將壓電薄膜四周邊沿粘貼在基板表面,壓電薄膜有效感應(yīng)區(qū)域下方處于中空狀態(tài),這種結(jié)構(gòu)限制了壓電薄膜在與油菜種子發(fā)生碰撞后產(chǎn)生自由振蕩的幅度,碰撞信號(hào)快速收斂,提高了種子流檢測的時(shí)間分辨率。沉槽基板與傳感器裝置相對獨(dú)立,采用單擋板與楔形結(jié)構(gòu)進(jìn)行定位和夾緊,方便安裝與更換壓電薄膜。試驗(yàn)還發(fā)現(xiàn)沉槽基板-壓電薄膜感應(yīng)結(jié)構(gòu)可以有效解決機(jī)械振動(dòng)帶來的干擾,結(jié)構(gòu)如圖1b所示。

2.2 導(dǎo)管內(nèi)徑

為了便于傳感裝置與油菜精量排種器投種口有效對接,同時(shí)保證種子有更好的下落導(dǎo)向性,設(shè)計(jì)導(dǎo)管為兩段式,上段為錐管,下段為直管,錐管是上端入種口與下端直管形成的自然過渡。為保證所有油菜種子能夠在壓電薄膜的有效感應(yīng)區(qū)內(nèi)發(fā)生碰撞,且為避免因傳感裝置在非豎直狀態(tài)時(shí)(導(dǎo)管軸線與豎直方向存在一定夾角)仍能有效感應(yīng)種子流,壓電薄膜有效感應(yīng)區(qū)域短邊方向需對稱各保留2 mm,直管內(nèi)徑不宜過大;同時(shí),油菜精量排種器排種時(shí)排種盤各型孔內(nèi)油菜種子呈一定次序下落,在排種盤型孔加工精度達(dá)不到要求的情況下單個(gè)型孔內(nèi)最多有3粒種子下落,為了防止偶然3粒種子同時(shí)下落而造成導(dǎo)管堵塞,直管內(nèi)徑又不能過小。據(jù)此得知,直管內(nèi)徑需滿足:

式中為直管內(nèi)徑,mm;為種子平均直徑,mm;為壓電薄膜有效感應(yīng)區(qū)域?qū)挾?,mm。

試驗(yàn)選用中雙11號(hào)油菜種子,平均粒徑1.5~2.2 mm,千粒質(zhì)量1.65~5.21 g,球形度為97.9%,壓電薄膜有效感應(yīng)區(qū)域?qū)挾葹?1 mm,故直管內(nèi)徑設(shè)定為7 mm。

2.3 壓電薄膜傾角

為使經(jīng)導(dǎo)管下落的油菜種子能夠與壓電薄膜發(fā)生有效碰撞,壓電薄膜傾角(壓電薄膜表面與水平面的夾角)受到油菜種子必須在壓電薄膜有效感應(yīng)區(qū)內(nèi)發(fā)生碰撞的約束,不能過大;但從小粒徑種子流經(jīng)傳感裝置的流暢性上說,要避免油菜種子與壓電薄膜發(fā)生二次甚至多次碰撞,理論上在0~90°范圍內(nèi)要盡可能大。因此,根據(jù)所設(shè)定直管內(nèi)徑、所選壓電薄膜的有效感應(yīng)區(qū)域以及直管與壓電薄膜的幾何關(guān)系,必須保證壓電薄膜有效感應(yīng)區(qū)足夠容納直管沿其軸線方向的投影,為避免因傳感裝置在非豎直狀態(tài)時(shí)仍能有效感應(yīng)種子流,壓電薄膜有效感應(yīng)區(qū)域長邊方向兩端各保留2 mm。壓電薄膜傾角幾何分析參見圖2。

a. 種子與壓電薄膜碰撞軌跡a. Collision trajectory of seed andpiezoelectric filmb. 種子與壓電薄膜碰撞力學(xué)模型b. Collision mechanics model ofseed and piezoelectric film

根據(jù)幾何關(guān)系,由式(2)計(jì)算可以得到壓電薄膜傾角最大值。

式中直管內(nèi)徑為7 mm;壓電薄膜有效感應(yīng)區(qū)域長度為16 mm,得=54°。由此設(shè)定壓電薄膜傾角為54°。

2.4 導(dǎo)管長度

導(dǎo)管長度決定著種子在傳感裝置中的下落高度,直接影響油菜種子與壓電薄膜的碰撞前速度,進(jìn)而影響碰撞沖擊力。忽略種子下落初速度及與管壁的摩擦,利用高速攝影(pco.diamx HD)在20 000 fps的幀率下記錄種子與壓電薄膜的碰撞軌跡,利用運(yùn)動(dòng)學(xué)和碰撞動(dòng)力學(xué)原理,建立種子與壓電薄膜的碰撞模型,圖2b為種子與壓電薄膜碰撞軌跡及碰撞力學(xué)模型。

忽略種子從投種口下落時(shí)初速度,在垂直于壓電薄膜方向利用沖量定理,由式(3)、(4)聯(lián)立可得種子最小下落高度。

(4)

