鄧劍勛
摘 要截至目前,運(yùn)動(dòng)目標(biāo)跟蹤已經(jīng)歷經(jīng)了幾十年的發(fā)展研究,其作為當(dāng)前社會(huì)一項(xiàng)至關(guān)重要的先進(jìn)技術(shù),對(duì)于人們的日常工作生活以及社會(huì)經(jīng)濟(jì)、軍事政治等其他各領(lǐng)域均有著積極的幫助作用。特別是在計(jì)算機(jī)視覺(jué)技術(shù)逐漸發(fā)展成熟的今天,運(yùn)動(dòng)目標(biāo)跟蹤與計(jì)算機(jī)視覺(jué)技術(shù)的融合程度也越來(lái)越高。基于此,本文將選擇當(dāng)前比較常見的一種目標(biāo)跟蹤算法即Kalman filter算法,并以運(yùn)動(dòng)的人臉作為跟蹤目標(biāo),著重圍繞基于計(jì)算機(jī)視覺(jué)的運(yùn)動(dòng)目標(biāo)跟蹤算法進(jìn)行簡(jiǎn)要分析研究。
【關(guān)鍵詞】計(jì)算機(jī)視覺(jué) 運(yùn)動(dòng)目標(biāo) 跟蹤算法
在計(jì)算機(jī)等現(xiàn)代科學(xué)技術(shù)尚未出現(xiàn)以前,人們?cè)讷@取外界信息時(shí)往往主要依賴視覺(jué),而在我國(guó)計(jì)算機(jī)技術(shù)水平不斷發(fā)展提升的背景之下,計(jì)算機(jī)視覺(jué)技術(shù)的出現(xiàn)使得人類肉眼視覺(jué)得到了進(jìn)一步的發(fā)展延伸,尤其是在各種傳感器技術(shù)的幫助之下,使得人們能夠?qū)Ρ3诌\(yùn)動(dòng)狀態(tài)的目標(biāo)進(jìn)行實(shí)時(shí)跟蹤,從而準(zhǔn)確掌握目標(biāo)的具體形態(tài)屬性。在此背景之下,本文將運(yùn)動(dòng)目標(biāo)設(shè)定為運(yùn)動(dòng)的人臉,通過(guò)探究基于計(jì)算機(jī)視覺(jué)的運(yùn)動(dòng)目標(biāo)跟蹤算法,希望能夠?yàn)橄嚓P(guān)研究人員提供相關(guān)參考和幫助。
1 Kalman filter目標(biāo)跟蹤算法的簡(jiǎn)要概述
Kalman filter目標(biāo)跟蹤算法是當(dāng)前眾多跟蹤算法當(dāng)中使用范圍較廣、使用頻率比較集中的一種跟蹤算法,這一算法最早可以追溯至上個(gè)世紀(jì)六十年代,人們通過(guò)將濾波理論與狀態(tài)空間模型相集合,從而得到的一種遞推估計(jì)的算法也就是卡爾曼濾波理論。其通過(guò)利用上一時(shí)刻獲取的預(yù)估值以及當(dāng)下獲取的實(shí)際觀測(cè)值,在信號(hào)與噪聲狀態(tài)空間模型當(dāng)中不斷更新狀態(tài)變量,進(jìn)而順利完成估計(jì)預(yù)測(cè)并獲得當(dāng)前時(shí)刻估計(jì)預(yù)測(cè)值。經(jīng)過(guò)不斷的發(fā)展,在計(jì)算機(jī)圖像處理以及其他運(yùn)動(dòng)目標(biāo)跟蹤當(dāng)中經(jīng)常會(huì)使用Kalman filter算法。如果在k時(shí)刻系統(tǒng)下的狀態(tài)向量用xk表示,那么在t0時(shí)刻下初始化的狀態(tài)預(yù)測(cè)方程為;在tk時(shí)刻下更新系統(tǒng)狀態(tài)的具體方程為
