国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

負壓式小麥精量排種器參數(shù)優(yōu)化與試驗

2017-07-12 18:45:37趙曉順于華麗馬躍進張晉國桑永英霍曉靜
農(nóng)業(yè)工程學(xué)報 2017年11期
關(guān)鍵詞:環(huán)槽排種種器

趙曉順,于華麗,馬躍進,張晉國,桑永英,霍曉靜

(河北農(nóng)業(yè)大學(xué)機電工程學(xué)院,保定 071001)

·農(nóng)業(yè)裝備工程與機械化·

負壓式小麥精量排種器參數(shù)優(yōu)化與試驗

趙曉順,于華麗,馬躍進,張晉國,桑永英,霍曉靜

(河北農(nóng)業(yè)大學(xué)機電工程學(xué)院,保定 071001)

為了改變傳統(tǒng)小麥條播作業(yè)模式,通過精量播種技術(shù)精確控制播種量和均勻性,實現(xiàn)在省種、節(jié)肥、節(jié)水的條件下保證小麥穩(wěn)產(chǎn)高產(chǎn)的目的,設(shè)計了一種一器多行負壓式小麥精量排種器。運用流體計算軟件STAR-CCM+仿真分析了排種器結(jié)構(gòu)參數(shù)(排種盤直徑、吸種縫隙寬度、吸種環(huán)槽橫截面形狀、排種盤氣室軸向深度)對氣室流場的影響,壓力云圖、流速矢量圖和流線圖結(jié)果表明排種器具備較理想流場特性的結(jié)構(gòu)參數(shù)為:吸種縫隙寬度為0.5 mm,排種盤直徑范圍為150~200 mm,排種盤氣室軸向深度為2.0 mm,吸種環(huán)槽橫截面形狀為圓弧型。在JPS-12排種器試驗臺上進行了排種均勻性試驗,通過試驗研究了吸種環(huán)槽橫截面形狀、吸種縫隙寬度、排種盤直徑、排種盤氣室軸向深度對合格指數(shù)、漏播指數(shù)、重播指數(shù)和合格粒距變異系數(shù)的影響規(guī)律,確定了排種器較優(yōu)結(jié)構(gòu)參數(shù)為:圓弧型吸種環(huán)槽橫截面,0.5~0.8 mm的吸種縫隙寬度,170~200 mm的排種盤直徑。2.0~3.0 mm的排種盤氣室軸向深度。對參數(shù)優(yōu)化后的排種器(0.7 mm的吸種縫隙、180 mm的排種盤直徑、2.5 mm的氣室軸向深度、圓弧型吸種環(huán)槽橫截面)進行排種均勻性試驗,合格指數(shù)為86.66%、漏播指數(shù)為5.09%、重播指數(shù)為8.25%,合格粒距變異系數(shù)為24.50%,滿足JB/T 10293-2013《單粒(精密)播種機技術(shù)條件》中的參數(shù)指標。

機械化;優(yōu)化;計算機仿真;小麥;排種器

0 引 言

小麥精量播種技術(shù)通過精確控制播種量和均勻性使每個植株都獲得足夠的營養(yǎng)面積和空間,肥水利用率高,有效分蘗多,在減少種子、水肥投入的基礎(chǔ)上,保證小麥的穩(wěn)產(chǎn)高產(chǎn),可獲得巨大經(jīng)濟效益和社會效益[1-2]。為了實現(xiàn)小麥精播技術(shù),精量排種器起到了決定性作用,它制約了小麥精量播種均勻性、整機實用性和推廣性[3-4]。

目前,國外氣力式排種器是精量播種的常用裝置,在玉米、大豆等作物的播種機上得到了廣泛應(yīng)用[5-10]。對于小麥等小粒條播類作物應(yīng)用較少,成熟的機型有德國雷肯氣力式精量播種機Solitair 9系列播種機、馬特馬克負壓式谷物播種機等[11-12],但是機型龐大,價格昂貴,不適合國內(nèi)市場[13-15]。在國內(nèi),何東鍵等[16-19]曾對組合吸孔式排種器進行過設(shè)計、改進、理論分析和試驗研究。王瑞雪等[20]基于均勻性設(shè)計了一種小麥氣吸式精量排種器,并進行了試驗研究。杜輝等[21-22]研究制造了兩代氣吸式小麥精量播種機,并進行了試驗。馬立等[23-28]研究了一種圓管孔眼式氣吸小麥播種機。但是以上文獻中提到的排種器結(jié)構(gòu)均為吸孔式,該形式的排種器容易導(dǎo)致堵塞、排種均勻性差等缺陷。因此設(shè)計一種排種均勻性好、穩(wěn)定性高、不易堵塞的小麥精量排種器,以進一步推動小麥精量播種農(nóng)藝技術(shù)的發(fā)展,以期為研究適合中國農(nóng)業(yè)生產(chǎn)的小麥精量播種機提供參考。

1 排種器結(jié)構(gòu)與工作原理

1.1 排種器結(jié)構(gòu)

本排種器結(jié)構(gòu)設(shè)計獲得了兩項國家發(fā)明專利權(quán)[29-30]。排種器主要由排種器外殼、充種高度控制板、擋種塊、落種清堵片、負壓管軸、動排種盤Ⅰ、動排種盤Ⅱ、靜排種盤、固定套筒、控縫連接塊、連接螺釘?shù)冉M成,如圖1所示。

