邵克勇+王季馳+于葉強
摘 要:針對帶擾動不確定分?jǐn)?shù)階混沌系統(tǒng)的同步問題,基于自適應(yīng)Terminal滑??刂疲O(shè)計了一種分?jǐn)?shù)階非奇異Terminal滑模面,保證誤差系統(tǒng)沿著滑模面在有限時間內(nèi)穩(wěn)定至平衡點,在系統(tǒng)外部擾動和不確定性的邊界事先未知的情況,設(shè)計了自適應(yīng)控制率,在線估計未知邊界,使得同步誤差軌跡能到達滑模面。最后,以三維分?jǐn)?shù)階Chen系統(tǒng)和四維分?jǐn)?shù)階Lorenz超混沌系統(tǒng)為例,利用所設(shè)計的自適應(yīng)Terminal滑??刂破鬟M行同步仿真,驗證了所給方法是有效性和可行性。
關(guān)鍵詞:混沌同步;分?jǐn)?shù)階非奇異Terminal滑模;自適應(yīng)控制;分?jǐn)?shù)階混沌系統(tǒng)
Abstract: In this paper, the problem of synchronization of uncertain fractional order chaotic systems with disturbance is investigated based on adaptive terminal sliding mode control method. First, a new non-singular fractional order terminal sliding surface with strong robustness is designed to guarantee finite-time convergence to the equilibrium of the error dynamics in the sliding mode. Then, for the case that the bounds of the uncertainties and external disturbances are assumed to be unknown in advance, an adaptive control law is proposed to estimate the unknown bounds online, and force the trajectory of the synchronization error system onto the sliding surface. Finally, numerical simulations on synchronizing Chen chaotic system and hyperchaos Lorenz are carried out separately. The simulation results show the effectiveness and feasibility of the adaptive terminal sliding mode controller.
Keywords: Chaos synchronization; non-singular fractional order terminal sliding mode; adaptive control; fractional order chaotic systems
1.引 言
分?jǐn)?shù)階微積分起源于19世紀(jì),是一個有著將近300年歷史的數(shù)學(xué)概念,近些年來,科學(xué)工作者對分?jǐn)?shù)階微積分進行了深入研究[1]。多年來,這個分支被認(rèn)為是唯一一個幾乎沒有應(yīng)用的數(shù)學(xué)和理論相結(jié)合的學(xué)科。但是,數(shù)十年來,分?jǐn)?shù)階動力學(xué)系統(tǒng)的混沌現(xiàn)象、混沌控制及同步研究已經(jīng)得到廣泛和深入的研究[2-6]。
1990 年,Pecora和Carroll等人在混沌同步的研究中做出了開創(chuàng)性的工作[7]。此后,科學(xué)工作者們對混沌控制與同步問題產(chǎn)生廣泛的關(guān)注[8]。由于分?jǐn)?shù)階與整數(shù)階模型相比較,分?jǐn)?shù)階微分是刻畫具有記憶性和遺傳性的各種材料及過程的良好的工具,分?jǐn)?shù)階混沌同步比整數(shù)階混沌同步在保密通信以及控制領(lǐng)域等方面有著巨大的應(yīng)用前景和發(fā)展前景[9-14]。近年來,人們提出了很多分?jǐn)?shù)階混沌系統(tǒng)的同步控制方法,如脈沖控制[15],主動控制[16],自適應(yīng)控制[17],廣義投影控制[18]和被動控制[19]。
滑??刂剖且环N簡單并且有效的魯棒控制策略。傳統(tǒng)的線性滑模具有很快的速度,但卻漸近地趨于平衡點,極大的影響收斂速度;Terminal滑模使系統(tǒng)狀態(tài)在有限的時間內(nèi)收斂于平衡點,但當(dāng)系統(tǒng)的狀態(tài)離平衡點較遠時,到達時間卻較長,并出現(xiàn)了無窮大奇異點。為了避免傳統(tǒng)Terminal滑模方法中所出現(xiàn)的奇異問題,文獻[20-22]提出了非奇異Terminal滑??刂品椒ǎ岣呦到y(tǒng)到達滑模面的速度,提高系統(tǒng)處于滑動模態(tài)時的收斂速度。但在實際應(yīng)用中,系統(tǒng)受外界干擾和自身的不確定性是不可避免的,而且由于測量條件的局限性,外界也很難精確探測出系統(tǒng)的數(shù)學(xué)模型。因此研究受擾動和帶有不確定項的分?jǐn)?shù)階混沌系統(tǒng)更具有實際的意義。然而,國內(nèi)外學(xué)者對于不確定擾動分?jǐn)?shù)階混沌系統(tǒng)的同步問題的研究并不深入。文獻[23]在考慮不確定因素影響的情況下,對不確定項進行了自適應(yīng)估計,但是該方法中誤差系統(tǒng)并不能在有限時間內(nèi)收斂到滑模面。
綜上所述,論文首先研究了分?jǐn)?shù)階非奇異Terminal滑??刂品椒?,誤差系統(tǒng)在有限時間收斂到Terminal滑模面的同時,實現(xiàn)了誤差系統(tǒng)的狀態(tài)變量在有限時間內(nèi)收斂到平衡點附近的鄰域內(nèi),實現(xiàn)分?jǐn)?shù)階混沌系統(tǒng)的同步。進而在未知外部擾動及不確定性的條件下,設(shè)計自適應(yīng)控制器,使得同步誤差軌跡達到Terminal滑模面,并在線估計未知邊界。通過理論分析和數(shù)值模擬驗證所設(shè)計的控制器是有效和可行的。
4 結(jié)論
本文基于非奇異Terminal滑??刂品椒ê妥赃m應(yīng)控制方法,研究了不確定擾動的分?jǐn)?shù)階混沌系統(tǒng)的同步問題。首先設(shè)計了一種分?jǐn)?shù)階非奇異Terminal滑模面,其次根據(jù)滑??傻竭_條件,并假設(shè)不確定性和外部擾動的邊界都是事先未知的情況下,設(shè)計了自適應(yīng)非奇異Terminal滑模控制器,使誤差系統(tǒng)從空間內(nèi)任意一點出發(fā),都能在有限時間內(nèi)沿滑模面穩(wěn)定至平衡點,進而實現(xiàn)了分?jǐn)?shù)階混沌系統(tǒng)同步。運用所設(shè)計的自適應(yīng)非奇異Terminal滑模控制器實現(xiàn)了三維分?jǐn)?shù)階Chen系統(tǒng)與四維分?jǐn)?shù)階Lorenz超混沌系統(tǒng)的滑??刂仆健?shù)值仿真結(jié)果驗證了該控制器的有效性。
參考文獻
[1] Podlubny I. Fractional differential equations[M]. New York: Academic Press, 1999.
