余強(qiáng),劉文勝,馬運(yùn)柱,黃宇峰
(中南大學(xué) 粉末冶金國家重點(diǎn)實(shí)驗(yàn)室,長沙 410083)
等溫時(shí)效對(duì)Cu/Sn-3.5Ag/Ni(P) UBM互連焊接件界面微觀組織及剪切性能的影響
余強(qiáng),劉文勝,馬運(yùn)柱,黃宇峰
(中南大學(xué) 粉末冶金國家重點(diǎn)實(shí)驗(yàn)室,長沙 410083)
Sn-3.5Ag焊料與Cu基板及化學(xué)鍍Ni(P)板通過回流焊接形成Cu/Sn-3.5Ag/Ni(P) UBM互連結(jié)構(gòu),在200 ℃下對(duì)焊接件進(jìn)行等溫時(shí)效,針對(duì)電子器件的可靠性評(píng)估,研究等溫時(shí)效對(duì)其界面微觀組織和剪切性能的影響。用掃描電鏡(SEM)和能量色散譜儀(EDS)對(duì)接頭雙界面形成的金屬間化合物層的組織結(jié)構(gòu)進(jìn)行觀察和分析,采用力學(xué)試驗(yàn)機(jī)測試接頭的剪切強(qiáng)度,并通過SEM觀察分析斷裂特征。結(jié)果表明:隨時(shí)效時(shí)間延長,焊料基體中二次相Ag3Sn明顯粗化,由小顆粒狀轉(zhuǎn)變?yōu)榧?xì)條狀;雙界面化合物層逐漸變厚,兩側(cè)(Cu,Ni)6Sn5層的形貌趨于相似;接頭剪切強(qiáng)度隨時(shí)效時(shí)間延長而下降,由時(shí)效24 h的33.04 MPa 降至?xí)r效144 h后的24.78 MPa;時(shí)效24~120 h后接頭的剪切失效均為焊料內(nèi)部的韌性斷裂模式,時(shí)效144 h后,斷裂模式轉(zhuǎn)變?yōu)轫g脆混合斷裂,部分?jǐn)嗔衙嬖诤噶匣w內(nèi)部,部分在焊料與界面形成的化合物層內(nèi)。
互連結(jié)構(gòu);界面反應(yīng);金屬間化合物;等溫時(shí)效;剪切性能
在電子產(chǎn)品的使用和服役過程中,器件產(chǎn)生的熱量使封裝焊點(diǎn)處于一個(gè)長期時(shí)效的熱環(huán)境中。長時(shí)間的時(shí)效會(huì)提高原子的擴(kuò)散距離,導(dǎo)致焊點(diǎn)的顯微組織及力學(xué)性能產(chǎn)生顯著變化,特別是對(duì)于焊點(diǎn)與金屬基板界面間形成的金屬間化合物(intermetallic compound, IMC)層,長時(shí)間的時(shí)效會(huì)導(dǎo)致其過度生長,由于自身的硬脆性和生長過程中原子不等量擴(kuò)散引發(fā)的柯肯達(dá)爾孔洞等,使其極易成為受力斷裂時(shí)裂紋擴(kuò)展的萌生地,因此,對(duì)焊點(diǎn)等溫時(shí)效后的界面組織及焊接性能進(jìn)行研究是十分必要的。國內(nèi)外關(guān)于等溫時(shí)效對(duì)Sn基焊料微觀組織和力學(xué)性能影響的報(bào)道較多[1?3],但多集中在單焊點(diǎn)領(lǐng)域,即Sn基焊料與單基板(Cu和Ni等)間的焊接。如LEE等[2]研究了等溫時(shí)效對(duì)Sn-3.5Ag-xNi/Cu界面IMC形成的影響,結(jié)果表明,時(shí)效后在原Cu6Sn5層和Cu基板之間生成新的Cu3Sn層,該IMC層隨時(shí)效時(shí)間延長逐漸變厚,焊點(diǎn)剪切強(qiáng)度逐漸降低,其原因可能是時(shí)效后焊料組織長大粗化導(dǎo)致剪切強(qiáng)度降低。李鳳輝等[3]研究發(fā)現(xiàn)SnAgCu釬料焊接接頭的時(shí)效過程中,IMC層的厚度隨時(shí)效時(shí)間延長而增加,服從拋物線趨勢,界面生長為組元擴(kuò)散控制,焊點(diǎn)斷裂方式由韌性斷裂向脆性斷裂轉(zhuǎn)變,接頭的抗拉強(qiáng)度呈現(xiàn)先增大后減小的趨勢。