動排種盤Ⅱ的兩側(cè)內(nèi)部凹進形成半個負壓室,動排種盤Ⅰ與動排種盤Ⅱ相對的一側(cè)內(nèi)部凹進形成另外半個負壓室。動排種盤外緣相對處加工成一個吸種環(huán)槽,用于存放被均勻吸附排布的種子,吸種環(huán)槽內(nèi)部是吸種縫隙。動排種盤通過固定套筒與負壓管軸連接成一體。負壓管軸處于負壓室的位置處沿圓周方向加工通孔陣列,使負壓室與負壓管軸內(nèi)腔形成一個相通的負壓腔。充種高度控制板可對充入排種器外殼內(nèi)種子的高度進行控制。在排種器外殼底部內(nèi)的凸臺上固定有落種清堵片,用于清落小麥種子。

圖1 排種器結(jié)構(gòu)示意圖Fig.1 Structure diagram of seed-metering device

1.2 排種器工作原理

如圖1所示,通過旋轉(zhuǎn)接頭將風(fēng)機連接軟管與排種器負壓管軸連接,負壓管軸在相對的兩個動排種盤形成的真空負壓型腔位置處沿圓周方向等間距加工陣列圓孔,這樣由排種盤外緣大氣壓到風(fēng)機形成一個氣流通路,氣流由排種盤外緣向里流動,在排種盤轉(zhuǎn)動的過程中,麥種沿外圓方向被吸附并形成環(huán)形種子帶。在非穩(wěn)定區(qū)通過負壓吸力將種盒內(nèi)的麥種吸附在排種盤外圓環(huán)形槽帶中,旋轉(zhuǎn)通過穩(wěn)定區(qū),到達落種區(qū),在落種區(qū)由落種清堵片提前切斷氣路或者減小氣流吸力,麥種在重力作用下自由落入導(dǎo)種管。落種清堵片動排種盤的吸種縫隙內(nèi),用于清落種子的同時,也清除了縫隙內(nèi)的被吸近的麥種雜質(zhì),預(yù)防了長期工作后縫隙的堵塞。

此排種器將傳統(tǒng)的擁擠在一定寬度上的密集條播麥種分散成一條線的播種帶,在節(jié)種的同時,克服了小麥籽粒擁擠以及個體之間對肥水和營養(yǎng)的競爭問題,促進了個體健壯生長發(fā)育,根系發(fā)達,改善了小麥株間的通風(fēng)透光條件。由于麥種在田間的分布更加合理,能最大限度地汲取肥水及養(yǎng)分,肥水利用率得到了提高,有效分蘗多,在保證小麥穩(wěn)產(chǎn)情況下節(jié)水節(jié)肥。

2 排種器結(jié)構(gòu)參數(shù)對流場的影響仿真

2.1 分析步驟及邊界條件設(shè)置

運用SolidWork建立排種器三維立體模型,將排種器模型導(dǎo)入有限元分析軟件Star-CCM+中,選擇多面體網(wǎng)格類型。進行網(wǎng)格劃分,物理模型參數(shù)設(shè)置為:三維穩(wěn)態(tài)計算模型,分離求解器,流體域為氣體,定常密度,標準K-ε湍流模型。邊界條件為:設(shè)置定常壓力進口的壓力數(shù)值為標準大氣壓,壓力出口的壓力數(shù)值為?22 kPa(JPS-12排種器試驗臺提供最大負壓值的80%,取整數(shù))。建立旋轉(zhuǎn)模型及參數(shù)(轉(zhuǎn)速為80 r/min,排種器設(shè)計最大轉(zhuǎn)速),并將其應(yīng)用到整個流體域模型中,以模擬排種器實際工作旋轉(zhuǎn)場景。

2.2 仿真結(jié)果及分析

2.2.1 不同形狀吸種環(huán)槽橫截面對氣室流場影響的仿真分析

不同形狀吸種環(huán)槽橫截面對流場穩(wěn)定性和麥種排列姿態(tài)有很大影響,本文對比分析圓弧型、V型、倒梯型,直槽型4種不同吸種環(huán)槽橫截面(如圖2a)對氣流場壓力分布情況的影響。排種器模型的吸種縫隙為0.5 mm,排種盤直徑為170 mm,排種盤氣室軸向深度為2.0 mm。圖2b為對比流場壓力云圖,由圖2b可知,吸種環(huán)槽橫截面為圓弧型、V型、倒梯型的吸種縫隙壓力云圖較直槽穩(wěn)定的多,圓弧型和V型相當,但是通過局部放大圖可知,圓弧型環(huán)槽截面吸種縫隙入口處的壓力梯度更加穩(wěn)定。

圖2 不同形狀吸種環(huán)槽橫截面的流場壓力云圖Fig.2 Cross section pressure nephogram under different shape cross-section of ring groove sucking seed