式中為種子最小下落高度,mm;0為種子碰撞前速度,m/s;最小感應(yīng)沖擊力為0.01 N。運(yùn)用小粒徑軌跡參數(shù)分析軟件[12]得知:種子碰撞后速度1大小等于0.40大小,m/s;碰撞時(shí)間為0.2 ms;種子碰撞后速度方向與壓電薄膜夾角為10°;為保證不同粒徑油菜種子下落沖擊達(dá)到最小感應(yīng)沖擊力,單粒油菜種子最小質(zhì)量為1.65×10-6kg,得= 172 mm。

考慮入種口長度10 mm,故導(dǎo)管長度至少為162 mm。這樣便可保證即使種子下落初速度為零,依然能夠被壓電薄膜感應(yīng)到。為了減弱錐面對種子的能量削弱程度,設(shè)計(jì)錐角為10°,錐管長度91 mm。由于下落高度越大種子對壓電薄膜的沖擊越大,對粒徑偏小油菜種子的檢測可靠性越高,考慮傳感裝置的小巧以及在直播機(jī)上安裝空間因素,設(shè)計(jì)直管長度為71 mm,導(dǎo)管總長度為162 mm,滿足導(dǎo)管長度最小要求。

導(dǎo)管長度的計(jì)算是在種子作自由落體運(yùn)動(dòng)條件下推導(dǎo)出來的,在實(shí)際應(yīng)用中,因機(jī)具震動(dòng)、田間作業(yè)發(fā)生小幅度傾斜等原因?qū)е聜鞲醒b置處于非豎直狀態(tài)在所難免,種子會(huì)在排種管內(nèi)壁反復(fù)碰撞而影響其實(shí)際下落速度。為此可將傳感裝置豎直安裝于油菜精量排種器投種口下方一定距離處(本文田間試驗(yàn)時(shí)設(shè)定350 mm),油菜種子本身有較高的球形度和較好的流動(dòng)性,到達(dá)傳感裝置入種口時(shí)種子已具備較高的下落速度,再經(jīng)過傳感裝置的導(dǎo)管,使得油菜種子與壓電薄膜有效感應(yīng)區(qū)碰撞前達(dá)到最低速度要求,從而實(shí)現(xiàn)種子的有效感應(yīng)。

2.5 出種口位置

出種口位置影響油菜種子流出傳感裝置的順暢程度,如果位置不合適,種子可能與出種口內(nèi)壁發(fā)生碰撞反彈再次落到壓電薄膜上。利用高速攝影記錄的種子碰撞軌跡(見圖2a)設(shè)計(jì)出種口位置。考慮縱向位置,為使種子盡快從碰撞腔到達(dá)出種口,設(shè)計(jì)出種口上端與壓電薄膜下邊界處相接;考慮水平位置,使出種口中心位于種子軌跡上,保證種子從出種口中部落下,減少種子與出種口碰撞的可能性。

3 信號(hào)采集系統(tǒng)設(shè)計(jì)及檢測流程

3.1 碰撞信號(hào)特性分析

基于所設(shè)計(jì)的傳感裝置結(jié)構(gòu),由于油菜種子粒徑差異,種子與壓電薄膜碰撞后壓電薄膜產(chǎn)生峰值為0.07~0.25 V范圍內(nèi)的尖脈沖電壓信號(hào)。對壓電薄膜進(jìn)行了無基板與有沉槽基板碰撞信號(hào)測試,用雙通道示波器(UNIT UTD2012CEL)對碰撞原始信號(hào)與放大信號(hào)實(shí)時(shí)采集,碰撞信號(hào)如圖3所示。無基板壓電薄膜測試時(shí),壓電薄膜受油菜種子撞擊后產(chǎn)生自由振蕩,輸出與種子沖擊產(chǎn)生的峰值電壓幅值相當(dāng)?shù)闹芷谛苑逯惦妷?,收斂時(shí)間達(dá)9 ms,也就是說,在收斂的9 ms內(nèi),再有種子與壓電薄膜發(fā)生碰撞時(shí),產(chǎn)生的撞擊信號(hào)與自由振蕩波形發(fā)生混疊,給后續(xù)的信號(hào)處理、數(shù)字化帶來難度。沉槽基板-壓電薄膜由壓電薄膜與矩形沉槽基板通過四周粘接組成一個(gè)整體,這種結(jié)構(gòu)限制了壓電薄膜的自由振蕩幅度,削弱了自由振蕩峰值電壓,碰撞信號(hào)在1 ms內(nèi)即可收斂完成,提高了種子流檢測的時(shí)間分辨率。

a. 無基板壓電薄膜信號(hào)波形圖

a. Signal waveform diagram of piezoelectric film without substrate

3.2 信號(hào)采集系統(tǒng)設(shè)計(jì)