然而,實(shí)際的焊點(diǎn)封裝,如倒裝芯片(flip chip, FC)和3D集成電路(threedimensional integrated circuit, 3D IC)技術(shù)中,通常包括2種不同的金屬化層(under bump metallization, UBM)或金屬基板[4?6],焊點(diǎn)互連結(jié)構(gòu)通常由UBM(芯片側(cè))/焊料/焊盤(基板側(cè))構(gòu)成,形成互連焊點(diǎn)時(shí)兩側(cè)界面同時(shí)進(jìn)行反應(yīng),兩側(cè)界面元素的相互擴(kuò)散對(duì)焊接接頭的服役過程產(chǎn)生較大影響,與單焊點(diǎn)情況有很大不同。通常,在FC及球柵陣列封裝(ball-grid- array, BGA)等標(biāo)準(zhǔn)的封裝設(shè)計(jì)中,包含阻隔層以阻止IMC過分長大。化學(xué)鍍Ni(P)技術(shù)因其較低的加工成本及良好的界面擴(kuò)散阻隔效果,已被廣泛用作大部分的Sn基焊料封裝中基板的表面預(yù)處理[7?8]。異種基質(zhì)互連焊接接頭在電子封裝領(lǐng)域應(yīng)用廣泛,研究其在不同服役條件下的反應(yīng)及性能變化更具實(shí)用意義,尤其是Cu/Sn-3.5Ag/Ni(P) UBM互連焊點(diǎn),但文獻(xiàn)中關(guān)于等溫時(shí)效對(duì)Cu/Sn-3.5Ag/Ni(P) UBM互連焊點(diǎn)的微觀組織和剪切性能的影響鮮有報(bào)道。本文依托典型的Cu/Sn-3.5Ag/Ni(P) UBM互連結(jié)構(gòu),制造互連高度(stand-off height, SOH)在300 μm范圍的微焊點(diǎn),著重研究等溫時(shí)效對(duì)Cu/Sn-3.5Ag/Ni(P) UBM互連體系中焊料基體及反應(yīng)界面的微觀形貌、組織成分和剪切強(qiáng)度的影響,并對(duì)焊點(diǎn)的斷裂機(jī)制進(jìn)行分析,為Cu/Sn-3.5Ag/ Ni(P) UBM互連焊接接頭的可靠性評(píng)估提供理論依據(jù)。
1.1 Cu/Sn-3.5Ag/Ni(P) UBM互連焊接件制備
采用純錫錠(99.99%)和純銀錠(99.99%),按照質(zhì)量比96.5:3.5配料,在真空熔煉爐內(nèi)熔煉后,澆入模具中,得到直徑為10 mm的柱狀Sn-3.5Ag焊料合金。將焊料合金線切割為直徑和高度分別為10 mm和5 mm的圓柱體,然后用軋制機(jī)軋制成薄片,在乙醇中超聲清洗5 min后吹干待焊。待焊基板為厚度0.5 mm的工業(yè)紫銅板(純度99.95%)和厚度1 mm的商用化學(xué)鍍Ni(P)板(含8.5%P),將基板切割成5 mm×20 mm尺寸,對(duì)Cu板進(jìn)行打磨并拋光;為防止破壞鍍層,利用棉球?qū)i(P)板進(jìn)行擦拭清洗;之后將銅基板和Ni(P)板在乙醇中超聲清洗5 min后吹干待焊。助焊劑為松香型助焊劑(RMA型)。
焊接試樣裝配如圖1所示,利用云母片控制互連焊點(diǎn)高度約為300 μm,使用臺(tái)式無鉛回流焊機(jī)(北京威力泰電子設(shè)備有限公司制造,型號(hào):F4N)進(jìn)行回流焊接,所得接頭試樣置于馬弗爐中,在200 ℃下進(jìn)行等溫時(shí)效,時(shí)效時(shí)間分別為24,48,72,96,120和144 h。
圖1 Cu/Sn-3.5Ag/Ni(P) UBM焊接試樣的裝配示意圖Fig.1 The assembled schematic of Cu/Sn-3.5Ag/Ni(P) UBM interconnection solder joint
1.2 性能測試
用樹脂對(duì)焊接試樣進(jìn)行冷鑲處理,用砂紙打磨并拋光后,對(duì)界面進(jìn)行腐蝕,腐蝕液由無水乙醇與鹽酸按照體積比95:5配制而成,采用場發(fā)射掃描電鏡(SEM, FEI Quanta 250)觀察焊接界面的微觀組織及形貌,用能譜分析界面的組織成分;采用Image Pro Plus圖像處理軟件統(tǒng)計(jì)界面金屬化層的厚度,定量分析焊接過程中界面金屬化層的動(dòng)力學(xué)參數(shù)。