2.2.2 不同吸種縫隙寬度對氣室流場的影響

吸種縫隙的大小對氣室流場的真空度、流速穩(wěn)定性以及風(fēng)機功率消耗影響較大,通過理論計算及經(jīng)驗參考,初步確定縫隙寬度為0.45~0.54 mm。在計算流體力學(xué)仿真分析中適當增加取值范圍,以便更加清楚分析影響規(guī)律,分別設(shè)定了0.3、0.5、0.8、1 mm 4種不同尺寸的縫隙寬度進行模型分析,吸種環(huán)槽橫截面形狀為圓弧型,排種盤直徑為170 mm,排種盤氣室軸向深度為2.0 mm。圖3a為仿真計算后的不同縫隙寬度排種器模型的流場壓力云圖,由圖3a可知,0.3 mm的縫隙寬度的氣室流場縫隙入口處(藍色區(qū)域與紅色區(qū)域的交界處)的壓力非常不穩(wěn)定,壓力突變比較明顯,縫隙內(nèi)(藍色細長區(qū)域)的壓力變化也不成梯度漸變,穩(wěn)定性比較差。同樣對比分析圖3b可知,隨著縫隙寬度的增加,縫隙入口處的壓力不穩(wěn)定區(qū)域在增加,尤其是當縫隙寬度增加到1.0 mm時,在遠離縫隙的吸種環(huán)槽帶流場區(qū)域也出現(xiàn)了壓力不穩(wěn)定現(xiàn)象。從圖3a中數(shù)值等值柱可知:縫隙為1.0、0.8、0.5、0.3 mm時最大負壓值分別為:?34 310、?42 720、?63 855、?58 728 Pa,0.5 mm吸種縫隙的吸力最大。另外,0.5 mm縫隙內(nèi)的壓力場呈梯度連續(xù)平穩(wěn)變化,較其他縫隙寬度的壓力場穩(wěn)定。

圖3 不同吸種縫隙寬度氣室壓力云圖和流速矢量圖Fig.3 Cross section of pressure nephogram and velocity vectogram of air chamber with different width of slit sucking seed

圖3 b顯示了不同縫隙寬度流體域流速情況,縫隙為0.5 mm時流體域中最大流速為310.73 m/s(圖3b中的數(shù)值等值柱),隨著縫隙寬度加大流速在降低。同時,在0.8和1.0 mm的縫隙寬度的流體域中出現(xiàn)了回流現(xiàn)象(圖3b中藍色向上箭頭),這將導(dǎo)致麥種的波動進而影響吸種穩(wěn)定性。綜合壓力云圖和流速矢量圖:0.5 mm吸種縫隙寬度的壓力場均勻穩(wěn)定,流速圖基本無回流現(xiàn)象,屬于較優(yōu)參數(shù)。

2.2.3 排種盤直徑對氣室流場影響的仿真分析

排種盤直徑對排種器排種效率和風(fēng)機功率消耗有比較大的影響。在保證降低風(fēng)機功耗的前提下盡量增加排種盤直徑,以提高排種作業(yè)效率。排種盤的設(shè)計直徑一般在140~260 mm范圍內(nèi)[31]。本文選擇了150、200、250 mm 共3種尺寸的排種盤模型進行流體仿真計算,以分析直徑對氣室流場真空度的影響趨勢。排種器模型的吸種縫隙為0.5 mm,吸種環(huán)槽橫截面形狀為圓弧型,排種盤氣室軸向深度為2.0 mm。結(jié)果如圖4所示。從圖4a可以看出,隨著排種盤直徑的增加,吸種縫隙處最大負壓值的絕對值(圖4a中數(shù)值等值柱)呈減小趨勢;流體域出口處(軸孔位置)附近區(qū)域顏色由黃逐漸變綠,即壓力差的絕對值逐漸變大,需要的真空度在增加,也就是在吸種縫隙處要達到同等真空度的情況下風(fēng)機功率消耗加大。由圖4b可知,排種盤直徑越大,吸種縫隙內(nèi)壓力差的絕對值越?。▓D4b中數(shù)值等值柱),即真空度越低;同時,250 mm 排種盤流體域中對應(yīng)吸種環(huán)槽區(qū)域出現(xiàn)了壓力波動現(xiàn)象(圖4b中250 mm壓力云圖右下角與紅色不一致區(qū)域)。綜合考慮工作效率、功耗、加工所用材料的規(guī)格等因素,排種盤直徑較優(yōu)參數(shù)范圍為150~200 mm之間。

圖4 不同排種盤直徑氣室流場壓力云圖Fig.4 Pressure nephogram of air chamber with different diameters of seed-metering disc

2.2.4 排種盤氣室軸向深度對氣室流場影響的仿真分析

排種盤氣室是銜接風(fēng)機與吸種縫隙的一個過度腔體,在直徑一定的情況下,

其軸向深度及形狀直接影響排種器整體流場的壓力和流速,進而決定了排種器的充種及排種性能。圖5排種器模型的氣室軸向深度分別為1.0、2.0、3.0 mm,吸種縫隙寬度為0.5mm,吸種環(huán)槽橫截面形狀為圓弧型,排種盤直徑為170 mm。由圖5可知:氣室軸向深度越大,流體域出口處(軸孔位置)附近區(qū)域顏色與氣室流體域顏色逐漸趨于一致(由綠色漸變?yōu)辄S色),說明氣室軸向深度越大,壓力差的絕對值越小,即氣阻越小。同時,氣室軸向深度越大,吸種縫隙真空度越大(圖5c中數(shù)值等值柱最大值藍色環(huán)帶,?88 109 Pa)。由此可知,增加排種盤氣室軸向深度對減少氣阻、增大縫隙真空度是有利的,但是氣室軸向深度增加過大時,會導(dǎo)致吸種縫隙寬度與氣室橫截面相差太大,氣流通道由窄變寬劇烈,出現(xiàn)回流現(xiàn)象(圖6中藍色回流箭頭),影響排種器的吸種穩(wěn)定性。綜合分析,2.0 mm的排種器氣室軸向深度為較優(yōu)參數(shù)值。

圖5 不同排種盤氣室軸向深度流場壓力云圖Fig.5 Pressure nephogram under different axial depths of air chamber in seed-metering disc