信號(hào)采集系統(tǒng)包括信號(hào)調(diào)理、信號(hào)采集及監(jiān)測顯示終端,如圖4所示。

信號(hào)調(diào)理包括信號(hào)放大電路、半波整流電路、比較電路、單穩(wěn)態(tài)觸發(fā)電路,將毫伏級(jí)碰撞信號(hào)轉(zhuǎn)化為單片機(jī)可以處理的5 V矩形脈沖信號(hào)。放大電路利用高精度儀用放大芯片(AD620)將毫伏級(jí)碰撞峰值電信號(hào)放大至1.4~5 V范圍內(nèi),此時(shí)雜波干擾信號(hào)幅值為0.2 V。半波整流利用二極管的單向?qū)ㄐ?,將?fù)電壓信號(hào)濾除,保留正向電壓信號(hào),二極管正向?qū)〞?huì)使正向電壓信號(hào)峰值降低0.3 V左右。試驗(yàn)得知經(jīng)過二極管后小粒徑油菜籽產(chǎn)生的信號(hào)峰值電壓均在1 V以上,在比較電路中設(shè)定比較電路閾值電壓為0.6 V,即超過閾值電壓的尖峰脈沖信號(hào)將被轉(zhuǎn)換成方波脈沖信號(hào),方波脈沖寬度在0.4~0.5 ms變化。利用單穩(wěn)態(tài)觸發(fā)器(74LS123N)的上升沿觸發(fā)延時(shí)功能,通過調(diào)節(jié)外接電阻、電容參數(shù)設(shè)定最終輸出1 ms固定脈寬的方波信號(hào),實(shí)現(xiàn)了單粒小粒徑種子與單個(gè)固定脈寬方波信號(hào)的轉(zhuǎn)換。理論上講,最終輸出的方波信號(hào)脈寬越小,能檢測相鄰油菜籽的能力越強(qiáng),但事實(shí)上,最終檢測的時(shí)間分辨率是由壓電薄膜碰撞后的收斂時(shí)間決定的。

信號(hào)采集利用STC12C2052AD單片機(jī)的定時(shí)器中斷T0與外部中斷INT0實(shí)現(xiàn)油菜籽種子流的排種頻率與排種總量的實(shí)時(shí)檢測,并通過NRF24L01無線收發(fā)模塊(2.4 GHz的ISM頻段,數(shù)據(jù)傳輸速率2 Mbps,傳輸距離25 m,一次數(shù)據(jù)傳輸時(shí)間小于3 ms)實(shí)現(xiàn)與監(jiān)測顯示終端的信息傳輸。監(jiān)測顯示終端通過NRF無線收發(fā)模塊接收來自傳感裝置檢測的排種頻率和排種總量信息。通過監(jiān)測顯示終端按鍵操作向傳感裝置發(fā)送復(fù)位指令可以實(shí)現(xiàn)對傳感裝置數(shù)據(jù)清零。

3.3 檢測流程

整個(gè)系統(tǒng)的程序流程如圖5所示。工作前,先將種子流傳感裝置和監(jiān)測顯示終端初始化,即完成對定時(shí)器、外部中斷、NRF等初始化工作。

種子流與壓電薄膜碰撞后產(chǎn)生的脈沖序列直接產(chǎn)生外部INT0中斷,可實(shí)時(shí)獲得排種總量sum0,同時(shí)利用定時(shí)中斷(定時(shí)1 s),可獲得排種頻率freq,每秒后通過NRF無線收發(fā)模塊將排種總量、排種頻率發(fā)送給監(jiān)測顯示終端。為了減小功耗,若連續(xù)檢測周期內(nèi)沒有檢測到種子,使NRF進(jìn)入休眠狀態(tài),停止發(fā)送。只要某個(gè)周期檢測到種子,NRF恢復(fù)發(fā)送數(shù)據(jù)狀態(tài)。

監(jiān)測顯示終端通過NRF無線收發(fā)模塊每次接收到來自傳感裝置的排種頻率freq、排種總量sum0數(shù)據(jù),接收次數(shù)加1。為了避免因無線傳輸故障導(dǎo)致丟失數(shù)據(jù)的可能,采取監(jiān)測顯示終端排種總量累加值sum與sum0對比校驗(yàn)的方式,若sum與sum0不一致時(shí),表明出現(xiàn)了數(shù)據(jù)丟失,此時(shí)以sum0作為準(zhǔn)確的排種總量。同時(shí),為操作方便,監(jiān)測顯示終端可以通過按鍵操作發(fā)送復(fù)位指令,實(shí)現(xiàn)對傳感裝置的數(shù)據(jù)清除。

4 傳感裝置的性能試驗(yàn)

4.1 臺(tái)架試驗(yàn)

4.1.1 試驗(yàn)材料與設(shè)備

試驗(yàn)所用材料為中雙11號(hào)油菜種子(試驗(yàn)前人工將缺損開裂的種子篩撿出)。試驗(yàn)所用主要儀器及設(shè)備為油菜精量排種器,氣力式精量排種器試驗(yàn)臺(tái)架,手持式測速器,油菜精量排種器種子流傳感裝置,監(jiān)測顯示終端,接種袋,秒表,SLY-C微電腦自動(dòng)數(shù)粒儀(浙江托普儀器有限公司)。整體試驗(yàn)裝置圖6所示。