使用美國Instron3369力學(xué)試驗(yàn)機(jī)測試焊接件的剪切強(qiáng)度,加載速度為1 mm/min。剪切試樣如圖2所示,采用相同的工藝將50 mm×3 mm×1 mm條狀紫銅與化學(xué)鍍Ni(P)板互搭焊接,然后進(jìn)行等溫時(shí)效。利用公式τ=Ps/A計(jì)算剪切強(qiáng)度,式中:Ps為最大剪切載荷,N;A為剪切實(shí)驗(yàn)前的搭接面積,mm2。
圖2 剪切強(qiáng)度測試試樣(單位:mm)Fig.2 The schematic diagram of shear specimen (Unit: mm)
2.1 焊點(diǎn)的微觀組織
圖3所示為Cu/Sn-3.5Ag/Ni(P) UBM焊接件經(jīng)過不同時(shí)間等溫時(shí)效后的界面SEM形貌,圖片的上面部分為Cu/Sn-3.5Ag界面微觀形貌,下面部分為Sn-3.5Ag/Ni(P) UBM界面微觀形貌。
從圖3可看出,焊接界面組織由焊料基體、顆粒狀或片條狀二次相和兩側(cè)界面處的IMC層組成,EDS測定結(jié)果表明,基體為富Sn相;基體內(nèi)彌散分布的二次相中Ag與Sn的原子比接近3:1,結(jié)合銀錫二元相圖[9],可知該產(chǎn)物為Ag3Sn;焊料與上下基板界面處生成的主要IMC相均為(Cu,Ni)6Sn5。從圖中看出,兩側(cè)界面處IMC層的形貌有所不同,以示區(qū)別,將Cu側(cè)IMC記作(Cux,Ni1?x)6Sn5,Ni(P) UBM側(cè)的IMC記作(Cuy, Ni1?y)6Sn5。基體中彌散分布的Ag3Sn二次相大多呈小顆粒狀,隨時(shí)效時(shí)間延長,其尺寸逐漸變大;時(shí)效72 h后二次相部分生長為細(xì)條狀,小顆粒狀與細(xì)條狀共存;時(shí)效96 h后二次相進(jìn)一步長大,數(shù)目相對(duì)增多;當(dāng)時(shí)效時(shí)間超過120 h后,二次相尺寸長大較明顯,分布較密集,有部分二次相顆粒和界面處的(Cu,Ni)6Sn5相連接在一起。時(shí)效過程中二次相Ag3Sn的生長速度較快,雖然界面層生長導(dǎo)致焊料基體成分趨于過共晶化,但由于焊料保持固相狀態(tài),故不存在液相凝固時(shí)過共晶化導(dǎo)致大塊狀二次相析出的現(xiàn)象。參考WEI[10]和DUTTA[11]的研究,在時(shí)效過程中,為釋放剩余界面能,較小尺寸的Ag3Sn二次相通過原子擴(kuò)散不斷聚集合并長大成為大塊Ag3Sn二次相。
Sn-3.5Ag/Cu界面處,焊點(diǎn)界面由兩層IMC構(gòu)成,從焊料基體起依次為(Cux,Ni1?x)6Sn5和Cu3Sn;隨時(shí)效時(shí)間延長,這2種IMC均有所長大,相比之下,(Cux, Ni1?x)6Sn5生長較緩慢,Cu3Sn長大較明顯。在Sn-3.5Ag/Ni(P) UBM界面形成的界面產(chǎn)物為(Cuy, Ni1?y)6Sn5,基板與IMC層之間有明顯的Ni-Sn-P過渡層,界面處未出現(xiàn)Cu3Sn層,這可能與Ni(P)的阻隔作用有關(guān)。隨時(shí)效時(shí)間延長,焊接件的兩側(cè)IMC形貌趨于相似,IMC有所長大,但生長速率緩慢。表1所列為時(shí)效后兩側(cè)界面處IMC層的成分變化,從表中數(shù)據(jù)可看出,在時(shí)效過程中,隨著Cu和Ni元素的擴(kuò)散,兩側(cè)界面處的元素含量變化較小,兩側(cè)Cu和Ni的濃度梯度減小,Cu和Ni元素的擴(kuò)散動(dòng)力逐步下降,這可能是界面IMC生長緩慢的主要原因。