圖6 排種盤氣室軸向深度為3.0 mm時的流速矢量圖截面圖Fig.6 Cross section of velocity vectogram under 3.0 mm axial depth of air chamber in seed-metering disc

2.3 檢查驗證試驗

為了驗證流體仿真計算模型及結(jié)果的可信性,需要對排種器氣室內(nèi)的壓力進行監(jiān)測。試驗驗證了0.3、0.5、0.8和1.0 mm共4種不同吸種縫隙寬度的氣室流場的穩(wěn)定性,吸種縫隙為0.5 mm,排種盤直徑為170 mm,排種盤氣室軸向深度為2.0 mm。在排種盤吸種縫隙內(nèi)間隔90°布置了4個測壓點,測壓探針用φ1.5 mm直徑針頭制成,測壓儀器采用的是宏誠科技的HT-930,精度為±0.3%。對應(yīng)于模擬數(shù)據(jù)的壓力下,每個測點測取3次壓力值,然后取平均值,測試結(jié)果見表1。

表1 排種器吸種縫隙測壓點實測壓力值Table 1 Testing pressure value in slit sucking seed of seed-metering device

由表1可知,0.5和0.8 mm縫隙的測壓點壓力值要穩(wěn)定的多,數(shù)值模擬值和試驗值吻合較好,從而驗證了數(shù)值模擬方法的可行性。

3 排種器臺架試驗

3.1 試驗材料及試驗設(shè)備

試驗所用小麥種粒材料為石新828:長度平均值6.26 mm、寬度平均值3.53 mm、厚度平均值3.12 mm、千粒質(zhì)量40.90 g。用尼龍棒加工的不同結(jié)構(gòu)參數(shù)的排種器。試驗設(shè)備是JPS-12計算機視覺排種器試驗臺,如圖7所示。

圖7 JPS-12排種器試驗臺Fig.7 JPS-12 seed-metering device test bench

3.2 試驗因素及評價指標

以吸種縫隙寬度、吸種環(huán)槽橫截面形狀、排種圓盤直徑、排種盤氣室軸向深度4個結(jié)構(gòu)參數(shù)作為試驗因素,分析各個參數(shù)對排種性能的影響,并用于驗證計算機流體仿真分析結(jié)果。排種器排種性能采用排種均勻性作為評價指標,分析種子在行內(nèi)縱向分布的均勻程度。JPS-12試驗臺可以測得符合GB/T6973-2005《單粒(精密)播種機試驗方法》[32]中要求的試驗數(shù)據(jù),可獲得排種試驗中麥種在種床帶上的實時圖像(如圖8a),也可人工分析小麥種子在種床帶上的分布情況(如圖8b)。

圖8 麥種分布及視頻采集圖Fig.8 Wheat seed distribution and video capturing images

根據(jù)國標GB/T 6973-2005《單粒(精播)播種機試驗方法》,排種性能指標確定為合格指數(shù)A、重播指數(shù)D和漏播指數(shù)M;排種精確性指標為種子粒距變異系數(shù)C。本試驗測定區(qū)段為500個粒距。試驗中,設(shè)定排種器轉(zhuǎn)速為10.0 r/min,種床帶速度為2.0 km/h,測試負壓為?0.9 kPa。在JPS-12試驗臺上分別測取合格指數(shù)A、重播指數(shù)D、漏播指數(shù)M和合格粒距變異系數(shù)C,每組試驗重復(fù)3次,結(jié)果取平均值。

3.3 試驗結(jié)果及分析

3.3.1 吸種環(huán)槽橫截面形狀對排種均勻性的影響

吸種環(huán)槽橫截面的形狀決定了麥種在排種器上被吸附的排列姿態(tài),也直接影響氣室流場的壓力場和流速場的穩(wěn)定性,因此首先通過試驗確定此參數(shù),方便后續(xù)的進一步試驗。在試驗中,設(shè)計加工了直槽型、V型、倒梯型和圓弧型4種結(jié)構(gòu)的排種器,吸種縫隙為0.5 mm,排種盤直徑為170 mm,排種盤氣室軸向深度為2.0 mm。試驗結(jié)果見表2。對比分析,圓弧型的合格指數(shù)最高,其值為86.43%,漏播指數(shù)、重播指數(shù)和合格粒距變異系數(shù)均較低,分別為5.29%、8.29%、21.47%;直槽的合格指數(shù)最低,漏播指數(shù)最高,分別為69.23%、15.52%。試驗結(jié)果分析,圓弧型吸種環(huán)槽橫截面的排種器的吸排種均勻性最理想。試驗過程中的排種器實時吸種效果(如圖9所示)定性地支撐了此結(jié)論。

表2 不同吸種環(huán)槽橫截面形狀的排種器均勻性試驗數(shù)據(jù)Table 2 Uniformity test data of seed-metering device with different shapes cross-section of ring groove sucking seed

圖9 不同吸種環(huán)槽橫截面形狀的排種器吸種效果圖Fig.9 Sucking seed status picture of seed-metering device with different shapes cross-section of ring groove sucking seed

吸種環(huán)槽橫截面形狀對排種均勻性的影響比較明顯:圓弧型比V型、倒梯型、直槽結(jié)構(gòu)的合格指數(shù)分別高9.44%、9.45%、17.20%,圓弧型吸種環(huán)槽與小麥種子外形比較貼合,氣流平順穩(wěn)定,在排種盤旋轉(zhuǎn)通過麥種群時,有利于充種,漏播指數(shù)低(5.29%),而且沿圓盤外緣周向環(huán)槽麥種以長徑為線首尾順序排列,重播指數(shù)也低(8.29%)。