4.1.2 試驗(yàn)方法與結(jié)果分析

試驗(yàn)?zāi)康脑谟谠u估油菜精量排種器種子流傳感裝置對不同排種頻率油菜種子流檢測的準(zhǔn)確率及可靠性。

將油菜精量排種器種子流傳感裝置安裝于氣力式油菜精量排種器投種口下方合適位置,并用接種袋收集通過傳感裝置的種子。設(shè)定40型孔排種器工作于12、18、24 r/min共3個(gè)適宜工作轉(zhuǎn)速檔位下,每個(gè)速度檔位下重復(fù)3次試驗(yàn)。每次試驗(yàn)當(dāng)監(jiān)測顯示終端顯示檢測粒數(shù)大約為1 120粒時(shí),停止排種,記錄排種時(shí)間與傳感裝置檢測粒數(shù),采用人工數(shù)粒獲得實(shí)際粒數(shù)。為進(jìn)一步檢驗(yàn)傳感裝置對高頻種子流的檢測效果。利用微電腦自動(dòng)數(shù)粒儀(小粒徑種子低速計(jì)數(shù)精度4‰,速度高時(shí),精度下降)模擬高頻排種。通過調(diào)整數(shù)粒儀振動(dòng)檔位,開展落種頻率在20、24、28、32 Hz附近4個(gè)檔位進(jìn)行測試(該設(shè)備落種頻率不超過33 Hz),每個(gè)落種頻率檔位下重復(fù)3次試驗(yàn)。設(shè)定數(shù)粒儀數(shù)種量為1 120,停止數(shù)種后,記錄排種時(shí)間、傳感裝置檢測粒數(shù),并對接種袋中的種子進(jìn)行人工數(shù)粒獲得實(shí)際粒數(shù)。油菜精量排種器臺(tái)架試驗(yàn)與數(shù)粒儀高頻排種試驗(yàn)檢測結(jié)果如表1所示。

表1 排種器不同轉(zhuǎn)速下與數(shù)粒儀高頻排種下傳感裝置檢測結(jié)果

由表1可知,傳感裝置在8.1~16.6 Hz田間正常排種頻率范圍內(nèi),檢測準(zhǔn)確率不低于99.6%,20.1~32.9 Hz高頻排種頻率范圍內(nèi),檢測準(zhǔn)確率同樣較穩(wěn)定,不低于99.5%。傳感裝置檢測粒數(shù)與實(shí)際粒數(shù)有一定的偏差,整體偏大,分析其原因,主要由以下兩方面造成:一方面,種子從導(dǎo)管出口截面(直徑為7 mm的圓截面)流出位置的不確定性導(dǎo)致種子與壓電薄膜的碰撞點(diǎn)具有隨機(jī)性,以直管軸線在壓電薄膜上的投影點(diǎn)為中心,將碰撞區(qū)分為上、下碰撞區(qū)(見圖1虛線上、下半橢圓區(qū)4-3、4-4)。利用高速攝影觀察種子與壓電薄膜碰撞過程,發(fā)現(xiàn)落至上碰撞區(qū)的部分種子碰撞后飛離過程中與下碰撞區(qū)下落的種子發(fā)生斜碰(碰撞之前兩種子的運(yùn)動(dòng)速度與兩種子質(zhì)心的連線不在同一條直線上),致使種子速度被改變,均與壓電薄膜發(fā)生碰撞,導(dǎo)致前粒種子被重復(fù)計(jì)數(shù)。另一方面,本傳感裝置對種子流檢測的時(shí)間分辨率為1 ms,當(dāng)多粒油菜籽在1 ms內(nèi)與壓電薄膜發(fā)生碰撞時(shí),只會(huì)被計(jì)數(shù)1次,這樣會(huì)使計(jì)數(shù)結(jié)果偏低,對于油菜精量排種器正常排種速率來說,1 ms內(nèi)多粒油菜籽與壓電薄膜發(fā)生碰撞的概率非常小。

整個(gè)試驗(yàn)過程中沒有出現(xiàn)種子在傳感裝置內(nèi)出種不暢甚至堵塞現(xiàn)象,也沒有發(fā)生無線數(shù)據(jù)傳輸故障,裝置充滿電后可持續(xù)工作9 h。

4.2 田間試驗(yàn)

田間試驗(yàn)的目的在于考察田間播種過程中傳感裝置對機(jī)械振動(dòng)、土壤粉塵等惡劣環(huán)境條件的抗干擾能力。

為了更直觀地檢驗(yàn)油菜精量聯(lián)合直播機(jī)耕整與播種振動(dòng)工況對傳感裝置的影響,將傳感裝置分別按表2所示安裝在油菜精量聯(lián)合直播機(jī)機(jī)架上(未與排種器投種口連接,即沒有種子流經(jīng)傳感裝置)。每組試驗(yàn)播種機(jī)工作距離為50 m,直播機(jī)工作過程中,測試者手持監(jiān)測顯示終端并跟隨直播機(jī),觀察并記錄顯示的排種頻率及排種總量。

表2 傳感裝置田間抗振性試驗(yàn)結(jié)果

由表2的第1組和第2組試驗(yàn)結(jié)果可知,田間機(jī)械振動(dòng)帶動(dòng)傳感裝置振動(dòng),無基板壓電薄膜在外部振動(dòng)激勵(lì)的作用下,產(chǎn)生自由振蕩形成干擾脈沖信號(hào),導(dǎo)致排種總量示數(shù)不斷增加,無基板壓電薄膜感應(yīng)結(jié)構(gòu)容易受田間機(jī)械震動(dòng)影響;對于沉槽基板-壓電薄膜感應(yīng)結(jié)構(gòu),雖同樣存在外部振動(dòng)激勵(lì),沉槽基板限制了壓電薄膜的自由振蕩幅度,從而有效抵抗田間機(jī)械振動(dòng)影響。從表2的第1組和第3組試驗(yàn)結(jié)果可知,結(jié)合導(dǎo)種管軟質(zhì)結(jié)構(gòu)特點(diǎn),采用軟管懸掛連接方式可以進(jìn)一步吸收機(jī)械振動(dòng)從而減小田間振動(dòng)對傳感裝置的影響。