[2] Tavazoei MS, Haeri M, Jafari S, Bolouki S, Siami M. Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans Ind Electron
2008, 55:4098–101.
[3] Magin RL. Fractional calculus in bioengineering. Crit Rev Biomed Eng, 2004,32:1-104.
[4] Couceiro MS, Fonseca Ferreira NM, Tenreiro Machado JA. Application of fractional algorithms in the control of a robotic bird. Commun Nonlinear Sci Numer Simul, 2010,15:895-910.
[5] Victor S, Melchior P, Oustaloup A. Robust path tracking using flatness for fractional linear MIMO systems: a thermal application. Comput Math Appl, 2010,59:1667-78.
[6] Preda L, Mihailescu M, Preda A. Application of fractional derivative to the relaxation of laser target. UPB Sci Bull Ser A Appl Math Phys ,2009,71:11-20.
[7] Pecora L M, Carroll T L. Synchronization in chaotic system[J]. Physical Review Letters, 1990, 64(8):821-824.
[8] Her-Terng Yau, Chieh-Li Chen. Chaos control of Lorenz systemsusing adaptive controller with input saturation[J]. Chaos, Solitons and Fractals, 2007, 34:1567-1574.
[9] Abdullah, A.: Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers. Appl. Math. Comput.219, 10000–10011 (2013).
[10] Wu, X, Wang, H, Lu, H. Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication[J]. Nonlinear Anal. Real World Appl., 2012, 13(3), 1441-1450.
[11] Sheu, L J . A speech encryption using fractional chaotic systems[J]. Nonlinear Dyn., 2011, 65[1], 103-108.
[12] Muthukumar, P, Balasubramaniam, P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography[J]. Nonlinear Dyn., 2013, 74(4), 1169-1181.
[13] Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dyn., 2014, 77(4), 1547-1559.
[14] Muthukumar, P, Balasubramaniam, P, Ratnavelu, K. Synchronization and an application of a novel fractional order King Cobra chaotic system[J]. Chaos, 2014, 24(3), 033105.
[15] Xi, H L, Yu, S M, Zhang, R X, Xu, L. Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems[J]. Optik Int. J. Light Electron Opt., 2014(9), 125, 2036-2040.
[16] Bhalekar, S, Daftardar-Gejji, V. Synchronization of different fractional order chaotic systems using active control[J]. Commun. Nonlinear Sci. Numer. Simul., 2010, 15(11), 3536–3546.
[17] Yang, L X, Jiang, J. Adaptive synchronization of driveresponse fractional-order complex dynamical networks with uncertain parameters[J]. Commun. Nonlinear Sci. Numer.Simul., 2014, 19(5), 1496–1506.
[18] Peng, G J, Jiang, Y L, Chen, F. Generalized projective synchronization of fractional order chaotic systems. Phys. A, 2008, 387(14), 3738–3746.
[19] Wu, C J, Zhang, Y B, Yang, N N: The synchronization of a fractional order hyperchaotic system based on passive control[J]. Chin. Phys. B, 2011,20(6), 060505.
[20] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.
[21] Zhang W W, Wang J. Nonsingular terminal sliding model control based on exponential reaching law[J]. Control and Decision, 2012, 27(6): 909-913. (張巍巍, 王京. 基于指數(shù)趨近律的非奇異terminal滑??刂芠J]. 控制與決策, 2012, 27(6): 909-913.)
[22] Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. Int J of Robust and Nonlinear Control, 2011, 21(16), 1865-1879.
[23] Deng W, Fang J, Wu Z J, et al. Adaptive modified function projective synchronization of a class of chaotic systems with uncertainties[J]. Acta Physica Sinica, 2012, 61(14): 140503. (鄧瑋,方潔, 吳振軍等. 含有不確定項的混沌系統(tǒng)自適應(yīng)修正函數(shù)投影同步[J]. 物理學(xué)報, 2012, 61(14): 140503.)
[24] Aguila-Camacho, N, Duarte-Mermoud, M A, Gallegos, J A. Lyapunov functions for fractional order systems[J]. Commun. Nonlinear Sci. Numer. Simul., 2014, 19(9), 2951-2957 .
[25] Mohammad P A, Sohrab K, Ghassem A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical
Modelling, 2011, 35(6): 3080-3091.