3.3.2 吸種縫隙寬度對排種均勻性的影響

試驗用排種器吸種環(huán)槽橫截面形狀為圓弧型,排種盤直徑為170 mm,排種盤氣室軸向深度為2.0 mm,吸種縫隙寬度分別為0.3、0.5、0.8、1.0 mm。試驗數(shù)據(jù)見表3。通過試驗結(jié)果可以看出,吸種縫隙在0.5~0.8 mm范圍內(nèi),吸種效果比較理想。

吸種縫隙對排種均勻性的影響很大,在真空度一定的條件下,吸種縫隙的減?。?.3 mm)會使吸附力不足而影響吸種效果,導(dǎo)致漏播明顯增加(漏播指數(shù)為21.88%),合格指數(shù)也很低(69.79%),甚至麥種不能被穩(wěn)定吸附而脫落在非穩(wěn)定區(qū)。

表3 不同吸種縫隙寬度的排種器均勻性試驗數(shù)據(jù)Table 3 Uniformity test data of seed-metering device with different widths of slit sucking seed

3.3.3 排種盤直徑對排種均勻性的影響

根據(jù)前面的理論分析和計算流體仿真分析結(jié)果,在本試驗中,設(shè)計了150、170、200、250 mm 4種不同尺寸排種盤直徑的排種器,吸種縫隙為0.5 mm,吸種環(huán)槽橫截面形狀為圓弧型,排種盤氣室軸向深度為2.0 mm。試驗結(jié)果見表4。

表4 不同排種盤直徑的排種器均勻性試驗數(shù)據(jù)Table 4 Uniformity test data of seed-metering device with different diameters of seed-metering disc

合格指數(shù)呈減小趨勢,漏播指數(shù)增加趨勢明顯,重播指數(shù)基本呈下降趨勢,合格粒距變異系數(shù)呈下降趨勢,但是250 mm時又明顯增加。排種盤直徑的改變對排種均勻性的影響是多方面的,隨著排種盤直徑的增大,吸種縫隙處的壓差減小,邊緣處的線速度增加,從試驗數(shù)據(jù)可以看出,漏播明顯加大。通過試驗結(jié)果可以發(fā)現(xiàn)隨著排種盤直徑的增加合格指數(shù)在降低,漏播指數(shù)明顯增加。但是實際播種作業(yè)時,排種盤直徑減小會降低作業(yè)效率,在同樣播種量、同樣拖拉機前進速度的情況下,小直徑排種盤的轉(zhuǎn)速必然提高,進而影響充種性能。因此,綜合考慮各因素,排種盤選擇在170~200 mm較為合適。

排種盤直徑在小于200 mm的試驗中,對排種均勻性影響不大,滿足精播要求,但是當增加到250 mm時,排種質(zhì)量明顯下降,尤其是漏播量明顯增加(漏播指數(shù)20.94%),原因是排種盤直徑增加,氣室容積增大,縫隙處吸力減小,同時排種盤外緣的線速度增加,充種性能下降。

3.3.4 排種盤氣室軸向深度對排種均勻性影響

計算流體仿真分析的結(jié)果顯示,排種盤內(nèi)氣室深度在2.0 mm較為合適,因此在本試驗中,單側(cè)圓盤氣室深度分別設(shè)計了1.0、2.0、3.0 mm 3種尺寸參數(shù)進行對比試驗。吸種環(huán)槽橫截面形狀為圓弧型,吸種縫隙為0.5 mm,排種盤直徑為170 mm。試驗結(jié)果見表5。合格指數(shù)呈增加趨勢,但是由2.0到3.0 mm增加不顯著,漏播指數(shù)呈減小趨勢,重播指數(shù)先明顯下降,而后呈略上升趨勢,綜合分析,2.0~3.0 mm優(yōu)于1.0 mm,合格粒距變異系數(shù)呈現(xiàn)下降趨勢,從試驗結(jié)果來看,排種盤氣室軸向深度在2.0~3.0 mm較為合適。

表5 不同氣室軸向深度的排種器均勻性試驗數(shù)據(jù)Table 5 Uniformity test data of seed-metering device with different axial depths of air chamber

氣室軸向深度小于2.0 mm會由于真空度下降而導(dǎo)致排種器合格指數(shù)明顯降低,超過2.0 mm后合格指數(shù)增加不明顯,但是排種器軸向結(jié)構(gòu)尺寸增大,會受到播種機整機結(jié)構(gòu)的限制。

4 優(yōu)化后排種器排種性能試驗

綜合仿真分析計算和臺架試驗結(jié)果可以確定排種器較為理想的結(jié)構(gòu)參數(shù)范圍為圓弧型吸種環(huán)槽橫截面,0.5~0.8 mm的吸種縫隙,170~200 mm的排種盤直徑,2.0~3.0 mm的排種盤內(nèi)氣室深度。在此基礎(chǔ)上試制了排種器,結(jié)構(gòu)參數(shù)如下:排種盤直徑為180 mm,吸種縫隙為0.7 mm,圓弧型吸種環(huán)槽橫截面,氣室軸向深度為2.5 mm。并對該優(yōu)化定型排種器進行了排種均勻性試驗。試驗重復(fù)進行3次,取平均值,最終試驗結(jié)果見表6。試驗結(jié)果滿足JB/T 10293-2013《單粒(精密)播種機技術(shù)條件》[33]中對精播作業(yè)性能要求的指標參數(shù)。