為進(jìn)一步檢驗(yàn)傳感裝置田間播量監(jiān)測的效果,在孝南區(qū)西河鎮(zhèn)油菜機(jī)械化生產(chǎn)試驗(yàn)示范基地開展了田間油菜精量播種播量監(jiān)測試驗(yàn)。選用雷沃M704-BA拖拉機(jī)為2BYM8-油菜精量聯(lián)合直播機(jī)提供動(dòng)力,直播機(jī)所用排種器為正負(fù)氣壓組合式精量排種器,油菜精量排種器種子流傳感裝置通過導(dǎo)種軟管豎直安裝于排種器投種口下方350 mm位置處,用接種袋收集通過傳感裝置的種子。試驗(yàn)現(xiàn)場如圖7所示。

試驗(yàn)過程中設(shè)定3個(gè)適宜的直播機(jī)工作速度水平,慢I檔、慢II檔、慢III檔,每個(gè)檔位測定工作距離=40 m。記錄監(jiān)測顯示終端顯示的播種時(shí)間、排種頻率、播種總量,采用人工數(shù)粒獲得實(shí)際播種總量。田間播量監(jiān)測結(jié)果如表3所示。

表3 田間播量監(jiān)測試驗(yàn)結(jié)果

從表3可以看出,在3個(gè)速度檔位下檢測播種總量856、853、845與實(shí)際播種總量851、845、838相差不大,檢測準(zhǔn)確率不低于99.1%;檢測平均排種頻率9.6、13.1、17.6 Hz與實(shí)際排種頻率9.6、13.0、17.5 Hz也很接近。

由于傳感裝置處于封閉狀態(tài),雖然田間會(huì)有塵土,氣力式精量排種器下方與傳感裝置連接的導(dǎo)種管內(nèi)氣流向下,并不會(huì)使田間塵土進(jìn)入傳感裝置內(nèi)部干擾種子流監(jiān)測。試驗(yàn)結(jié)束后發(fā)現(xiàn)壓電薄膜上有少量極為細(xì)微的浮塵,主要來源于種箱,播種過程中隨種子散落在壓電薄膜上,不足以產(chǎn)生與油菜籽相當(dāng)?shù)呐鲎擦Χ?,不?huì)對種子流計(jì)數(shù)產(chǎn)生干擾。由于田間不平整造成的傳感裝置一定角度的傾斜同樣能夠保證油菜種子流與壓電薄膜發(fā)生有效碰撞,并不會(huì)影響檢測效果。

5 結(jié) 論

本文設(shè)計(jì)了油菜精量排種器種子流傳感裝置用于解決油菜等小粒徑種子流傳感器缺乏而導(dǎo)致播種監(jiān)測困難的問題,對油菜精量排種器種子流傳感裝置準(zhǔn)確率、抗振性及抗塵性進(jìn)行了性能試驗(yàn)。

1)利用小粒徑種子碰撞力學(xué)特性設(shè)計(jì)了油菜精量排種器種子流傳感裝置。該裝置包括入種口、導(dǎo)管、沉槽基板-壓電薄膜、碰撞腔、出種口,集成信號(hào)處理、信號(hào)采集、無線收發(fā)等功能,結(jié)構(gòu)緊湊,適合于油菜等小粒徑種子精量排種器田間環(huán)境播量監(jiān)測。

2)利用高速攝影技術(shù)及碰撞動(dòng)力學(xué)記錄并分析油菜種子與壓電薄膜的碰撞軌跡,設(shè)計(jì)確定了導(dǎo)管長度162 mm、壓電薄膜傾角54°、出種口合理位置等重要結(jié)構(gòu)參數(shù),保證種子流與壓電薄膜發(fā)生有效碰撞后快速、順暢地流出傳感裝置。設(shè)計(jì)了沉槽基板-壓電薄膜感應(yīng)結(jié)構(gòu),將碰撞信號(hào)的衰減時(shí)間從9縮短至1 ms,提高了對高頻種子流檢測的時(shí)間分辨率,同時(shí)能夠有效抵抗機(jī)械振動(dòng)帶來的干擾影響。

3)油菜精量排種器臺(tái)架及數(shù)粒儀高頻排種試驗(yàn)表明:在落種頻率8.1~32.9 Hz范圍內(nèi),檢測準(zhǔn)確率不低于99.5%,無種子堵塞現(xiàn)象。田間播種試驗(yàn)表明:傳感裝置能夠?qū)崟r(shí)檢測種子流的排種頻率與排種總量,在無排種時(shí)計(jì)數(shù)為零,正常播種狀態(tài)時(shí)檢測準(zhǔn)確率不低于99.1%,機(jī)械振動(dòng)及粉塵對傳感裝置無影響。

該傳感裝置可為油菜精量播種過程播量監(jiān)測、漏播檢測以及補(bǔ)種提供參考。

[1] Lan Y, Kocher M F, Smith J A. Opto-electronic sensor system for laboratory measurement of planter seed spacing with small seeds[J]. Journal of Agricultural Engineering Research, 1999, 72(2): 119-127.