當(dāng)反應(yīng)時(shí)間較短時(shí),Cu側(cè)的Ni含量較低,時(shí)效24 h時(shí)Ni含量(摩爾分?jǐn)?shù))為1.48%,而此時(shí)Ni(P) UBM側(cè)的Ni含量為9.7%,遠(yuǎn)高于Cu側(cè)的Ni含量,隨反應(yīng)時(shí)間增加,Cu側(cè)的Ni含量緩慢增加,而Ni(P) UBM側(cè)的Ni含量變化不大。這主要是因?yàn)镹i元素的擴(kuò)散主要來自Ni(P) UBM側(cè),由于Ni原子在焊料中的擴(kuò)散速率遠(yuǎn)低于Cu原子的擴(kuò)散速率,導(dǎo)致Cu側(cè)IMC中的Ni含量緩慢增加,而在Ni(P) UBM側(cè),由于Ni的消耗不大,時(shí)效96 h后,Ni含量的變化不大。在Cu/Sn-3.5Ag/Ni(P) UBM互連結(jié)構(gòu)中,隨著Ni元素的擴(kuò)散,Ni原子置換Cu側(cè)IMC中的部分Cu原子而形成(Cux,Ni1?x)6Sn5。
表1 等溫時(shí)效時(shí)間對(duì)Cu/Sn-3.5Ag/Ni(P) UBM焊點(diǎn)界面IMC層組織成分的影響Table 1 Effect of aging time on IMC composition of Sn-3.5Ag solder/Cu and Sn-3.5Ag solder/Ni(P) UBM interfaces (mole fraction, %)
圖3 等溫時(shí)效時(shí)間對(duì)Cu/Sn-3.5Ag/Ni(P) UBM焊點(diǎn)界面微觀組織的影響Fig.3 Effect of aging time on interfacial microstructure of Cu/Sn-3.5Ag/Ni(P) UBM solder joints (a1), (a2) 24 h; (b1), (b2) 48 h; (c1), (c2) 72 h; (d1), (d2) 96 h; (e1), (e2) 120 h; (f1), (f2) 144 h
界面IMC層的厚度可通過TAKENAKA方法[12]測定,即:
式中:l為IMC 層的厚度;A和w分別為IMC層的總面積和橫向長度。圖4所示為Cu/Sn-3.5Ag/Ni(P) UBM焊點(diǎn)界面金屬間化合物層的厚度隨焊接時(shí)間的變化曲線。由圖可看出,在相同焊接時(shí)間內(nèi),Cu側(cè)的IMC層比Ni(P) UBM側(cè)的IMC層更厚; IMC層厚度隨焊接時(shí)間延長而增加。
圖4 時(shí)效時(shí)間對(duì)焊接件界面(Cu,Ni)6Sn5層厚度的影響Fig.4 Influence of aging time on interfacial intermetallic thickness of solder joints
焊接過程中,界面IMC層厚度與時(shí)效時(shí)間之間的關(guān)系可用冪指數(shù)模型描述[13]:
式中:X為界面層厚度,μm;t為焊接時(shí)間,s;X0為原始界面層厚度,μm;n為生長指數(shù);K為生長速率。在焊接和擴(kuò)散反應(yīng)中,界面層厚度主要受原子在界面IMC層中的擴(kuò)散速率和活性原子在界面層的反應(yīng)速率這2個(gè)因素影響,用生長指數(shù)n來反映界面層生長的控制因素[13?15]。對(duì)式(2)兩邊取對(duì)數(shù),得:
由此可見,n為曲線ln(X?X0)?lnt線性擬合的斜率,lnK為曲線ln(X?X0)?lnt線性擬合的截距。圖5所示為焊接界面Cu側(cè)和Ni(P) UBM側(cè)的(Cu,Ni)6Sn5層厚度隨時(shí)效時(shí)間的變化曲線,根據(jù)圖5得到Cu側(cè)的n=0.27,Ni(P) UBM側(cè)n=0.26。Cu側(cè)和Ni(P) UBM側(cè)的IMC層生長指數(shù)n較接近,根據(jù)n的值和文獻(xiàn)[15?17]可知原子沿晶界擴(kuò)散可能是其生長的主要控制因素,兩邊Cu和Ni元素的擴(kuò)散濃度差對(duì)IMC的形貌及生長速率有顯著影響。