表6 優(yōu)化后排種器試驗性能指標參數(shù)Table 6 Test performance indicators of optimised seed-metering device

5 結(jié) 論

利用真空負壓原理,本文設(shè)計了一種小麥精量排種器,可達到一器播種兩行小麥的目的,并且改變了傳統(tǒng)小麥條播方式:將傳統(tǒng)擁擠在一定寬度上的密集條播麥種分散成一條線狀播種帶,實現(xiàn)小麥精播。

本文運用計算流體力學(xué)及排種器臺架試驗,優(yōu)化得到了排種器結(jié)構(gòu)參數(shù):圓弧型吸種環(huán)槽橫截面,0.5~0.8 mm的吸種縫隙,170~200 mm的排種盤直徑,2.0~3.0 mm的排種盤氣室軸向深度,運用試驗臺檢查試驗驗證了計算機仿真分析的可行性。對參數(shù)優(yōu)化后的排種器進行排種性能試驗,滿足JB/T 10293-2013《單粒(精密)播種機技術(shù)條件》中的參數(shù)指標,達到了小麥精播農(nóng)藝要求。

[1] 世界小麥種植區(qū)域分布分析[EB/OL]. (2013-08-21) [2016-07-21]. http://www.docin.com/p-692152910.html.

[2] 何亮. 小麥精量播種高產(chǎn)栽培技術(shù)要點[J]. 北京農(nóng)業(yè),2015(12):56.

[3] 劉春科. 機械條播小麥不同密度對比試驗報告[J]. 農(nóng)業(yè)科技與信息,2010(3):19.

[4] 廖慶喜,楊波,李旭,等. 內(nèi)充氣吹式油菜精量排種器氣室流場仿真與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(4):51-54. Liao Qingxi, Yang Bo, Li Xu, et al. Simulation and experiment of inside-filling air-blow precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 51-54. (in Chinese with English abstract)

[5] 楊善東,張東興,刁培松,等. 側(cè)正壓玉米排種器的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(增刊1):8-13. Yang Shandong, Zhang Dongxing, Diao Peisong, et al. Design and experiment of side positive pressure seed metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 8-13. (in Chinese with English abstract)

[6] 廖慶喜,張朋玲,廖宜濤. 基于EDEM的離心式排種器排種性能數(shù)值模擬[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(2):109-114. Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114. (in Chinese with English abstract)

[7] 張國忠,羅錫文,臧英,等. 水稻氣力式排種器群布吸孔吸種盤吸種精度試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(6):13-20. Zhang Guozhong, Luo Xiwen, Zang Ying, et al. Experiment of sucking precision of sucking plate with group holes on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 13-20. (in Chinese with English abstract)

[8] 石林榕,吳建民,孫偉,等. 基于離散單元法的水平圓盤式精量排種器排種仿真試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(8):40-48. Shi Linrong, Wu Jianmin, Sun Wei, et al. Simulation test for metering process of horizontal disc precision metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 40-48. (in Chinese with English abstract)

[9] 祁兵,張東興,崔濤. 中央集排氣送式玉米精量排種器設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(18):8-15. Qi Bing, Zhang Dongxing, Cui Tao. Design and experiment of centralized pneumatic seed metering device for maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 8-15. (in Chinese with English abstract)

[10] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用排種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(8):30-39. Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)

[11] Arzu Y, Adnan D. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate[J]. Measurement, 2014(56): 128-135.

[12] Sapkota T B, Majumdar K, Jat M L, et al. Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient useefficiency and environmental footprint[J]. Field Crops Research, 2014, 155: 233-244.

[13] 田波平,廖慶喜,黃海東,等. 2BFQ-6型油菜精量聯(lián)合直播機的設(shè)計[J]. 農(nóng)業(yè)機械學(xué)報,2008,39(10):211-213. Tian Boping, Liao Qingxi, Huang Haidong, et al. Design of 2BFQ-6 precision jiont direct seeder for rapeseed[J]. Transactions of the CSAM, 2008, 39(10): 211-213. (in Chinese with English abstract)

[14] 劉文忠,趙滿全,王文明. 氣吸式排種裝置排種性能分析[J].農(nóng)機化研究,2008,30(5):45-47. Liu Wenzhong, Zhao Manquan, Wang Wenming. Analysis on the sowing performance of air-suction seed-metering device[J]. Journal of Agricultural Mechanization Research, 2008, 30(5): 45-47. (in Chinese with English abstract)

[15] 趙湛,李耀明,陳進,等. 氣吸滾筒式排種器吸種過程的動力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(7):112-116. Zhao Zhan, Li Yaoming, Chen Jin, et al. Dynamic analysis of seeds pick-up process for vacuum-cylinder seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 112-116. (in Chinese with English abstract)

[16] 何東健,李增武. 組合吸孔氣吸式排種器研究[J]. 農(nóng)業(yè)工程學(xué)報,1995,11(4):57-61. He Dongjian, Li Zengwu. A study on planter’s suction seed feed mechanism with combined inhaler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1995, 11(4): 57-61. (in Chinese with English abstract)

[17] 封俊,梁素鈺,曾愛軍,等. 新型組合吸孔式小麥精密排種器運動學(xué)與動力學(xué)特性的研究[J]. 農(nóng)業(yè)工程學(xué)報,2000,16(1):63-66. Feng Jun, Liang Suyu, Zeng Aijun, et al. Kinematics and dynamics of a wheat seed in the seed-meter device with combined sucker[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(1): 63-66. (in Chinese with English abstract)

[18] 佟超. ZXJB-4型小區(qū)精密播種機的設(shè)計[J]. 糧油加工與食品機械,1995(5):3-5.