[2] Karayel D, Wiesehoff M, Zmerzi A, et al. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers & Electronics in Agriculture, 2006, 50(2): 89-96.

[3] Taghinezhad J, Alimardani R, Jafari A. Design a capacitive sensor for rapid monitoring of seed rate of sugarcane planter[J]. Agricultural Engineering International : The CIGR Journal, 2013, 15(4): 23-29.

[4] WaveVision檢測器[Z]. [2014-07-15] http://www. precisionplanting.com/Products/WaveVision/Default.aspx.

[5] 劉洪強(qiáng),馬旭,袁月明,等. 基于光電傳感器的精密排種器性能檢測[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2007,29(3):347-349.

Liu Hongqiang, Ma Xu, Yuan Yueming, et al. Performance detection of precision seed-metering device based on optoelectronic sensor[J]. Journal of Jilin Agricultural University, 2007, 29(3): 347-349. (in Chinese with English abstract)

[6] 楊景芝,付麗娟,李平. 基于光電傳感器的精密播種機(jī)排種監(jiān)測報(bào)警系統(tǒng)[J]. 現(xiàn)代電子技術(shù),2007,30(7):140-142.

Yang Jingzhi, Fu Lijuan, Li Ping, et al. Seeding monitoring & alarming system based on opto-electronic sensor for precision seeders[J]. Modern Electronics Technique, 2007, 30(7): 140-142. (in Chinese with English abstract)

[7] 宋鵬,張俊雄,李偉,等. 精密播種機(jī)工作性能實(shí)時(shí)監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):71-74.

Song Peng, Zhang Junxiong, Li Wei, et al. Real-time monitoring system for accuracy for precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 71-74. (in Chinese with English abstract)

[8] 河南科技大學(xué). 一種用于玉米精播機(jī)的漏播檢測裝置: 2013200453604[P]. 2013-07-10.

[9] 王美美,陳聯(lián)誠,劉慶庭,等. 甘蔗種植機(jī)漏播監(jiān)測與標(biāo)記系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(6):50-55.

Wang Meimei, Chen Liancheng, Liu Qingting, et al. Sowing leakage monitoring and marking system for sugarcane planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 50-55. (in Chinese with English abstract)

[10] 紀(jì)超,陳學(xué)庚,陳金成,等. 玉米免耕精密播種機(jī)排種質(zhì)量監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(8):1-6.

Ji Chao, Chen Xuegeng, Chen Jincheng, et al. Monitoring system for working performance of no-tillage corn precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 1-6. (in Chinese with English abstract)

[11] 廖慶喜,鄧在京,黃海東. 高速攝影在精密排種器性能檢測中的應(yīng)用[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,23(5):570-573.

Liao Qingxi, Deng Zaijing, Huang Haidong. Application of the speed photography checking the precision metering performances[J]. Journal of Huazhong Agricultural University, 2004, 23(5): 570-573. (in Chinese with English abstract)

[12] 蔡曉華,吳澤全,劉俊杰,等. 基于計(jì)算機(jī)視覺的排種粒距實(shí)時(shí)檢測系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(8):41-44.

Cai Xiaohua, Wu Zequan, Liu Junjie, et al. Grain distance real-time checking and measuring system based on computer vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(8): 41-44. (in Chinese with English abstract)

[13] 陳進(jìn),邊疆,李耀明,等. 基于高速攝像系統(tǒng)的精密排種器性能檢測試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(9):90-95.

Chen Jin, Bian Jiang, Li Yaoming, et al. Performance detection experiment of precision seed metering device based on high-speed camera system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(9): 90-95. (in Chinese with English abstract)

[14] Ding Youchun, Liao Qingxi, Huang Haidong. The seeding migration trajectory extraction and analysis of pneumatic precision metering device for rapeseed[J]. Journal of Food, Agriculture & Environment, 2013, 11(1): 477-482.

[15] 邢赫,臧英,曹曉曼,等. 水稻氣力式排種器投種軌跡試驗(yàn)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):23-30.

Xing He, Zang Ying, Cao Xiaoman, et al. Experiment and analysis of dropping trajectory on rice pneumatic metering device [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 23-30. (in Chinese with English abstract)

[16] 周利明,張小超,苑嚴(yán)偉. 小麥播種機(jī)電容式排種量傳感器設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(10):99-103.

Zhou Liming, Zhang Xiaochao, Yuan Yanwei. Design of capacitance seed rate sensor of wheat planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 99-103. (in Chinese with English abstract)

[17] 周利明,王書茂,張小超,等. 基于電容信號(hào)的玉米播種機(jī)排種性能監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):16-21.

Zhou Liming, Wang Shumao, Zhang Xiaochao, et al. Seed monitoring system for corn planter based on capacitance signal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 16-21. (in Chinese with English abstract)

[18] Sun Yujing, Jia Honglei, Ren Deliang, et al. Experimental study of capacitance sensors to test seed-flow[J]. Applied Mechanics & Materials, 2013, 347(350): 167-170.