圖5 焊接界面(Cu,Ni)6Sn5層厚度隨時(shí)效時(shí)間的變化曲線Fig.5 Variation curves of (Cu,Ni)6Sn5thickness with aging time
2.2 剪切性能
圖6 時(shí)效時(shí)間對(duì)互連焊接接頭剪切強(qiáng)度的影響Fig.6 Influence of aging time on shear strength of interconnection solder joints
圖6 所示為時(shí)效后Cu/Sn-3.5Ag/Ni(P) UBM焊接件的剪切強(qiáng)度。由圖可見,隨時(shí)效時(shí)間增加,接頭的剪切強(qiáng)度下降。時(shí)效時(shí)間最短的試樣剪切強(qiáng)度最大,為33.04 MPa;時(shí)效48,72和96 h的剪切強(qiáng)度分別為31.49,29.77和28.41 MPa;時(shí)效120 h的剪切強(qiáng)度下降到26.9 MPa;時(shí)效144 h后剪切強(qiáng)度降到最低,為24.78 MPa。
圖7 時(shí)效后Cu/Sn-3.5Ag/Ni(P) UBM焊接件剪切斷口的表面形貌Fig.7 Fracture morphology of Cu/Sn-3.5Ag/Ni(P) UBM solder joints after aging for different time (a) 24 h; (b) 48 h; (c) 72 h; (d) 96 h; (e1), (e2) 120 h; (f1), (f2) 144 h
圖8 時(shí)效后Cu/Sn-3.5Ag/Ni(P) UBM焊點(diǎn)的剪切斷口橫截面形貌Fig.8 Cross section morphologies of Cu/Sn-3.5Ag/Ni(P) UBM solder joints after aging for different times (a) 24 h; (b) 96 h; (c) 120 h; (d) 144 h
為了研究剪切斷口的斷裂方式與焊點(diǎn)剪切強(qiáng)度之間的關(guān)系,對(duì)斷裂試樣的斷口正面及側(cè)向截面進(jìn)行SEM觀察,斷口正面主要觀察斷口形貌,截面則主要觀察焊點(diǎn)斷裂部位及斷裂路徑。圖7和圖8所示分別為Cu/Sn-3.5Ag/Ni(P) UBM焊點(diǎn)的剪切斷口微觀形貌和斷口橫截面的SEM形貌。時(shí)效時(shí)間影響斷口形貌和斷裂部位,由圖7可知,24 h時(shí)效的試樣,其斷口處存在密集分布且尺寸較小的韌窩組織,韌性斷裂發(fā)生在接近基板/焊點(diǎn)界面的焊料基體內(nèi)部(圖8(a)所示),此時(shí)剪切強(qiáng)度最高;時(shí)效48 h的試樣,剪切斷口韌窩變大,數(shù)量減少;時(shí)效72 h時(shí)斷口中韌窩繼續(xù)變大變少,出現(xiàn)局部光滑區(qū)域;時(shí)效96 h后局部光滑區(qū)域所占比例增加,但均為韌性斷裂;時(shí)效時(shí)間增加到120h時(shí),斷口處韌窩較大,局部光滑區(qū)域較多,斷口中出現(xiàn)局部斷面,可看到二次相顆粒出現(xiàn)(圖中箭頭所指的凹陷部位為二次相Ag3Sn),斷裂面仍出現(xiàn)在焊料基體中,但同時(shí)出現(xiàn)較大二次相的撕裂,從而影響接頭焊接強(qiáng)度。從圖8(a)~(c)也可看出,時(shí)效時(shí)間為24~120 h時(shí),焊點(diǎn)斷裂均發(fā)生在靠近Ni(P) UBM側(cè)的焊料基體內(nèi),隨時(shí)效時(shí)間延長,逐漸向IMC/Ni(P) UBM界面處轉(zhuǎn)移。