,其中Hk、Zk分別表示測(cè)量矩陣m×n維以及轉(zhuǎn)移矩陣n×n維的狀態(tài)向量。但在跟蹤計(jì)算機(jī)視覺(jué)運(yùn)動(dòng)目標(biāo)譬如說(shuō)視頻目標(biāo)時(shí),由于相鄰的兩幀視頻圖像本身時(shí)間間隔非常短,因此目標(biāo)在這一時(shí)間內(nèi)難以發(fā)生明顯的運(yùn)動(dòng)狀態(tài)變化,此時(shí)我們可以通過(guò)將此間隔時(shí)間設(shè)定為單位時(shí)間,同時(shí)目標(biāo)在單位時(shí)間內(nèi)一直保持勻速運(yùn)動(dòng)狀態(tài),這時(shí)我們可以得到一個(gè)狀態(tài)轉(zhuǎn)移矩陣且
,定義系統(tǒng)觀測(cè)矩陣即為
,定義噪聲Wk以及Vk協(xié)方差矩陣則可以分別用
和表示。
如果在濾波器在經(jīng)過(guò)若干次卡爾曼濾波后仍然能夠恢復(fù)至原始狀態(tài),則其具有較好的穩(wěn)定性,但如果在進(jìn)行運(yùn)動(dòng)目標(biāo)跟蹤實(shí)驗(yàn)的過(guò)程當(dāng)中,對(duì)于處于運(yùn)動(dòng)狀態(tài)的被跟蹤目標(biāo),一旦出現(xiàn)遮擋行為則將在第一時(shí)間內(nèi)暫停估計(jì)參數(shù),并將這一參數(shù)估計(jì)值直接代入到狀態(tài)方程當(dāng)中,使得運(yùn)動(dòng)目標(biāo)無(wú)論是否被遮擋均可以對(duì)其進(jìn)行精確跟蹤。
2 基于計(jì)算機(jī)視覺(jué)的運(yùn)動(dòng)目標(biāo)跟蹤算法
2.1 建立顏色概率模型
顏色囊括了諸多的信息量光柱點(diǎn),尤其是在人類的視覺(jué)世界從本質(zhì)上來(lái)說(shuō)也是一種用過(guò)感知自然界色彩以及明暗變化的世界,因此人們可以通過(guò)使用三基色原理獲得RGB顏色空間??紤]到顏色與計(jì)算機(jī)視覺(jué)場(chǎng)景當(dāng)中各個(gè)場(chǎng)景和目標(biāo)之間有著緊密的關(guān)系,同時(shí)不同于目標(biāo)的大小、形態(tài)等其他視覺(jué)特征,顏色特征鮮少會(huì)受到包括觀察視角等在內(nèi)各因素的干擾影響,從某種角度上來(lái)說(shuō)基于顏色特征的運(yùn)動(dòng)目標(biāo)具有較好的穩(wěn)定性。為了能夠保障目標(biāo)跟蹤既穩(wěn)定又迅速,需要選擇合適的顏色特征,否則將極有可能導(dǎo)致出現(xiàn)跟蹤失敗。在這一環(huán)節(jié)當(dāng)中人們通常使用的是RGB顏色空間以及HSI顏色空間,但由于二者均具有一定的局限性,因此本文在對(duì)人臉特征尤其是顏色特征進(jìn)行選取時(shí),選擇了rgI顏色直方圖的方法,在解決兩種顏色空間自身缺陷的同時(shí),盡量避免目標(biāo)人臉運(yùn)動(dòng)位置以及尺寸等變化因素對(duì)目標(biāo)追蹤造成的干擾影響。在rgI顏色直方圖當(dāng)中
,,,L=r+g+I其中R、G、B就是RGB顏色空間當(dāng)中的三原色,r、g、I有著相同的取值范圍即在0到1之間。保持間隔相等的情況下劃分L值即可得到rgI顏色直方圖。雖然rgI顏色直方圖與物體相對(duì)應(yīng),但如果目標(biāo)只是位置以及尺寸等出現(xiàn)變化,rgI顏色直方圖并不會(huì)受到任何實(shí)質(zhì)性影響,因此在理想情況下,利用rgI顏色直方圖能夠?qū)σ曨l圖像中不同運(yùn)動(dòng)位置以及不同尺寸的人臉進(jìn)行目標(biāo)追蹤。
2.2 跟蹤算法