[19] 梁素鈺,封俊,曾愛軍,等. 新型組合吸孔式小麥精密排種器性能的試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2001,17(2):84-87. Liang Suyu, Feng Jun, Zeng Aijun, et al. Performance experiments of the seed-meter device with combined sucker[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(2): 84-87. (in Chinese with English abstract)

[20] 王瑞雪,儀垂杰,林海波,等. 基于均勻設(shè)計的小麥氣吸式精密排種器的試驗研究[J]. 農(nóng)機化研究,2009,31(2):141-143. Wang Ruixue, Yi Chuijie, Lin Haibo, et at. Experimental and study of air-suction wheat precision seed metering device based on uniform design[J]. Journal of Agricultural Mechanization Research, 2009, 31(2): 141-143. (in Chinese with English abstract)

[21] 杜輝,王忠舉,李汝莘. 氣吸式小麥精量播種機的改進研究[J]. 山東農(nóng)機,2002(6):8-9.

[22] 杜輝. 氣吸式小麥精量播種機的改進研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2003. Du Hui. Study on Improvement of Wheat Pneumatic Precise Seeder[D]. Taian: Shandong Agricultural University, 2003. (in Chinese with English abstract)

[23] 馬立,張晉國. 圓管孔眼式小麥氣吸排種器的設(shè)計[J]. 農(nóng)機化研究,2010,32(6):97-100. Ma Li, Zhang Jinguo. The design of the hole-tube air suction wheat seeder[J]. Journal of Agricultural Mechanization Research, 2010, 32(6): 97-100. (in Chinese with English abstract)

[24] 馬立. 新型縫隙式小麥氣吸播種機的研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2010. Ma Li. Study on the New Kind Tube-slit Air-suction Wheat Seeding Machine[D]. Baoding: Agricultural University of Hebei, 2010. (in Chinese with English abstract)

[25] 張晉國,馬立,史智興,等. 新型縫隙式小麥氣吸排種器的設(shè)計[J]. 農(nóng)機化研究,2010,32(4):69-71. Zhang Jinguo, Ma Li, Shi Zhixing, et al. The design of the new slit-style air suction seed-metering device for wheat[J]. Journal of Agricultural Mechanization Research, 2010, 32(4): 69-71. (in Chinese with English abstract)

[26] 趙曉順,張晉國,馬立. 圓管直縫式小麥氣吸排種器性能的試驗研究[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報,2013,36(1):105-108. Zhao Xiaoshun, Zhang Jinguo, Ma Li. Experimentation research of performance of circular tube slit pneumaticprecise wheat seed-metering device[J]. Journal of Agricultural University of Hebei, 2013, 36(1): 105-108. (in Chinese with English abstract)

[27] 陳鳳艷,張晉國,陳鳳娟. 槽縫式小麥氣吸精密播種機的設(shè)計與研究[J]. 農(nóng)機化研究,2011,33(8):81-84. Chen Fengyan, Zhang Jinguo, Chen Fengjuan. Design and research on suction slot-type precision wheat seeder[J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 81-84. (in Chinese with English abstract)

[28] 陳鳳艷. 氣吸式小麥精密播種機縫隙式排種器的設(shè)計與研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2011. Chen Fengyan. Design and Study on a Slot-type Pneumatic Precision Wheat Feeding Device[D]. Baoding: Agricultural University of Hebei, 2011. (in Chinese with English abstract)

[29] 河北農(nóng)業(yè)大學(xué). 一種負壓式精量排種器:2014105515269[P]. 2016-02-03.

[30] 河北農(nóng)業(yè)大學(xué). 一種圓盤氣吸式排種裝置:2012105070711[P]. 2016-03-16.

[31] 中國農(nóng)業(yè)機械化科學(xué)研究院. 農(nóng)業(yè)機械設(shè)計手冊[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007:355-363.

[32] 中國國家標準化管理委員會. GB/T6973-2005,單粒(精密)播種機試驗方法[S]. 北京:中國標準出版社,2005.

[33] 全國農(nóng)業(yè)機械標準化技術(shù)委員會. JB/T10293-2001,單粒(精密)播種機技術(shù)條件[S]. 北京:機械科學(xué)研究院,2001.

Parameter optimization and experiment of negative pressure precision seed-metering device for wheat

Zhao Xiaoshun, Yu Huali, Ma Yuejin, Zhang Jinguo, Sang Yongying, Huo Xiaojing
(College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, China)