[19] 張霖,趙祚喜,可欣榮,等. 壓電式種子計(jì)數(shù)系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(8):41-45.

Zhang Lin, Zhao Zuoxi, Ke Xinrong, et al. Seed-counting system design using piezoelectric sensor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 41-45. (in Chinese with English abstract)

[20] 黃東巖,賈洪雷,祁悅,等. 基于聚偏二氟乙烯壓電薄膜的播種機(jī)排種監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):15-22.

Huang Dongyan, Jia Honglei, Qi Yue, et al. Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 15-22. (in Chinese with English abstract)

[21] 丁幼春,王雪玲,廖慶喜. 基于時(shí)變窗口的油菜精量排種器漏播實(shí)時(shí)檢測方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):11-21.

Ding Youchun, Wang Xueling, Liao Qingxi. Method of real-time loss sowing detection for rapeseed precision metering device based on time changed window[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 11-21. (in Chinese with English abstract)

[22] Ding Youchun, Wang Xueling, Liao Qingxi, et al. Design and experiment of performance testing system of multi-channel seed-metering device based on time intervals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(7):11-18.

丁幼春,王雪玲,廖慶喜,等. 基于時(shí)間間隔的多路精量排種器性能檢測系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):11-18. (in English with Chinese abstract)

[23] 丁幼春,王雪玲,廖慶喜,等. 油菜籽漏播螺管式補(bǔ)種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):16-24.

Ding Youchun, Wang Xueling, Liao Qingxi, et al. Design and experiment on spiral-tube reseeding device for loss sowing of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(22):16-24. (in Chinese with English abstract)

[24] 張兢. 基于 PVDF 的表面計(jì)測傳感特性分析與應(yīng)用[J]. 壓電與聲光,2008,30(2):164-166.

Zhang Jing. Analysis and application on the sensing properties of surface metrology & measurement based on PVDF[J]. Piezoelectrics & Acoustooptics, 2008, 30(2): 164-

166. (in Chinese with English abstract)

[25] 舒方法,石俊. 基于PVDF壓電薄膜的脈搏測量系統(tǒng)研究[J]. 壓電與聲光,2008,30(1):124-126. Shu Fangfa, Shi Jun. Measurement system for human pulse using PVDF piezo-film[J]. Piezoelectrics & Acoustooptics, 2008, 30(1): 124-126. (in Chinese with English abstract)

[26] 舒方法,姜壽山,張欣,等. PVDF壓電薄膜在足底壓力測量中的應(yīng)用[J]. 壓電與聲光,2008,30(4):514-516.

Shu Fangfa, Jiang Shoushan, Zhang Xin, et al. Application of PVDF piezoelectric-film to foot-pressure measurement[J]. Piezoelectrics & Acoustooptics, 2008, 30(4): 514-516. (in Chinese with English abstract)

[27] Xu Jiaojiao, Li Yaoming. A PVDF sensor for monitoring grain loss in combine harvester[C]//Computer and Computing Technologies in Agriculture III, Third IFIP TC 12 International Conference, CCTA 2009, Revised Selected Papers. 2010: 499-505.

[28] 周利明,張小超,劉陽春,等. 聯(lián)合收獲機(jī)谷物損失測量PVDF陣列傳感器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):167-171.

Zhou Liming, Zhang Xiaochao, Liu Yangchun, et al. Design of PVDF sensor array for grain loss measuring[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 167-171. (in Chinese with English abstract)

[29] Liu Yiyang, Liu Liu, Xu Zengcai, et al. Modeling, design and simulation of micro-force sensor based on PVDF[C]// International Conference on Manufacturing Science and Engineering (ICMSE 2015). 2015: 1319-1325.

[30] Liang Zhenwei, Li Yaoming, Xu Lizhang, et al. Sensor for monitoring rice grain sieve losses in combine harvesters[J]. Biosystems Engineering, 2016, 147: 51-66.

Design and experiment on seed flow sensing device for rapeseed precision metering device

Ding Youchun, Yang Junqiang, Zhu Kai, Zhang Lili, Zhou Yawen, Liao Qingxi

(,,430070,)