運(yùn)動(dòng)目標(biāo)的不斷變化將會(huì)使得模板圖像隨之發(fā)生相應(yīng)變化,因此需要不斷更新模板圖像才能夠有效完成對(duì)運(yùn)動(dòng)目標(biāo)的連續(xù)跟蹤,本文在對(duì)運(yùn)動(dòng)目標(biāo)的實(shí)際運(yùn)動(dòng)范圍進(jìn)行預(yù)測(cè)過(guò)程中選擇使用卡爾曼濾波,之后利用rgI顏色直方圖在預(yù)測(cè)運(yùn)動(dòng)范圍之內(nèi)搜索和匹配相應(yīng)目標(biāo),從而通過(guò)此舉獲得與目標(biāo)模板有著最小歐式距離的區(qū)域,在此過(guò)程當(dāng)中存在一個(gè)特定閾值T,如果兩者的歐氏距離在進(jìn)行相減時(shí)差值沒(méi)有超過(guò)這個(gè)特定閾值,那么此時(shí)該區(qū)域就是運(yùn)動(dòng)目標(biāo)所在的實(shí)際位置,利用在這一區(qū)域當(dāng)中的rgI顏色直方圖并將其充當(dāng)下一幀運(yùn)動(dòng)目標(biāo)的匹配模板,在不斷重復(fù)的過(guò)程中模板能夠?qū)崿F(xiàn)不間斷地更新。由于相鄰的兩幀視頻圖像之間,時(shí)間間隔并不長(zhǎng),因此目標(biāo)人臉在極短的時(shí)間間隔當(dāng)中基本上不會(huì)出現(xiàn)突然變化,此時(shí)我們可以認(rèn)為運(yùn)動(dòng)目標(biāo)人臉的運(yùn)動(dòng)連續(xù)性比較強(qiáng),此時(shí)利用公式
可以進(jìn)行歐式距離的計(jì)算并用以衡量匹配的模板。其中匹配區(qū)域和模板的rgI顏色直方圖分別用l和l'表示,而rgI顏色直方圖中的維數(shù)則用n進(jìn)行表示。根據(jù)相關(guān)視頻圖像顯示,通過(guò)不斷更新模板確實(shí)可以對(duì)目標(biāo)運(yùn)動(dòng)人臉進(jìn)行實(shí)時(shí)跟蹤顯示。
3 結(jié)束語(yǔ)
總而言之,本文通過(guò)選擇當(dāng)前比較常見的目標(biāo)跟蹤算法即Kalman filter算法,利用卡爾曼濾波以及rgI顏色直方圖完成對(duì)運(yùn)動(dòng)人臉的跟蹤。事實(shí)證明,Kalman filter算法確實(shí)能夠在對(duì)各目標(biāo)之間的干擾進(jìn)行明確區(qū)分的基礎(chǔ)之上,準(zhǔn)確描述運(yùn)動(dòng)人臉目標(biāo),從而較好地跟蹤運(yùn)動(dòng)目標(biāo),但由于人臉之間本身存在一定的相似性,因此本文只是對(duì)理想狀態(tài)下的運(yùn)動(dòng)人臉進(jìn)行跟蹤實(shí)驗(yàn),日后還需要對(duì)計(jì)算機(jī)視覺(jué)技術(shù)和Kalman filter算法進(jìn)行進(jìn)一步優(yōu)化以妥善解決多人臉目標(biāo)以及相似性問(wèn)題。
參考文獻(xiàn)
[1]鄭薇.基于雙目視覺(jué)的運(yùn)動(dòng)目標(biāo)跟蹤算法研究及應(yīng)用[D].哈爾濱:哈爾濱工程大學(xué),2014.
[2]李慧霞,李臨生,閆慶森,周景文.基于Mean Shift算法的目標(biāo)跟蹤綜述[J].計(jì)算機(jī)與現(xiàn)代化,2017(01):65-70.
[3]李寰宇,畢篤彥,楊源,查宇飛,覃兵,張立朝.基于計(jì)算機(jī)視覺(jué)的運(yùn)動(dòng)目標(biāo)跟蹤算法研究[J].電子與信息學(xué)報(bào),2015(09):2033-2039.
[4]陳曦,殷華博.基于計(jì)算機(jī)視覺(jué)運(yùn)動(dòng)目標(biāo)跟蹤技術(shù)分析[J].無(wú)線電工程,2014(06):22-24+39.
作者單位
重慶電子工程職業(yè)學(xué)院軟件學(xué)院 重慶市 401331