IMC層是剪切應(yīng)力最集中的區(qū)域[18],焊點(diǎn)斷裂通常出現(xiàn)在IMC層內(nèi)部及其與焊料的界面處,但圖7(a)~(d)所示的斷口截面形貌表明,焊點(diǎn)的剪切斷裂發(fā)生在焊料基體內(nèi)。分析其原因,一方面,金屬間化合物(Cu,Ni)6Sn5層的厚度較薄,且形貌為較平整的層狀,(Cu,Ni)6Sn5層與基板間的界面較平整,應(yīng)力分布較均勻[19];另一方面,Cu6Sn5相的剪切模量高于Sn基的剪切模量,因此在界面平整的情況下,剪切作用力將焊料基體撕裂出伸長型的韌窩,這種斷口形貌說明剪切試樣的失效形式為韌性斷裂。斷裂后焊料中存在的二次相顆粒尺寸影響韌窩的尺寸。從圖7看出Ag3Sn顆粒的尺寸隨時(shí)效時(shí)間延長而不斷增大,這導(dǎo)致斷口處的韌窩發(fā)生長大,從而導(dǎo)致焊點(diǎn)的剪切強(qiáng)度降低。
當(dāng)時(shí)效時(shí)間達(dá)到144 h時(shí),焊點(diǎn)斷口表面形成許多凹坑,凹坑周邊為焊料基體,韌窩底部是成分為(Cu,Ni)6Sn5的IMC顆粒,結(jié)合圖8(d)可知,斷裂主要發(fā)生在IMC/Ni(P) UBM基板界面處,也有一部分為發(fā)生在基體中的韌斷,斷裂模式為韌脆混合斷裂,焊點(diǎn)強(qiáng)度最低。分析原因可能是界面IMC厚度顯著增大,其自身的脆性及界面連接處的薄弱區(qū)都成為斷裂的起源地;較厚的IMC層加之較不規(guī)則的形狀,使其界面粗糙度增加,從而影響界面的應(yīng)力分布,造成剪切作用力下界面局部的應(yīng)力過大,從而使IMC層突起處優(yōu)先出現(xiàn)裂紋[20],裂紋沿45°擴(kuò)展至靠近IMC/焊料界面的焊料基體[21],焊料被撕裂出韌窩。裂紋起源于IMC層,擴(kuò)展至焊料中發(fā)生斷裂,焊點(diǎn)的失效形式有在焊料基體中的韌性斷裂,也有發(fā)生在IMC內(nèi)部的脆性斷裂,為韌性和脆性混合斷裂,剪切性能也相應(yīng)地降到最低。
1) 通過回流焊接形成Cu/Sn-3.5Ag/Ni(P) UBM互連結(jié)構(gòu),等溫時(shí)效過程中,Cu側(cè)形成(Cux,Ni1?x)6Sn5和Cu3Sn,Ni(P) UBM側(cè)形成(Cuy,Ni1?y)6Sn5。隨時(shí)效時(shí)間延長,界面的IMC層厚度增加,兩側(cè)(Cu,Ni)6Sn5層形貌趨于相似,Cu側(cè)的IMC中Ni元素含量明顯低于Ni(P) UBM側(cè),而Cu側(cè)的Cu元素含量稍高于Ni(P)UBM側(cè)。
2) 焊接件的基體中Ag3Sn二次相大多呈小顆粒狀。時(shí)效時(shí)間從24 h延長至48 h,二次顆粒尺寸變大;時(shí)效72 h時(shí)部分生長為細(xì)條狀,小顆粒狀與細(xì)條狀共存;時(shí)效96 h后二次相繼續(xù)長大,數(shù)目相對(duì)增多;時(shí)效時(shí)間超過120 h后,二次相尺寸長大較明顯,分布較密集,有部分二次相顆粒和界面處的(Cu,Ni)6Sn5相連接在一起。
3) 焊點(diǎn)處的剪切強(qiáng)度隨時(shí)效時(shí)間延長而降低;時(shí)效24,48,72,96,120和144 h后剪切強(qiáng)度分別為33.04,31.49,29.77,28.41,26.9和24.78 MPa。時(shí)效24~120 h的試樣,其焊點(diǎn)的剪切斷裂方式為焊料內(nèi)部韌性斷裂。時(shí)效時(shí)間延長到144 h時(shí),斷裂模式轉(zhuǎn)變?yōu)轫g脆混合斷裂。
REFERENCES
[1] CHOI W K, LEE H M. Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate[J]. Journal of Electronic Materials, 2000, 29(10): 1207?1213.