Precision seeding plays an important role in intelligent agricultural machinery development due to its advantages of saving seeds, reducing labor intensity, improving operation efficiency and increasing farmers' income. In the planting process, seed metering device is in a closed status and sowing quantity affects crop yield directly, and thus sowing quantity monitoring become one of the development trends in intelligent precision seeding. In recent years, various methods for precision seeding such as photoelectric sensor detection, high-speed photography, and capacitance sensing have been proposed to improve seeding performance for the corn, rice, soybean and other large seeds. Few studies have focused on the sensing method of small seeds such as rapeseed because of its small size, light weight and high frequency seeding. Thus, the development and application of monitoring technology about precision sowing for small seeds are limited. In this study, a seed flow sensing device for rapeseed precision metering device was designed and tested. Specifically, collision trajectory between rapeseed and PVDF (polyvinylidene fluoride) piezoelectric film was recorded and analyzed using high-speed photography and collision dynamics. These data provided a quantitative reference for the design of key structures in terms of the height of catheter, sloping angle of piezoelectric film, position of seed-output, etc. The sensing structure of sinking groove substrate and piezoelectric film was designed based on the analysis of characteristics of impact signal between rapeseed and piezoelectric film. The structure could limit the free oscillation amplitude of the piezoelectric film that could weaken the peak voltage of the free oscillation effectively. The decay time of impact signal was reduced from 9 to 1 ms, which improved the time resolution for high frequency seed flow detection and effectively eliminated the interference caused by mechanical vibration. The signal conditioning circuit turned weak signal into single pulse signal by signal amplification, half wave rectification, voltage comparison, and mono-stable triggering. Then, the real-time detection of seeding frequency and seeding quantity of rapeseed flow was obtained through the timing and counting function of the MCU (STC12C2052AD). Finally, these data were transmitted at a fixed time interval (1 s) by 2.4 GHz wireless transmission module to the monitoring display terminal, and the real-time display and storage of detection data (including the seeding frequency and the total seeding amount) were realized. Bench experiment consisted of two tests. One was carried out on the pneumatic precision metering device for rapeseed bench test. During the test, a seeding plate (40 holes) was set at a suitable speed such as 12, 18, and 24 r/min (seeding frequency was 8, 12, and 16 Hz), and the sensing device was installed under the metering device. After a period of seeding time, the detection seeding quantity, seeding time and actual seeding quantity were recorded by observing monitoring display terminal and by manual counting the seeds in the seeds collecting bag. Another test about high-rate seeding was carried out using microcomputer automatic counting instrument. During the test, seeding frequency was set as about 20, 24, 28, and 32 Hz, respectively by adjusting the vibration level, and then the detection of seeding quantity, the seeding time and the actual seeding quantity were obtained using a similar method of the first test. Tests of rapeseed precision metering device bench and high-rate seeding with counting instrument showed that the detection accuracy was not less than 99.5% by comparing detection seeding quantity and actual seeding quantity in the seeding frequency ranging from 8.1 to 32.9 Hz. In addition, the field experiment was carried out on precision joint planter of 2BYM8 for rapeseed driven by a LOVOL M704-BA tractor. The results indicated that the sensing device based on the composite sensing structure of sinking groove substrate and piezoelectric film sensing composite structure can detect the seed flow seeding frequency and seeding quantity, with the counting number being zero without seeding and the detection accuracy being not less than 99.1% under normal seeding. Besides, the mechanical vibration and dust had no effect on the sensing device. The piezoelectric rapeseed flow sensing device presented may facilitate metering quantity monitoring, loss sowing detection and reseeding.

mechanization; design; monitoring; rapeseed precision metering device; rapeseed flow; collision; sensing device

10.11975/j.issn.1002-6819.2017.09.004

S223.2+5

A

1002-6819(2017)-09-0029-08

2016-12-25

2017-04-08

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD020060602);湖北省技術(shù)創(chuàng)新專項(xiàng)重大項(xiàng)目(2016ABA094)

丁幼春,男,湖北孝感人,副教授,主要從事油菜機(jī)械化生產(chǎn)智能化技術(shù)與裝備研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。Email:kingbug163@163.com

丁幼春,楊軍強(qiáng),朱 凱,張莉莉,周雅文,廖慶喜. 油菜精量排種器種子流傳感裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):29-36. doi:10.11975/j.issn.1002-6819.2017.09.004 http://www.tcsae.org

Ding Youchun, Yang Junqiang, Zhu Kai, Zhang Lili, Zhou Yawen, Liao Qingxi. Design and experiment on seed flow sensing device for rapeseed precision metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 29-36. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.004 http://www.tcsae.org

猜你喜歡
種器精量壓電
基于EDEM的雙腔式棉花精量排種器排種性能仿真研究
《壓電與聲光》征稿啟事
壓電與聲光(2019年1期)2019-02-22 09:46:06
精量排種器現(xiàn)狀及發(fā)展分析
氣力托勺式馬鈴薯精量排種器設(shè)計(jì)
新型壓電疊堆泵設(shè)計(jì)及仿真
水稻精量穴直播機(jī)電驅(qū)式側(cè)深穴施肥系統(tǒng)設(shè)計(jì)與試驗(yàn)
精量滴灌灌水器研制與應(yīng)用技術(shù)研究
中國水利(2015年19期)2015-04-20 08:08:12
基于壓電激振的彈性模量測量方法
壓電復(fù)合懸臂梁非線性模型及求解
南疆墾區(qū)水稻精量直播高產(chǎn)栽培技術(shù)
平乡县| 巫山县| 密云县| 宁河县| 临泽县| 潮安县| 阿荣旗| 孝昌县| 翁牛特旗| 高陵县| 连江县| 太白县| 昔阳县| 洪泽县| 团风县| 韶关市| 永年县| 东台市| 巴彦县| 哈尔滨市| 昌邑市| 宁远县| 祁阳县| 南宁市| 永兴县| 潜山县| 含山县| 吴桥县| 吐鲁番市| 绥德县| 康乐县| 内黄县| 静宁县| 海伦市| 普洱| 太和县| 琼结县| 太仆寺旗| 龙井市| 团风县| 钦州市|