Different from traditional cultivation techniques of sowing in lines for wheat, precision seeding technology ensures the most reasonable distribution of wheat seeds in the field through precisely controlling seeding quantity and uniformity. It makes each grain of wheat seed get enough nutrition area and space, absorb water at the most and possess effective tillering. So it ensures stable and high yield in seed-saving, fertilizer-saving and water-saving conditions. In order to meet the agronomic requirements of precision seeding technology, a negative pressure precision seed-metering device for wheat was designed. The seed-metering device was not a traditional single structure, but multiple seed-metering devices shared a hollow shaft. By the CFD (computational fluid dynamics) software STAR-CCM+, the influences of structural parameters of the seed-metering device on vacuum chamber fluid field were simulated and analyzed. The structural parameters included the diameter of seed-metering disc, the width of suction slit, the cross-section shape of ring groove, and the axial depth of gas chamber in the seed-metering disc. The analysis of pressure nephogram, velocity vectogram and streamline graph showed that more ideal structural parameters of seed-metering device are 0.5 mm width of suction slit, 150-200 mm diameter of seed-metering disc, 2.0 mm axial depth of gas chamber in the seed-metering disc, and arc-shaped cross-section of ring groove. Seeding uniformity test of the seed-metering device was done on the JPS-12 test-bed. It tested and analyzed the influence of cross-section shape of ring groove, width of suction slit, diameter of seed-metering disc and axial depth of gas chamber in the seed-metering disc on the qualified index, multiple index, missing index and coefficient of variation of qualified seed spacing. The qualified index of the seed-metering device with arc-shaped cross-section of ring groove is about 10% higher than the v-shaped and inverted-trapezoid-shaped structure, and about 17% higher than the straight-groove-shaped structure. Meanwhile, its multiple index (8.29%) and missing index (5.29%) are the minimum. The influence of the suction slit width on the seeding uniformity is very visible. In certain vacuum conditions, the decrease of suction slit width causes insufficient suction, which affects the uniformity of suction seed. For example, the missing index and the qualified index of seed-metering device with 0.3 mm suction slit respectively are 21.88% and 69.79%. The seeding uniformity of the seed-metering device with less than 200 mm disc diameter meets precision seeding technology agronomic requirements. The influence of seed-metering disc diameter on the seeding uniformity is very little. But when the disc diameter is larger than 250 mm, the missing index (20.94%) clearly increases. The main reason is that the outer edge of the seed-metering disc with large disc diameter has higher linear speed, which causes the filling seed performance of seed-metering device to reduce. The axial depth of gas chamber in the seed-metering disc is not less than 2.0 mm, or its missing index (18.32%) and multiple index (10.26%) significantly increase and its qualified index (71.43%) decreases. The better structural parameters of the seed-metering device were determined as arc-shaped cross-section of ring groove, 0.5-0.8 mm width of suction slit, 170-200 mm diameter of seed-metering disc and 2.0 mm axial depth of gas chamber in the seed-metering disc. Based on these, structural parameters of the seed-metering device were optimized: The diameter of seed-metering disc is 180 mm, the width of suction slit is 0.7 mm, the axial depth of gas chamber in the seed-metering disc is 2.5 mm, and the cross-section shape of ring groove is arc-shaped. The optimization seed-metering device was tested on the JPS-12 test-bed. The qualified index is 86.66%, the missing index is 5.09%, the multiple index is 8.25%, and the coefficient of variation of qualified seed spacing is 24.50%. These testing results fully coincide with the standard JB/T 10293-2013 Specifications of single seed drill (precision drill). The seed-metering device meets fully the requirements of wheat precision drilling.

mechanization; optimization; computer simulation; wheat; seed-metering device

10.11975/j.issn.1002-6819.2017.11.002

S223.2+2

A

1002-6819(2017)-11-0011-08

趙曉順,于華麗,馬躍進,張晉國,桑永英,霍曉靜. 負壓式小麥精量排種器參數(shù)優(yōu)化與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):11-18.

10.11975/j.issn.1002-6819.2017.11.002 http://www.tcsae.org

Zhao Xiaoshun, Yu Huali, Ma Yuejin, Zhang Jinguo, Sang Yongying, Huo Xiaojing. Parameter optimization and experiment of negative pressure precision seed-metering device for wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 11-18. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.002 http://www.tcsae.org

2016-10-09

2017-04-01

“十二五”國家科技支撐計劃:糧食豐產(chǎn)科技工程三期(2013BAD07B05);“十三五”國家科技支撐計劃:糧食豐產(chǎn)科技工程(SQ2017YFNC050007)

趙曉順,男,河北康保人,副教授,博士,研究方向為農(nóng)業(yè)機械與自動化。保定 河北農(nóng)業(yè)大學(xué)機電工程學(xué)院,071001。

Email:zhao_xsh@126.com

猜你喜歡
環(huán)槽排種種器
玉米擾動輔助充種高速氣吸式排種器設(shè)計與試驗
汽車零部件(2022年9期)2022-09-30 00:54:20
一種排種盤傳動結(jié)構(gòu)的設(shè)計與應(yīng)用
基于EDEM的雙腔式棉花精量排種器排種性能仿真研究
旋轉(zhuǎn)式壓縮機主軸承減摩技術(shù)研究
低合金鋼7 倍徑環(huán)槽精銑加工方案
精量排種器現(xiàn)狀及發(fā)展分析
氣力托勺式馬鈴薯精量排種器設(shè)計
Design and evaluation of PID electronic control system for seed meters for maize precision planting
小籽粒種子排種物理機械特性參數(shù)的測量
福清市| 梨树县| 东海县| 汕尾市| 扶余县| 昌乐县| 灵台县| 黄梅县| 大关县| 大宁县| 麻城市| 乐陵市| 衡南县| 灌阳县| 麻江县| 东乡族自治县| 汾阳市| 视频| 兴海县| 保定市| 怀远县| 海兴县| 安岳县| 巫山县| 内乡县| 定襄县| 若尔盖县| 桃江县| 土默特右旗| 澜沧| 潢川县| 蒙阴县| 凤庆县| 梅河口市| 长沙县| 泾川县| 固安县| 佳木斯市| 天祝| 遵义县| 新邵县|