[2] LEE Y H, LEE H T. Shear strength and interfacial microstructure of Sn-Ag-xNi/Cu single shear lap solder joints[J]. Materials Science and Engineering A, 2007, 444(1/2): 75?83.
[3] 李鳳輝, 李曉延, 嚴(yán)永長. SnAgCu無鉛釬料對(duì)接接頭時(shí)效過程中IMC的生長[J]. 上海: 上海交通大學(xué)學(xué)報(bào), 2007, 41(1): 66?70.
LI Fenghui, LI Xiaoyan, YAN Yongchang. Growth of IMC in SnAgCu/Cu butt solder joint during thermal aging[J]. Journal of Shanghai Jiaotong University, 2007, 41(1): 66?70.
[4] XIA Y, LU C, CHANG J, et al. Interaction of intermetallic compound formation in Cu/SnAgCu/NiAu Sn-3.5Agndwich solder joints[J]. Journal of Electronic Materials, 2006, 35(5): 897?904.
[5] TU K N. Reliability challenges in 3D IC packaging technology [J]. Microelectronics Reliability, 2011, 51(3): 517? 523.
[6] LEE B, JEON H, KWON K W, et al. Employment of a bi-layer of Ni(P)/Cu as a diffusion barrier in a Cu/Sn/Cu bonding structure for three-dimensional interconnects[J]. Acta Materialia, 2013, 61(18): 6736?6742.
[7] ALAM M O, CHAN Y C, HUNG K C. Reliability study of the electroless Ni-P layer against solder alloy[J]. Microelectronics Reliability, 2002, 42(7): 1065?1073.
[8] YOON J W, JUNG S B. Growth kinetics of Ni3Sn4and Ni3P layer between Sn-3.5Ag solder and electroless Ni-P substrate[J]. Journal of Alloys and Compounds, 2004, 376(1): 105?110.
[9] KARAKAYA I, THOMPSON W T. Binary Alloy Phase Diagrams[M]. 2nd ed. Materials Park, OH: ASM International, 1990: 94?97.
[10] WEI C, LIU Y, YU L, et al. Effects of thermal treatment on microstructure and microhardness of rapidly solidified Sn-Ag-Zn eutectic solder[J]. Applied Physics A, 2009, 95(2): 409?413.
[11] DUTTA I, KUMAR P, SUBBARAYAN G. Microstructural coarsening in Sn-Ag-based solders and its effects on mechanical properties[J]. Journal of Matals, 2009, 61(6): 29?38.
[12] TAKENAKA T, KAJIHARA M, KUROKAWA N, et al. Reactive diffusion between Ag-Au alloys and Sn at solid-state temperatures[J]. Materials Science and Engineering A, 2006, 427(1): 210?222.
[13] KUMAR A, CHEN Z. Interdependent intermetallic compound growth in an electroless Ni-P/Sn-3.5Ag reaction couple[J]. Journal of Electronic Materials, 2011, 40(2): 213?223.
[14] TSENG C F, DUH J G. The influence of Pd on growth behavior of a quaternary (Cu,Ni,Pd)6Sn5compound in Sn-3.0Ag-0.5Cu/ Au/Pd/Ni-P solder joint during a liquid state reaction[J]. Journal of Materials Science, 2013, 48(2): 857?865.
[15] SCHAEFER M, FOURNELLE R A, LIANG J. Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control[J]. Journal of Electronic Materials, 1998, 27(11): 1167?1176.
[16] GAGLIANO R A, FINE M E. Thickening kinetics of interfacial Cu6Sn5and Cu3Sn layers during reaction of liquid tin with solid copper[J]. Journal of Electronic Materials, 2003, 32(12): 1441?1447.
[17] LIANG J, DARIAVACH N, CALLAHAN P, et al. Metallurgy and kinetics of liquid-solid interfacial reaction during lead-free soldering[J]. Materials Transactions, 2006, 47(2): 317?325.
[18] AHAT S, SHENG M, LUO L. Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging[J]. Journal of Electronic Materials, 2001, 30(10): 1317?1322.
[19] HU X, CHEN W, YU X, et al. Shear strengths and fracture behaviors of Cu/Sn37Pb/Cu soldered joints subjected to different displacement rates[J]. Journal of Alloys and Compounds, 2014, 600: 13?20.
[20] 王旭明. 焊錫接點(diǎn)IMC層拉伸強(qiáng)度與斷裂模式實(shí)驗(yàn)研究[D].北京: 北京工業(yè)大學(xué), 2012.
WANG Xuming. Experimental investigation of tensile strength and fracture mode of IMC layer in soder joints[D]. Beijing: Beijing University of Technology, 2012.
[21] CHAN Y C, SO A C K, LAI J K L. Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints[J]. Materials Science and Engineering: B, 1998, 55(1): 5?13.
(編輯 湯金芝)
Effects of isothermal aging on interface microstructure and shear properties of Cu/Sn-3.5Ag/Ni(P) UBM interconnection solder joints
YU Qiang, LIU Wensheng, MA Yunzhu, HUANG Yufeng
(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
Cu substrate and electroless Ni(P) layer were joined using Sn-3.5Ag as joint alloy by reflow soldering to form a Cu/Sn-3.5Ag/Ni(P) under bump metallization (UBM) interconnection solder joint. The interfacial microstructure and shear property of the solder joint were studied after aging at 200 ℃ for different time. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to observe and analyze the microstructure of intermetallic compound (IMC) layer and the composition of solder joint. The mechanical testing machine was used to test the shear strength of solder joint, and the shear fractography was measured by SEM. The results show that, with increasing aging time, the quadratic phase Ag3Sn in solder matrix grows prominently, and the shape changes from grain to strip. The thickness of IMC layers on both sides increases gradually and the morphology of (Cu,Ni)6Sn5layer on both sides tends to be similar. The shear strength of solder joint decreases with aging time increasing, and it decreases from 33.04 MPa after 24 h aging to 24.78 MPa after 144 h aging. The fracture type is ductile fracture in solder matrix after 24 h to 120 h aging process. After aging for 144 h, fracture is inside the solder matrix and in the place between the solder and interface compound layer, which turns fracture pattern to ductile-brittle mixed fracture mode.
interconnection structure; interfacial reactions; intermetallic compounds (IMCs); isothermal aging; shear property
TG113
A
1673-0224(2017)03-390-09
2016?04?19;
2016?09?10
馬運(yùn)柱,教授,博士。電話:0731-88877825;E-mail: zhuzipm@csu.edu.cn